WO1984003554A1 - Apparatus for producing high-purity nitrogen gas - Google Patents

Apparatus for producing high-purity nitrogen gas Download PDF

Info

Publication number
WO1984003554A1
WO1984003554A1 PCT/JP1984/000089 JP8400089W WO8403554A1 WO 1984003554 A1 WO1984003554 A1 WO 1984003554A1 JP 8400089 W JP8400089 W JP 8400089W WO 8403554 A1 WO8403554 A1 WO 8403554A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen gas
nitrogen
liquid nitrogen
liquid
compressed air
Prior art date
Application number
PCT/JP1984/000089
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Yosino
Original Assignee
Daido Oxygen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP58038050A external-priority patent/JPS59164874A/en
Priority claimed from JP59004123A external-priority patent/JPS60147086A/en
Application filed by Daido Oxygen filed Critical Daido Oxygen
Priority to DE8484901096T priority Critical patent/DE3476114D1/en
Publication of WO1984003554A1 publication Critical patent/WO1984003554A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04636Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a hybrid air separation unit, e.g. combined process by cryogenic separation and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system
    • Y10S62/913Liquified gas

Definitions

  • the present invention relates to a high-purity nitrogen gas producing apparatus capable of producing extremely high-purity nitrogen gas at low cost and without causing any trouble.
  • all of these methods require that the temperature of the nitrogen gas be brought to a high temperature so that the catalyst is brought into contact with the catalyst. Therefore, a refining unit must be installed separately from the nitrogen gas production unit, and there is a disadvantage that the whole becomes large.
  • the method (1) requires a high degree of accuracy in adjusting the amount of hydrogen added.
  • a conventional cryogenic liquefaction type nitrogen gas production apparatus uses an expansion Durbin for cooling a heat exchanger for cooling by exchanging heat with compressed air compressed by a compressor.
  • the liquid air that accumulates in the distillation tower (low-boiling nitrogen is taken out as gas by cryogenic liquefaction separation and the remainder remains as oxygen-rich liquid air) is driven by the pressure of the gas evaporated from the gas. ing.
  • the expansion turbine since the expansion turbine has an extremely high image speed (tens of thousands of planes), it is difficult to rigorously follow the load fluctuation (change in the amount of product nitrogen gas extracted). Therefore, it is difficult to accurately change the amount of liquid air supplied to the expansion turbine according to the change in the amount of product nitrogen gas extracted, and to constantly cool the compressed air to a constant temperature.
  • FIG. 1 shows this PSA nitrogen gas production system.
  • 1 is an air intake
  • 2 is an air compressor
  • 3 is an aftercooler
  • 3a is a cooling water supply channel
  • 4 is an oil-water separator.
  • 5 is the first adsorption tank
  • 6 is the second adsorption tank
  • V 1 and V 2 are air operated valves, compressed by the air compressor 2
  • Air is sent into adsorption tank 5 or 6 by valve action.
  • V 3 and V 4 are vacuum valves, the adsorption vessel 5 or 6 to vacuum Fukutai Ri by the action of the vacuum pump 6 a.
  • 6b is a cooling nozzle for supplying cooling water to the vacuum pump 6a
  • 6c is a silencer
  • 6d is its exhaust pipe.
  • V 5, ⁇ 6, V 7 and V 9 are air operated valves.
  • 7 is a product tank, which is connected to adsorption tanks 5 and 6 by pipe 8.
  • 7a is a product nitrogen gas extraction pipe
  • 7b is an impurity analyzer
  • 7c is a flow meter.
  • adsorption tank 5 or 6 contains a pressure-sensitive molecular sieve for oxygen adsorption, and these adsorption tanks 5 and 6 are alternately supplied with compressed air every minute by a pressure swing method. Sent in. In this case, the inside of the adsorption tank 6 (5) to which the compressed air is not sent is evacuated by the operation of the vacuum pump 6a. That is, air that is compressed by the air compressor 2.
  • this nitrogen gas producing apparatus produces nitrogen gas by utilizing the characteristic that carbon molecular sieve selectively adsorbs oxygen, so that nitrogen gas can be obtained at low cost.
