WO1985004534A1 - Speed control system - Google Patents

Speed control system Download PDF

Info

Publication number
WO1985004534A1
WO1985004534A1 PCT/JP1985/000141 JP8500141W WO8504534A1 WO 1985004534 A1 WO1985004534 A1 WO 1985004534A1 JP 8500141 W JP8500141 W JP 8500141W WO 8504534 A1 WO8504534 A1 WO 8504534A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
speed control
signal
control system
torque
Prior art date
Application number
PCT/JP1985/000141
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Kurakake
Keiji Sakamoto
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Publication of WO1985004534A1 publication Critical patent/WO1985004534A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the present invention relates to a speed control method for a servomotor, and particularly to a speed control method for a servomotor suitable for driving a low-rigidity load.
  • a conventional speed control system using a DC motor can be represented as shown in Fig. 1.
  • Kt is the proportional gain
  • K2 is the integral gain
  • KV is the power amplifier gain
  • Ra is the armature resistor
  • La is the armature inductance
  • JL is the load inertia inertia
  • Ke is the induced voltage constant
  • K is the torque constant.
  • a speed control system as shown in FIG. 4 is adopted in order to solve the above-mentioned drawbacks of the speed control system and to improve responsiveness and stability. That is, this speed control system is configured such that a mechanical load feeding system and a feedback circuit from the tip of the mechanical load are added to the speed control system of FIG. In the speed control system shown in, the following equation:
  • Takishiaki was developed to solve the above-mentioned problems of the conventional speed control method.
  • the displacement of the mechanical load transmission system connected to the servomotor and the tip of the mechanical load were developed. It is an object of the present invention to provide a high-accuracy speed control system with excellent responsiveness and stability without providing a sensor for detecting speed.
  • the speed signal from the speed detector attached to the servo motor that drives the mechanical load is fed back, and the torque command signal to the servo motor is generated.
  • a speed control method for adding the feedback signal from the means to the torque command.
  • the speed of the tip of the mechanical load and the torque stress or the elastic displacement of the load transfer system can be obtained from the speed signal of the thermomotor and the torque finger signal.
  • Estimation means is provided, and the feedback signal from the means is added to the torque command, so the displacement of the mechanical load transmission system and the tip of the mechanical load.
  • Speed control system with excellent responsiveness and stability can be realized without providing a sensor to detect the speed of the motor, and therefore, low cost and high accuracy can be achieved.
  • Speed control system can be obtained.
  • Fig. 1 is a block diagram of a speed control system using a conventional DC motor
  • Fig. 2 is a block diagram of a speed control system that is a simplified version of Fig. 1
  • Fig. 3 is a diagram that considers the spring coefficient
  • Fig. 4 is a block diagram of the speed control system with quick response and stability
  • Fig. 5 is a block diagram showing the principle of the speed control system according to the invention.
  • Fig. 6 shows a simplified block diagram of the control target
  • Fig. 7 shows a block diagram of the minimum-dimensional observer.
  • FIG. 8 is a block diagram of an embodiment of a speed control method according to the present invention
  • FIG. 9 is a specific circuit diagram showing an example of an estimator.
  • FIG. 5 is a block diagram of an embodiment of the speed control method according to the present invention.
  • K t, K s. K 4 ho proportional gain Lee down, kappa 2 integral gain Lee down, J m is the motor B over Thailand Na one sheet catcher, K Hoba Ne coefficient, J Mr inertia Lee Nourishment, d is the displacement of the mechanical load feeding system, V £ is the tip speed of the mechanical load, r is the torque finger, V is the speed signal, and u is the torque command signal.
  • S represents dZdt.
  • the torque stress or elasticity d of the mechanical load feeding system and the tip speed V £ of the mechanical load are estimated by the estimator 1 to obtain the following. Obtain the estimates d and V £. The obtained estimated value is configured to be added to the torque command.
  • the estimator 1 is a well-known observer (known as the theory of observers. For example, see “System and Control Topics”, Volume 2 j, Takato Yasuto, Iwanami Shoten, “Introduction to System Control Theory” ⁇ Dr. Hiroshi Kogaku, co-authored by Dr. Tsutomu Kang, Ph.D. ⁇ See Jikkyo Shuppan, and there are various ways to construct this observer. An example using a dimensional observer is shown.
  • a and As in the above equation are constants that determine the characteristic that the estimated value 2 and di converge to the true detection values d and v il, respectively, and consider the eigenvalues of the differential equation in the above equation. It is determined .
  • FIG. 5 is modified using the above equations (1) and (2), it can be expressed as shown in FIG.
  • the observer portion that is, the estimator 1 can be configured as shown in FIG.
  • 2, 3, 4, and 5 are amplifiers
  • R1 to Rs are resistors
  • C! C 2 is a capacitor
  • U is a torque command signal
  • V is a speed signal
  • W 1 is the estimated value of the torque stress or elastic displacement d of the transmission system of the mechanical load
  • W 2 is the tip speed of the mechanical load V SL
  • the speed control system is configured by an analog sigma circuit.However, the speed control method can also be realized by using the function of the micro processor. It goes without saying.
  • a rotary encoder is provided in the servo motor, and the speed signal is obtained based on the position information from the rotary encoder. Also good o
  • the invention is based on the speed signal of the servomotor and the torque. From the torque command signal, the speed at the tip of the mechanical load and the torque or elastic displacement of the load feeding system are estimated, and the estimated value is used as the torque signal as a feedback signal. Since it is added to the finger, it is excellent in responsiveness and stability, and is particularly suitable for use in a speed control system of a servo motor for driving a low load.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Velocity Or Acceleration (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