  • the purpose of this method is to provide a high-purity nitrogen gas production apparatus that can produce extremely high-grade nitrogen gas at a low cost and that does not cause failure.
  • An introduction path for introducing liquid nitrogen in the liquid nitrogen storage means into the rectification tower as a cold source for compressed air liquefaction, and liquid nitrogen vaporized after the operation as a cold source and held in the rectification tower is a high-purity nitrogen gas production apparatus provided with an extraction path for taking out both of the vaporized nitrogen as product nitrogen gas from the rectification column.
  • OMPI Part of the compressed air (mainly oxygen content) is liquefied and separated and nitrogen is retained as a gas. This is combined with liquid nitrogen vaporized after ending the operation as a cold source in the rectification column and combined with product nitrogen gas. More specifically, the apparatus can obtain nitrogen gas at a low cost.More specifically, the apparatus uses liquid nitrogen as a cold source, and does not discard it after use, but instead uses air. Since the product nitrogen gas is used together with the nitrogen gas obtained as a raw material to produce product nitrogen gas, there is no waste of resources, and product nitrogen gas can be obtained about 10 times as much as the amount of liquefied nitrogen used.
  • the cost of nitrogen gas can be significantly reduced, and liquid nitrogen, which does not use an expansion turbine and can be adjusted finely because of liquid level, is used as a cold source for compressed air. (A change in the amount of product nitrogen gas extracted) can be carefully followed, and nitrogen gas with stable purity and extremely high purity can be produced.
  • FIG. 1 is an explanatory diagram of a conventional example
  • FIG. 2 is a configuration diagram of one embodiment of the present invention
  • FIG. 3 is a configuration diagram of another embodiment
  • FIG. 4 is a characteristic curve diagram of a synthetic zeolite used therein.
  • FIGS. 5 and 6 are explanatory diagrams of modifications of FIG. 3, respectively.
  • FIG. 7 is a block diagram of another embodiment, and FIGS. 8 and 9 are modifications thereof. It is explanatory drawing of an example.
  • FIG. 2 shows the configuration of one embodiment of the present invention.
  • FIG. 2 shows the configuration of one embodiment of the present invention.
  • the decomposer 16 is separated from the tower 22 by a partition plate 21 in which a large number of tubes 20 are planted. Liquid nitrogen is supplied from the liquid nitrogen storage tank 23 onto the partition plate 21. The compressed air supplied through the pump 24 and injected into the tower 22 is guided into the tube 20 to cool it, and oxygen (boiling point: 1.83'C) is liquefied and dropped to drop nitrogen.
  • O PI Control the volume.
  • 27 is a take-out pipe for taking out the nitrogen gas accumulated at the upper part of the decomposer 16, and guides the ultra-low temperature nitrogen gas into the second and first heat exchangers 1 and 13 and sends it into it Heat exchanges with the compressed air to bring it to room temperature and sends it to the main pipe 28.
  • Reference numeral 29 denotes a pipe for feeding the stored liquid air 18 at the bottom of the rectification tower 15 to the second and first heat exchangers 14 and 13, and 29 a is a pressure-holding valve thereof.
  • the liquid air that has completed heat exchange (cooling of compressed air) in the second and first heat exchangers 14 and 13 evaporates and is discharged from the first heat exchanger 13 as shown by arrow A. It is supposed to be.
  • 30 is a backup line, and when the air compression line breaks down, the liquid nitrogen in the liquid nitrogen storage tank 23 is evaporated by the evaporator 31 to the main pipe 28.
  • the supply and supply of nitrogen gas should not be interrupted.
  • Reference numeral 32 denotes an impurity meter, which determines the purity of the product nitrogen gas sent to the main pipe 28, and when the temperature is low, operates the valves 34, 34a to operate the product nitrogen gas. As shown by arrow B.
  • This device produces product nitrogen gas as follows. That is, the air is compressed by the air compressor 9, the moisture in the air compressed by the drain separator 10 is removed, and the air is cooled by the fan cooler 11. feed 2, for adsorbing and removing Eta 2 0 and C 0 2 in air. Then, H 2 0, C 0 2 is cooled to an ultra low temperature by feeding compressed air adsorbed removed first heat exchanger 1 3 and the second heat exchanger 1 4, further rectification column 1 5 After cooling with stored liquid air 18 at the lower part of the column, it is injected into the tower 22 of the rectification tower 15. The oxygen in the air is liquefied using the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183 V, boiling point of nitrogen-196).
  • the liquid nitrogen in the liquid nitrogen storage tank 23 is cooled by the cold i3 ⁇ 4RE OMPI WIPO ⁇ PGT / JP84 / 00089
  • this apparatus does not use an expansion turbine as in the conventional example, by setting the rectification column 15 to high purity, high-purity nitrogen gas with an impurity oxygen amount of 0.3 ppm or less is obtained. You will be able to get.
  • the conventional cryogenic liquefaction method only yields nitrogen gas with an impure oxygen content of 5 ppm, and the PSA-type nitrogen gas production device has an impure oxygen content of 100 O Only p pm's are available.
  • a PSA-type nitrogen gas production apparatus can produce only nitrogen gas having an impurity oxygen amount of 100 ppm, and therefore cannot be used directly for the electronics industry where high-purity nitrogen gas is required.
  • FIG. 3 shows the configuration of another embodiment.
  • the take-out pipe 27 is provided with an oxygen adsorbing cylinder 27a containing an adsorbent for selectively adsorbing oxygen and carbon monoxide at an extremely low temperature.
  • the other parts are substantially the same as those in the apparatus shown in FIG. 2, and the corresponding parts are denoted by the same reference numerals and description thereof will be omitted.
  • Examples of the adsorbent include synthetic zeolite 3A, 4A or 5A having a pore size of 3A, 4A or 5A (molecular sieves 3A, 4A, 5 ⁇ , Union Carbide Co., Ltd.) is used.
  • This synthetic Zeorai DOO 3 Alpha is 4 A, 5 A, as shown in FIG. 4, respectively, the 0 2 similar curves and the curve of the not shown in the oxygen and carbon monoxide (Fig. 4 at very low temperature but the figure (See below). Therefore, the impurities in the nitrogen gas discharged from the upper space of the decomposer 16 are removed, and the purity of the product nitrogen gas is further improved.
  • the above-mentioned synthetic zeolite 13X manufactured by UC may be used in place of the above-mentioned synthetic zeolite 3A, 4A, 5A.
  • This production apparatus removes impure oxygen and carbon monoxide extremely easily by utilizing the above-mentioned properties of synthetic zeolite, and this is a feature of the apparatus.
  • this device allows the nitrogen gas generated by the vaporization of the liquid nitrogen in the liquid nitrogen storage tank 7 to pass through the oxygen adsorption column 11 in the same manner as the nitrogen gas obtained from the compressed air. Even when impure oxygen and carbon monoxide are mixed in the product, the purity of the obtained product nitrogen gas does not decrease.
  • the liquid air collected at the bottom of the rectification tower 15 is injected into the inside of the tower 15 in the middle, and the liquid nitrogen in the liquid nitrogen storage tank 7 is sent to the separator 16.
  • the liquid air collected at the bottom of the rectification column 15 is sealed with a separator 16 at the top (the interior is sealed by an upper partition plate 16a and a lower ft plate 16b).
  • the upper part of the decomposer 16 and the tower part 22 of the rectification tower 15 are connected to each other by a plurality of pipes 20).
  • Liquid nitrogen may be sent to the upper part of the rectification column 10 and may flow down from there to have a cooling effect.
  • a condenser 16c is provided inside the condenser 16 and cooled by the liquid air 18 at the bottom of the tower 22 to form a liquefied fraction of the compressed air. Is returned to the tower 22, the vaporized components are released to the atmosphere, and the nitrogen gas is taken out from the top of the tower 22 instead of taking out the nitrogen gas from the top of the decomposer 16. Is also good.
  • the one-point line indicates a vacuum insulated box, in which heat exchangers 5, 6 and a rectification tower 10 are housed and insulated by vacuum perlite.
  • FIG. 7 shows the configuration of still another embodiment.