A speed control system for a servo motor has means (1) which presumes speed (Vl) at the tip of the machine load as well as torque stress or resilient displacement (d) in the load transmitting system, based upon a speed signal (v) and a torque instruction signal (u). A feedback signal from said means (1) is added to the torque instruction in order to realize speed control with excellent response characteristics and stability, without providing a sensor that detects displacement in the machine load transmitting system or speed at the tip of the machine load.

Description

明 細 書  Specification
速 度 制 御 方 式  Speed control method
技 術 分 野  Technical field
発明は、 サー ボ モータ の速度制御方式、 特 に低剛性 の 負荷 を駆動す る に適する サー ボモー タ の速度制御方式 に関す る 。  The present invention relates to a speed control method for a servomotor, and particularly to a speed control method for a servomotor suitable for driving a low-rigidity load.
景 技 術  Landscape technology
従来の D C モ ー タ を用いた速度制御系 は、 第 1 図の よ う示す こ と が で き る 。 図中、 K t は比例ゲ イ ン 、 K 2 は 積分ゲ イ ン、 K V は電力増幅器ゲ イ ン、 R a は電機子抵 杭、 L a は電機子 ィ ン ダ ク タ ン ス 、 J mはモ ー タ ロ ー タ イ ナ 一 シ ャ 、 J L は負荷慣性 イ ナー シ ャ 、 K e は誘起電 圧定数、 K 丁 は ト ル ク 定数であ る。 こ の ょ ラ な一般的 な 速度制御系は 、 電力増幅器ゲ イ ン K v が或る程度大 き け れば簡単化 し て第 2 図の よ う に示すこ と がで き る 。 ただ し 、 こ れは、 モー タ CJ ー タ ィ ナ—シ ャ j m と 負荷慣性 ィ 十一 シ ャ J し が リ ジ ッ ドに結合された場合の こ と でぁ リ 、 通常、 結合 に おけ る パネ係数 K ( N m / r a d ) を考 慮 した場合に は第 3 図の ょ ラ に なる。  A conventional speed control system using a DC motor can be represented as shown in Fig. 1. In the figure, Kt is the proportional gain, K2 is the integral gain, KV is the power amplifier gain, Ra is the armature resistor, La is the armature inductance, Jm Is the motor rotor inertia, JL is the load inertia inertia, Ke is the induced voltage constant, and K is the torque constant. Such a general speed control system can be simplified as shown in FIG. 2 if the power amplifier gain Kv is somewhat large. However, this is the case where the motor CJ rotor joint jm and the load inertia 11J are connected to the rigid body, usually in the connection. When the panel coefficient K (Nm / rad) is considered, the result is as shown in Fig. 3.
しか し、 第 3 図に示す速度制御系においては 、 次の式 、 即 ち 、
Figure imgf000003_0001
However, in the speed control system shown in FIG. 3, the following equation:
Figure imgf000003_0001
な り 、 パネ 係数 K の値に よ っ ては、 非常に ダ ン ビ ン グ の悪い系 と な る 。 Therefore, depending on the value of the panel coefficient K, it is very damping. It becomes a bad system.
そ こ で、 上記の速度制御系の欠点を解消 し 、 速応性、 安定性を 向上 させる ために第 4 図の よ う な速度制御系が 採用 される。 即ち 、 こ の速度制御系は第 3 図の速度制御 系 に、 機械負荷送 り 系および機械負荷先端か ら の ブ イ 一 ドバ ツ ク 回路を付加'する よ う に構成する こ の第 4 図に に示す速度制御系 に おいては、 次の式、 即ち、  Therefore, a speed control system as shown in FIG. 4 is adopted in order to solve the above-mentioned drawbacks of the speed control system and to improve responsiveness and stability. That is, this speed control system is configured such that a mechanical load feeding system and a feedback circuit from the tip of the mechanical load are added to the speed control system of FIG. In the speed control system shown in, the following equation:
Figure imgf000004_0001
Figure imgf000004_0001
が成立する 。 Holds.
しか し 、 こ の速度制御系ほ、 K 5 , K 4 の フ ィ ー ドパ ッ ク を と る ために、 実際には機械負荷送 リ 系の変位 d お よび機械負荷の先端の速度 V JL を'検 する セ ン サが必要 であ っ た。 However, Ho speed control system of this, K 5, for K Ru bet the full I over-dopa click of 4, in fact, the machine load feeding of the displacement d you and mechanical load on the remote system the tip of the velocity V JL We needed a sensor to check the results.