  • a condenser 3′5 is provided above the outside of the rectification tower 15 and communicates with the upper part of the decomposer 16 by a communication pipe 36, and the upper space of the Into the condenser 35 (nitrogen gas obtained by liquefaction and separation of oxygen by the decomposer 16 + liquid nitrogen vapor gas supplied from the liquid nitrogen storage tank 7). It is composed. Then, this nitrogen gas is released into the air through one end 35 b communicating with the bottom of the rectification column 15 and the other end 35 c through the second and first heat exchangers 14, 13.
  • this nitrogen gas production device guides the product nitrogen gas obtained from the upper part of the condenser 16 to the condenser 35, condenses a part of it, and returns it to the condenser 16.
  • the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 23 can be reduced. Therefore, as compared with the apparatus of the embodiment shown in FIG. 2, an excellent effect of lowering the cost of the obtained product nitrogen gas can be obtained.
  • the return pipe 38 is connected to the condenser 16 to return the liquid nitrogen generated by condensation in the condenser 35 to the condenser 16 ⁇ .
  • the return pipe 38 may extend to the upper part of the tower 22. This not only saves liquid nitrogen but also improves the rectification effect.
  • the portion of the extraction pipe 27 between the condenser 35 and the second heat exchanger 14 is similar to the apparatus of FIG. May be provided with an oxygen adsorbing cylinder 27a with a built-in adsorbent for selectively adsorbing oxygen. By doing so, the impurities in the nitrogen gas are adsorbed and removed, and in addition to the above effects, an effect of further improving the purity of the product nitrogen gas can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

This apparatus for producing nitrogen gas of ultra-high purity can be employed in fields such as the electronics industry in the manufacture of silicon semiconductors, for example. The conventional cryogenetic liquefaction and PSA nitrogen gas producing apparatuses suffer many breakdowns, and the nitrogen gas obtained by these conventional apparatuses is expansive, but still has a rather low purity. In the apparatus of this invention, a fractionating tower (15) is connected to a liquid nitrogen storage means (23) by an inlet path (24). Compressed air at an ultra-low temperature, which is pumped into the fractionating tower (15) through an air compression means (9), an elimination means (12) and heat exchange means (13), (14), is further cooled by the heat of evaporation of the liquid nitrogen, so that nitrogen can be taken out in a gaseous state leaving oxygen in a liquid state, due to the difference in boiling point therebetween. The obtained nitrogen gas is mixed with vaporized liquid nitrogen from the liquid nitrogen storage means (23) to obtain the final nitrogen gas. Thus it is possible to produce nitrogen gas inexpensively and at a high purity, with hardly any mechanical failures.

Description

明 細 書  Specification
究明の名称  Investigation name
高純度窒素ガス製造装置  High-purity nitrogen gas production equipment
特許請求の範囲  Claims
技術分野  Technical field
この発明は極めて高純度な窒素ガスを安価に製造でき、 しかも故 障の生じない高純度窒素ガス製造装置に関するものである。  The present invention relates to a high-purity nitrogen gas producing apparatus capable of producing extremely high-purity nitrogen gas at low cost and without causing any trouble.
背景技術  Background art
電子工業では極めて多量の窒素ガスが使用されているが、 部品精 度維持向上の観点から窒素ガスの純度について厳しい要望をだして きている。 すなわち、 窒素ガスは、 従来、 空気を原料とし、 これを 圧縮器で圧縮したのち、 吸着筒に入れて炭酸ガスおよび水分を除去 し、 さ らに熱交換器を通して冷媒と熱交換させて冷却し、 ついで精 留塔で深冷液化分離して製品窒素ガスを製造し、 これを前記の熱交 換器を通して常温近傍に昇温させるという深冷液化方式により製造 されている。 しかしながら、 このようにして製造される製品窒素ガ スには、 酸素が不純分として混在しているため、 これをそのまま使 用することは不都合なことが多い。 不純酸素の除去方法としては、 ① P t触媒を使用し窒素ガス中に微量の水素を添加し、 不純酸素と An extremely large amount of nitrogen gas is used in the electronics industry, but strict demands have been made on the purity of nitrogen gas from the viewpoint of maintaining and improving the accuracy of parts. That is, nitrogen gas has conventionally been made from air, which is compressed by a compressor, then placed in an adsorption column to remove carbon dioxide gas and moisture, and further cooled by exchanging heat with a refrigerant through a heat exchanger. Then, the product is produced by a cryogenic liquefaction method in which a product nitrogen gas is produced by cryogenic liquefaction and separation in a rectification tower, and the product nitrogen gas is heated to near room temperature through the heat exchanger. However, because the product nitrogen gas produced in this way contains oxygen as an impurity, it is often inconvenient to use it as it is. The method of removing impure oxygen is as follows: ① Using a Pt catalyst, add a small amount of hydrogen to nitrogen gas,
2 0 O 'c程度の温度雰囲気中で反応させて水として除去する方法お よび② N i 触媒を使用し、 窒素ガス中の不純酸素を 2 0 0 で程度の 温度雰囲気において N i 触媒と接触させ N i + 1 / 2 0 2 — i O の反応を起こさせて除去する方法がある。 しかしながら、 これらの 方法は、 いずれも窒素ガスを高温にして触媒と接触させなければな らないため、 その装置を、 超低温系である窒素ガス製造装置中には 組み込めない。 したがって、 窒素ガス製造装置とは別個に精製装置 を設置しなければならず、 全体が大形になるという欠点がある。 そ のうえ、 前記①の方法では、 水素の添加量の調整に髙精度が要求さ れ、 不純酸素量と丁度反応するだけの量の水素を添加しないと、 酸 素が残存したり、 また添加した水素が残存して不純分となってしま うため、 操作に熟練を要するという問題がある。 また、 前記②の方 法では、 不純酸素との反応で生じた N i 0の再生 (N i 0 + H 2 ~→ N i + H 2 0 ) をする必要が生じ、 再生用 H 2 ガス設備が必要とな つて精製費の上昇を招いていた。 したがって、 これらの改善が強く 望まれていた。 A method in which reaction is performed in an atmosphere at a temperature of about 200 O'c to remove as water, and ② Using a Ni catalyst, contact impure oxygen in nitrogen gas with an Ni catalyst in an atmosphere at a temperature of about 200 There is a method of causing the reaction of N i + 1/2 0 2 — i O to cause the removal. However, all of these methods require that the temperature of the nitrogen gas be brought to a high temperature so that the catalyst is brought into contact with the catalyst. Therefore, a refining unit must be installed separately from the nitrogen gas production unit, and there is a disadvantage that the whole becomes large. In addition, the method (1) requires a high degree of accuracy in adjusting the amount of hydrogen added. If the amount of hydrogen that does not exactly react with the amount of impure oxygen is added, oxygen may remain, or the added hydrogen may remain and become an impurity. There is. Also, in the way of ②, the reproduction of N i 0 generated by reaction with impure oxygen (N i 0 + H 2 ~ → N i + H 2 0) to be the cause, regeneration H 2 gas equipment Required, leading to an increase in refining costs. Therefore, these improvements have been strongly desired.
また、 従来の深冷液化方式の窒素ガス製造装置は、 圧縮器で圧縮 された圧縮空気を熱交換して冷却するための熱交換器の冷媒冷却用 に、 膨張ダービンを用い、 これを、 精留塔内に溜る液体空気 (深冷 液化分離により低沸点の窒素はガスとして取り出され、 残部が酸素 リ ツチな液体空気となって溜る) から蒸発したガスの圧力で駆 ¾す るようになっている。 ところが、 膨張タービンは画転速度が極めて 大 (数万面ノ分) であるため、 食荷変動 (製品窒素ガスの取出量の 変化) に対するきめこまかな追従運耘が函難である。 したがって、 製品窒素ガスの取出量の変化に応じて膨張タ一ビンに対する液体空 気の供袷量を正確に変化させ、 圧縮空気を常時一定温度に冷却する ことが困難である。 その結果、 得られる製品窒素ガスの純度がばら つき、 ひんばんに純度の低いものがつく りだされるという問題があ つた。 .また、.このものは高速回耘するため機械構造上高精度が.要求 され、 かつ高価であり、 機構が複雑なため故障が生じやすいという 難点を有している。  In addition, a conventional cryogenic liquefaction type nitrogen gas production apparatus uses an expansion Durbin for cooling a heat exchanger for cooling by exchanging heat with compressed air compressed by a compressor. The liquid air that accumulates in the distillation tower (low-boiling nitrogen is taken out as gas by cryogenic liquefaction separation and the remainder remains as oxygen-rich liquid air) is driven by the pressure of the gas evaporated from the gas. ing. However, since the expansion turbine has an extremely high image speed (tens of thousands of planes), it is difficult to rigorously follow the load fluctuation (change in the amount of product nitrogen gas extracted). Therefore, it is difficult to accurately change the amount of liquid air supplied to the expansion turbine according to the change in the amount of product nitrogen gas extracted, and to constantly cool the compressed air to a constant temperature. As a result, there has been a problem that the purity of the obtained product nitrogen gas varies, and a low-purity product is often produced. In addition, it requires high precision in mechanical structure for high-speed drilling, is expensive, and has the drawback that failure is likely to occur due to its complicated mechanism.