と こ ろ が こ の よ う な セ ンサは、 コ ス ト が高 く な る 上 に 、 取 リ 付け場所及び精度等の問題があ り 、 上記の よ う な 速度制御系を実現する こ と は容易なこ と ではない と い う のが現状—であ っ た。  However, such a sensor requires high cost, and has problems such as installation location and accuracy.Therefore, it is necessary to realize the speed control system as described above. At present, it was not easy.
発 明 の 開 示  Disclosure of the invention
太癸明は、 前記従来の速度制御方式の周題点を解決す る ため に な された も の で、 サーボモータ に接統 される 機 械負荷送 リ 系 の変位お よび機械負荷の先端の速度を検出 する セ ンサを設け る こ と な く 、 速応性、 安定性に優れた 高精度の速度制御方式を提供する こ と を 目 的 と する 。 *発明 に よれば、 機械負荷を駆動する サーポ モー タ に 取付け られた速度検出器からの速度信号を フ ィ 一 ドバ ッ ク し 、 前記サ ー ボ モ ー タ への ト ルク 指令信号を生成す る よ う に し た速度制御方式において、 前記速度信号 と ト ル ク 指今信号 と か ら機械負荷の先端の速度および負荷送 り 系の ト ル ク 応力ま た は弾性変位を推定す る 手段 を備え 、 該手段か ら の フ ィ 一 ドバ ッ ク信号を ト ル ク 指令 に加え る よ う に した速度制御方式が提供される。 Takishiaki was developed to solve the above-mentioned problems of the conventional speed control method.The displacement of the mechanical load transmission system connected to the servomotor and the tip of the mechanical load were developed. It is an object of the present invention to provide a high-accuracy speed control system with excellent responsiveness and stability without providing a sensor for detecting speed. * According to the invention, the speed signal from the speed detector attached to the servo motor that drives the mechanical load is fed back, and the torque command signal to the servo motor is generated. Means for estimating the speed at the tip of a mechanical load and the torque stress or elastic displacement of a load feeding system from the speed signal and the torque finger current signal in the speed control method. And a speed control method for adding the feedback signal from the means to the torque command.
こ の よ う に 、 本発明 に よればサーポモ ー タ の速度信号 と ト ル ク 指今信号 と か ら機械負荷の先端の速度お よ び負 荷送 リ 系の ト ル ク 応力または弾性変位を推定す る手段 を 備え、 該手段か ら の フ ィ ー ドバ ッ ク信号 を ト ル ク 指令に 加え る ょ ラ に し たの で、 機械負荷送 リ 系 の変位お よ び機 械負荷の先端の速度 を検出する セ ン サを 設け る こ と な く 、 速応性、 安定性に優れた速度制御系 を実現する こ と が で き 、 従 っ て、 低コ ス ト で、 し かも 高精度の速度制御系 を得る こ と ができ る 。  As described above, according to the present invention, the speed of the tip of the mechanical load and the torque stress or the elastic displacement of the load transfer system can be obtained from the speed signal of the thermomotor and the torque finger signal. Estimation means is provided, and the feedback signal from the means is added to the torque command, so the displacement of the mechanical load transmission system and the tip of the mechanical load The speed control system with excellent responsiveness and stability can be realized without providing a sensor to detect the speed of the motor, and therefore, low cost and high accuracy can be achieved. Speed control system can be obtained.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図.は従来の D C モー タ を用いた速度制御系 プ ロ ク 図、 第 2 図は第 1 図を簡略化 した速度制御系 ブ ロ ッ ク 図、 第 3 図はバネ係数を考慮 した場合の速度制御系 プ ロ ツ ク 図、 第 4 図は速応性、 安定性を有す る速度制御系 ブ ロ ッ ク 図、 第 5 図は: 発明に係る速度制御方式の原理 を 示す ブ ロ ッ ク 図、 第 6 図は制御対象を簡略化 し て示 し た ブロ ッ ク 図、 第 7 図は最小次元オブザーバを示すブロ ッ ク 図、 第 8 図は太癸明に係る速度制御方式の一実施例ブ ロ ッ ク 図、 第 9 図は推定器の一例を示す具体的回路図で あ る 。 Fig. 1 is a block diagram of a speed control system using a conventional DC motor, Fig. 2 is a block diagram of a speed control system that is a simplified version of Fig. 1, and Fig. 3 is a diagram that considers the spring coefficient. Fig. 4 is a block diagram of the speed control system with quick response and stability, and Fig. 5 is a block diagram showing the principle of the speed control system according to the invention. Fig. 6 shows a simplified block diagram of the control target, and Fig. 7 shows a block diagram of the minimum-dimensional observer. FIG. 8 is a block diagram of an embodiment of a speed control method according to the present invention, and FIG. 9 is a specific circuit diagram showing an example of an estimator.