このため、 近年、 このよう な膨張タービンを除去した P S A方式 の窒素ガス製造装置が開発された。 この P S A方式による窒素ガス 製造装置を第 1図に示す。 図において、 1 は空気取入口、 2 は空気 圧縮器、 3 はアフタークーラー、 3 a は冷却水供給路、 4は油水セ パレーターである。 5 は第 1 の吸着槽、 6 は第 2 の吸着槽であり、 V 1 および V 2 は.空気作動弁で、 空気圧縮器 2 によって圧縮された For this reason, in recent years, a PSA-type nitrogen gas production system that eliminates such an expansion turbine has been developed. Fig. 1 shows this PSA nitrogen gas production system. In the figure, 1 is an air intake, 2 is an air compressor, 3 is an aftercooler, 3a is a cooling water supply channel, and 4 is an oil-water separator. 5 is the first adsorption tank, 6 is the second adsorption tank, V 1 and V 2 are air operated valves, compressed by the air compressor 2
OIviFI - OIviFI -
空気を弁作用により吸着槽 5 または 6 に送り込む。 V 3 および V 4 は真空弁であり、 吸着槽 5 または 6 内を真空ポンプ 6 a の作用によ り真空伏態にする。 6 b は真空ポンプ 6 aに冷却水を供給する冷却 ノヽ'ィプ、 6 c はサイ レンサー、 6 d はその排気パイプである。 V 5 , ν 6 , V 7 および V 9 は空気作動弁である。 7 は製品槽であり、 パイ プ 8 により吸着槽 5 , 6 に接続されている。 7 a は製品窒素ガ ス取出しパイプ、 7 b は不純物分折計、 7 c は流量計である。 Air is sent into adsorption tank 5 or 6 by valve action. V 3 and V 4 are vacuum valves, the adsorption vessel 5 or 6 to vacuum Fukutai Ri by the action of the vacuum pump 6 a. 6b is a cooling nozzle for supplying cooling water to the vacuum pump 6a, 6c is a silencer, and 6d is its exhaust pipe. V 5, ν 6, V 7 and V 9 are air operated valves. 7 is a product tank, which is connected to adsorption tanks 5 and 6 by pipe 8. 7a is a product nitrogen gas extraction pipe, 7b is an impurity analyzer, and 7c is a flow meter.
この窒素ガス製造装置は、 空気圧縮器 2 により空気を圧縮し、 こ の空気'圧縮器 2 に付随するァフタ一クーラー 3 によって、 圧縮され た空気を冷却してセパレーター 4で凝縮水を除去し、 空気作動弁 V 1 または V 2 を経由させて吸着槽 5 または 6 に送入する。 2基の吸 着槽 5 , 6 はそれぞれ酸素吸着用の力一ボンモレキュラシ一ブを內 蔵しており、 これらの吸着槽 5 , 6 にはプレッシャースイ ング方式 により一分間毎に交互に圧縮空気が送り込まれる。 この場合、 圧縮 空気が送り込まれていない吸着槽 6 ( 5 ) は真空ポンプ 6 a の作用 により内部が真空状態にされる。 すなわち、 空気圧縮器 2.により圧 縮された空気は、 一方の吸着槽 5 ( 6 ) 内に入り カーボンモ レキュ ラシーブによってそのなかの酸素分を吸着除去され、 窒素ガスとな つて弁 V 5 , V 7 , V 9 を経て製品槽 7内に送られパイ プ 7 aから 取り出される。 この時、 他方の吸着槽 6 ( 5 ) は、 空気圧縮器 2か らの空気が弁 V 2 の閉成によって遮断され、 かつ弁 V 4 の開成によ つて内部が真空ポンプ 6 a により真空吸引される。 その結果、 カー ボンモ レキュラ シーブに吸着された酸素が吸引除去されカーボンモ レキュラシーブが再生される。 このようにして、 吸着槽 5 , 6から 交互に窒素ガスが製品槽 7 に送られ製品窒素ガスが連続的に得られ る。 このよう に、 この窒素ガス製造装置は、 カーボンモレキュラ シ ーブが酸素を選択的に吸着するという特性を利用して窒素ガスを製 造するため、 安価に窒素ガスを得ることができる。 しかしながら、 In this nitrogen gas producing apparatus, air is compressed by an air compressor 2, the compressed air is cooled by an after-cooler 3 attached to the air compressor 2, and condensed water is removed by a separator 4. Feed into adsorption tank 5 or 6 via air-operated valve V 1 or V 2 . Each of the two adsorption tanks 5 and 6 contains a pressure-sensitive molecular sieve for oxygen adsorption, and these adsorption tanks 5 and 6 are alternately supplied with compressed air every minute by a pressure swing method. Sent in. In this case, the inside of the adsorption tank 6 (5) to which the compressed air is not sent is evacuated by the operation of the vacuum pump 6a. That is, air that is compressed by the air compressor 2. is adsorbed and removed the oxygen content of the therein by Kabonmo l'Ecu Rashibu enters one adsorption vessel 5 (6) in a nitrogen gas and a connexion valve V 5, V 7, through the V 9 is sent to the product tank 7 is taken out from the pipes 7 a. At this time, the other adsorption tank 6 (5), the air of the air compressor 2 or we are blocked by closure of the valve V 2, and a vacuum suction by connexion interior opening of the valve V 4 is by the vacuum pump 6 a Is done. As a result, the oxygen adsorbed on the carbon molecular sieve is removed by suction, and the carbon molecular sieve is regenerated. In this way, the nitrogen gas is alternately sent from the adsorption tanks 5 and 6 to the product tank 7, whereby the product nitrogen gas is continuously obtained. As described above, this nitrogen gas producing apparatus produces nitrogen gas by utilizing the characteristic that carbon molecular sieve selectively adsorbs oxygen, so that nitrogen gas can be obtained at low cost. However,
r WIPO 前記のように、 2基の吸着槽 5 , 6 に一分間毎に交互に圧縮空気を 送り、 それと同時に、 他方の吸着槽内を真空吸引するため、 弁が多 数必要になるとともに、 弁操作も煩雑になり故障が多癸しやすいと いう欠点を有している。 そのため、 2個 1組の吸着槽 5 , 6を 2組 設け、 1組を予備としなければならない。 このように P S A方式に よる製造装置も多数の弁に起因する故障の発生が多く 、 もう一式予 備の設備を必要とするというのが実情である。 したがって、 故障が 生じず、 かつ高純度なガスを安価に製造しう る窒素ガス製造装置の 開癸が望まれていた。 r WIPO As described above, compressed air is alternately sent to the two adsorption tanks 5 and 6 every minute, and at the same time, the other suction tank is vacuum-evacuated. Also has the drawback that troubles are apt to occur and troubles are likely to occur. Therefore, two sets of two adsorption tanks 5 and 6 must be provided, and one set must be used as a spare. As described above, the PSA-type manufacturing apparatus often causes failures due to a large number of valves, and requires an additional set of facilities. Therefore, it has been desired to open a nitrogen gas producing apparatus that does not cause a failure and that can produce high-purity gas at low cost.
この癸明ば、 極めて高 も度な窒素ガスを安価に製造でき、 しかも 故障の生じない高純度窒素ガス製造装置の提供をその目的とするも のである。  The purpose of this method is to provide a high-purity nitrogen gas production apparatus that can produce extremely high-grade nitrogen gas at a low cost and that does not cause failure.