発明 を実施するための最良の形態 以下 、 术棻明の一実施例を図面に基づいて説明する 。 第 5 図は太発明 に係 る速度制御方式の一実施例 ブ Π ッ ク 図であ る 。 図中、 K t 、 K s . K 4 ほ比例ゲ イ ン、 Κ 2 は積分ゲ イ ン 、 J m はモータ ロ ータ イ ナ一 シ ャ 、 K ほバ ネ係数、 J し は負荷慣性 イ ナ一シャ 、 d は機械負荷送 リ 系の変位、 V £ は機械負荷の先端速度、 r は ト ル ク 指今 、 V は速度信号、 u は ト ルク指令信号であ る 。 なお、 S は d Z d t を表す。 こ の実施例においては、 第 4 図に お い て行なわれ る機械負荷送 り 系の変位 d お よび機械負荷 の先端速度 V JL を フ ィ ー ド'バ ッ クする 回路を設ける代 り に速度信号 V と ト ル ク 指令信号 u と か ら機械負荷送 り 系 の ト ル ク 応力又は弾性变位 d および璣械負荷の先端速度 V £ を推定器 1 で推定する こ と に よ リ 、 推定値 d及び V £ を得る 。 そ して、 得られた推定値は ト ル ク 指令に加 える よ う に構成 し て い る。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 5 is a block diagram of an embodiment of the speed control method according to the present invention. In the figure, K t, K s. K 4 ho proportional gain Lee down, kappa 2 integral gain Lee down, J m is the motor B over Thailand Na one sheet catcher, K Hoba Ne coefficient, J Mr inertia Lee Nourishment, d is the displacement of the mechanical load feeding system, V £ is the tip speed of the mechanical load, r is the torque finger, V is the speed signal, and u is the torque command signal. Note that S represents dZdt. In this embodiment, instead of providing a circuit for feeding back the displacement d of the mechanical load transmission system and the tip speed V JL of the mechanical load, which is performed in FIG. From the speed signal V and the torque command signal u, the torque stress or elasticity d of the mechanical load feeding system and the tip speed V £ of the mechanical load are estimated by the estimator 1 to obtain the following. Obtain the estimates d and V £. The obtained estimated value is configured to be added to the torque command.
次に 、 推定器 1 について説明する。 該推定器は公知の オブザーバ ( オブザーバの理論 と して公知であ る 。 例え ば、 「 シ ス テ ム と 制御上 · 下巻 j · 高榼安人著 · 岩波書 店、 「 シ ス テ ム制御理論入門」 · 工学博士小鄉寛、 工学 博士姜多勉共著 · 実教出版参照) を用いてお り 、 こ の ォ ブザー バの構成方法にはいろいろあ るが、 こ こ では最小 次元オ ブザー バを用 いた例を示す。 Next, the estimator 1 will be described. The estimator is a well-known observer (known as the theory of observers. For example, see “System and Control Topics”, Volume 2 j, Takato Yasuto, Iwanami Shoten, “Introduction to System Control Theory” · Dr. Hiroshi Kogaku, co-authored by Dr. Tsutomu Kang, Ph.D. · See Jikkyo Shuppan, and there are various ways to construct this observer. An example using a dimensional observer is shown.
第 5 一図の速度制御系 を簡単化 して表わす と 、 第 6 図 に 示す と お り と な る 。 こ れを状態方程式で記述す る と 、 次 の よ ラ に な り 、  Simplified representation of the speed control system in Fig. 51 is as shown in Fig. 6. This can be described by the equation of state as follows:
-丄  -丄
了 m  M
0 a  0 a
I I
Figure imgf000007_0002
了し
Figure imgf000007_0002
Done
Figure imgf000007_0003
Figure imgf000007_0003
状態変数で v 、 d 、 v £ の う ち、 vのみが検出 で き る の で、 こ れ と 制御入力 u と を用いて、 次式の最小次元ォ ブ ザーバが構成で き る 。 Since only v out of v, d, and v £ can be detected as a state variable, a minimum dimension observer of the following equation can be constructed using this and the control input u.
Figure imgf000007_0001
Figure imgf000007_0004
Figure imgf000007_0005
Figure imgf000007_0001
Figure imgf000007_0004
Figure imgf000007_0005
Wi V C1 ) Wi V C1)
- 十 ユ 02) -Ten You 02)
尚、 上式の A 、 A s は推定値 2、 d i がそれぞれの真 の検出値 d 、 v il に収束する特性を块め る定数であ り 、 上式の微分方程式の 固有値を考慮 して決定 され る 。 Note that A and As in the above equation are constants that determine the characteristic that the estimated value 2 and di converge to the true detection values d and v il, respectively, and consider the eigenvalues of the differential equation in the above equation. It is determined .
上述の最小次元オ ブザーバは第 7 図の プ ロ ッ ク 図で表 わ され る 。  The minimum dimension observer described above is represented by the block diagram in FIG.
そ こ で、 上記 ( 1 ) 及び ( 2 ) 式を用 いて第 5 図を変 形すれば、 第 8 図の よ う に表わすこ と がで き る 。  Therefore, if FIG. 5 is modified using the above equations (1) and (2), it can be expressed as shown in FIG.
そ し て、 第 8 図に おいてオブザーバ部分、 即 ち推定器 1 は、 第 9 図の よ う に構成する こ とがで き る 。 図中、 2 、 3 、 4 、 5 は増幅器、 R 1 〜 R s は抵抗、 C ! , C 2 はコ ン ンサ、 Uは ト ル ク指令信号、 V は速 度信号、 W 1 ほ機械負荷の送 リ 系の ト ルク 応力又は弾性 変位 d の推定値 W 2 は機械負荷の先端速度 V SL の推 Then, in FIG. 8, the observer portion, that is, the estimator 1 can be configured as shown in FIG. In the figure, 2, 3, 4, and 5 are amplifiers, R1 to Rs are resistors, and C! , C 2 is a capacitor, U is a torque command signal, V is a speed signal, W 1 is the estimated value of the torque stress or elastic displacement d of the transmission system of the mechanical load W 2 is the tip speed of the mechanical load V SL
 Eight
定値 V £ で あ る Ad 尚、 こ では
Figure imgf000008_0001
Ad which is a fixed value V £
Figure imgf000008_0001
R ,  R,
t ( i (  t (i (
R2 -A) Rc ^会) R 2 -A) Rc ^ meeting)
+ +
Figure imgf000008_0002
Figure imgf000008_0002
の閬係に あ る 。 Is in charge of
以上、 *発明 に よ る速度制御系をアナ σ 回路に よ つ て構成 した も の を示 したが、 マ イ ク ロ ブ セ ッ サの演箕 機能を用いて も 当該速度制御方式が実現でき る こ と は言 う ま で も ない。 また、 速度信号はサーボ モー タ に ロ ー タ リ ー ェ ン コ ー ダを設け、 該ロー タ リ ーエ ン コ ー ダか ら の 位置情報に基づいて前記速度信号を得る よ う に し て も 良 い o  As described above, the speed control system according to the present invention is configured by an analog sigma circuit.However, the speed control method can also be realized by using the function of the micro processor. It goes without saying. For the speed signal, a rotary encoder is provided in the servo motor, and the speed signal is obtained based on the position information from the rotary encoder. Also good o
尚 » ¾発明 を一実施例に基づいて説明 し たが、 *癸明 は 述の実施例 に限-定 される も のではな く 、 末発明の主 旨 の範囲で種 々 の变形が可能であ り 、 こ れ ら を *癸明の 範囲か ら拂除する も のではない。  Note that the invention has been described based on one embodiment. However, the invention is not limited to the embodiment described above, and various forms are possible within the spirit of the invention. However, they do not remove them from the area of * Kiyoshi.
産業上の利用可能性  Industrial applicability
以上の よ う に、 : *:発明はサーボモー タ の速度信号 と ト ル ク 指令信号 と か ら機械負荷の先端の速度お よ び負荷送 り 系の ト ル ク 応力ま たは弾性変位を推定 し 、 こ の推定値 ブ イ ― ドバ ッ ク信号 と して ト ルク指今に加え る よ う に し た の で、 速応性、 安定性に優れ、 特に 、 低刚性の負荷 を駆動する サ ー ボモ ー タ の速度制御系に用い て好適であ る 。 As described above: *: The invention is based on the speed signal of the servomotor and the torque. From the torque command signal, the speed at the tip of the mechanical load and the torque or elastic displacement of the load feeding system are estimated, and the estimated value is used as the torque signal as a feedback signal. Since it is added to the finger, it is excellent in responsiveness and stability, and is particularly suitable for use in a speed control system of a servo motor for driving a low load.

Claims

請 求 の 範 囲 The scope of the claims
1 . 機械負荷を. ¾動するサーボモー タ に取 り 付け られ た速度検出器か らの速度信号を フ ィ ー ドパ ッ ク し、 前記 サー ボモー タ への ト ル ク指令信号を生成する よ う に し た 速度制御方式におい て、 前記速度信号 と ト ル ク 指令信号 と か ら機械負荷の先端の速度および負荷送 り 系の ト ル ク 応力ま たは弾性変位 を推定する手段を備え、 該手段か ら の フ ィ 一 ドバ ッ ク 信号を ト ルク指今に加 え る よ う に し た こ と を特徴 と す る逮度制御方式。  1. Feeds the speed signal from the speed detector attached to the servomotor that drives the mechanical load, and generates a torque command signal to the servomotor. In the speed control method, means for estimating the speed at the tip of the mechanical load and the torque stress or elastic displacement of the load feeding system from the speed signal and the torque command signal are provided. An arrest control method characterized in that the feedback signal from the means is added to the torque finger.
2 . 前記サ ー ボモ ー タ に ロー タ リ ーエ ン コ ー ダを設け 、 該 ロ ー タ リ ー エ ン コ ー ダか らの位置情報か ら 、 前記速 度信号 を得 る よ うに したこ と を特徵 とす る 請求の範囲第 1 項に記載の速度制御方式。  2. A rotary encoder is provided in the servo motor, and the speed signal is obtained from position information from the rotary encoder. The speed control method according to claim 1, which is characterized by this.
PCT/JP1985/000141 1984-03-22 1985-03-22 Speed control system WO1985004534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59055114A JPS60200788A (en) 1984-03-22 1984-03-22 Speed control system
JP59/055114 1984-03-22

Publications (1)

Publication Number Publication Date
WO1985004534A1 true WO1985004534A1 (en) 1985-10-10

Family

ID=12989722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000141 WO1985004534A1 (en) 1984-03-22 1985-03-22 Speed control system

Country Status (2)

Country Link
JP (1) JPS60200788A (en)
WO (1) WO1985004534A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241563A1 (en) * 1985-10-17 1987-10-21 Fanuc Ltd. Speed control system
RU2660183C1 (en) * 2017-09-14 2018-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of automatic regulation of electric drive coordinate and device for its implementation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126883A (en) * 1985-11-27 1987-06-09 Fanuc Ltd Speed control system
JPS62207187A (en) * 1986-03-05 1987-09-11 Yaskawa Electric Mfg Co Ltd Drive system of servomotor
JP2521458B2 (en) * 1987-02-17 1996-08-07 株式会社ダイヘン Anti-vibration control device for manipulator
DE3871074D1 (en) * 1987-10-26 1992-06-17 Siemens Ag METHOD FOR DETECTING AND CONTROLLING A SPRING TORQUE AND A DIFFERENTIAL SPEED IN ROTATIONALLY DRIVEN TWO-MASS SYSTEMS.
JP2566033B2 (en) * 1990-02-08 1996-12-25 三菱電機株式会社 Disturbance suppression control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133388A (en) * 1974-04-10 1975-10-22
JPS54109118A (en) * 1978-01-19 1979-08-27 Siemens Ag Rotation speed controller

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199487A (en) * 1981-06-03 1982-12-07 Fuji Electric Co Ltd Controller for speed of motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133388A (en) * 1974-04-10 1975-10-22
JPS54109118A (en) * 1978-01-19 1979-08-27 Siemens Ag Rotation speed controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241563A1 (en) * 1985-10-17 1987-10-21 Fanuc Ltd. Speed control system
EP0241563A4 (en) * 1985-10-17 1988-05-10 Fanuc Ltd Speed control system.
RU2660183C1 (en) * 2017-09-14 2018-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Method of automatic regulation of electric drive coordinate and device for its implementation

Also Published As

Publication number Publication date
JPS60200788A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US6847179B2 (en) Actuator position control with signal sensing
JP3712876B2 (en) Electric power steering control device
US6681165B2 (en) Control device for electric power steering apparatus
EP0247206A1 (en) Speed control system
US4625565A (en) Wind velocity sensor
WO1985004534A1 (en) Speed control system
EP0518303A2 (en) Rate mode hand controller with force reflection
JP4487073B2 (en) External force estimation method and external force estimation device
WO1996007127A9 (en) Closed loop control system and method using back emf estimator
EP0778964A1 (en) Closed loop control system and method using back emf estimator
JP3196311B2 (en) Motor speed estimation observer
CN109560730B (en) Feed forward control of permanent magnet DC motors
JPS6098822A (en) Overheat detector of electromagnetic mechanism
CN109067271B (en) DC motor servo control method based on robust disturbance compensation scheme
JP2948143B2 (en) Motor control device
JP3099080B2 (en) Motor with amplifier for speed detection signal
JP4390537B2 (en) Position sensorless control method for ultrasonic motor
JPS6225718Y2 (en)
JPS5826215A (en) Rotating angle detector
JPH0626076Y2 (en) Motor control circuit
JP2554663B2 (en) Speed signal detection circuit of electromagnetic drive
JPH0623177Y2 (en) Electromagnetic drive
JP4764990B2 (en) Output voltage detection method for power converter
JPH0591774A (en) Motor speed controller
JP2655895B2 (en) Spring device

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): DE FR GB