癸明の開示 Disclosure of Kishi
この癸明は、 外部より取り入れた空気を圧縮する空気圧縮手段と 、 この空気圧縮手段によって圧縮された圧縮空気中の炭酸ガスと水 とを除去する除去手段と、 液体窒素を貯蔵する液体窒素貯蔵手段と 、 上記圧縮空気を超低温に冷却する熱交換手段と、 この熱交換手段 により超低温に冷却された圧縮空気の一部を液化して内部に溜め窒 素のみを気体として保持する精留塔と、 上記液体窒素貯蔵手段内の 液体窒素を圧縮空気液化用の寒冷源として上記精留塔内に導く導入 路と、 寒冷源としての作用を終えて気化した液体窒素および上記精 留塔内に保持されている気化窒素の双方を製品窒素ガスとして上記 精留塔より取り出す取出路を備えた高純度窒素ガス製造装置をその 要旨とするものである。  The air is compressed by air compression means for compressing air taken in from outside, removing means for removing carbon dioxide and water in the compressed air compressed by the air compression means, and liquid nitrogen storage for storing liquid nitrogen. Means, a heat exchange means for cooling the compressed air to an ultra-low temperature, and a rectification column for liquefying a part of the compressed air cooled to an ultra-low temperature by the heat exchange means, storing the compressed air inside, and retaining only nitrogen as a gas. An introduction path for introducing liquid nitrogen in the liquid nitrogen storage means into the rectification tower as a cold source for compressed air liquefaction, and liquid nitrogen vaporized after the operation as a cold source and held in the rectification tower The gist of the present invention is a high-purity nitrogen gas production apparatus provided with an extraction path for taking out both of the vaporized nitrogen as product nitrogen gas from the rectification column.
すなわち、 この装置は、 空気から窒素ガスを分離する窒素ガス分 離系とは別個に、 液体窒素貯蔵手段を設け、 この液体窒素貯蔵手段 の液体窒素を、 窒素ガス分離系に属する精留塔に送り込み、 液体窒 素の蒸発熱を利用して、 精留塔內に送り込まれた圧縮空気を冷却し、  That is, in this apparatus, a liquid nitrogen storage means is provided separately from a nitrogen gas separation system for separating nitrogen gas from air, and the liquid nitrogen of the liquid nitrogen storage means is supplied to a rectification column belonging to the nitrogen gas separation system. Using the heat of vaporization of liquid nitrogen to cool the compressed air sent to rectification tower 、.
OMPI 圧縮空気の一部 (主として酸素分〉 を液化分離して窒素を気体のま まで保持し、 これを、 精留塔における寒冷源としての作用を終えて 気化した液体窒素と合わせて製品窒素ガスと して取り出すため、 窒 素ガスを安価に得ることができるようになる。 より詳し く述べると 、 この装置は、 液体窒素を寒冷源として用い、 使用後これを投棄す るのではな く 、 空気を原料として得られる窒素ガスと併せて製品窒 素ガスとするため資源の無駄を生じない。 しかも液化窒素の使用量 1 に対して約 1 0倍の製品窒素ガスを得ることができるため、 製品 窒素ガスのコス f の大幅な引き下げを実現できる。 また、 膨張ター ビンを用いず、 液伏であるため供給量を細かく調節できる液体窒素 を圧縮空気の寒冷源として用いるため、 負荷変動 (製品窒素ガスの 取出量の変化) に対するきめこまかな追従が可能となり、 純度が安 定していて極めて高い窒素ガスを製造しう るようになる。 そのうえOMPI Part of the compressed air (mainly oxygen content) is liquefied and separated and nitrogen is retained as a gas. This is combined with liquid nitrogen vaporized after ending the operation as a cold source in the rectification column and combined with product nitrogen gas. More specifically, the apparatus can obtain nitrogen gas at a low cost.More specifically, the apparatus uses liquid nitrogen as a cold source, and does not discard it after use, but instead uses air. Since the product nitrogen gas is used together with the nitrogen gas obtained as a raw material to produce product nitrogen gas, there is no waste of resources, and product nitrogen gas can be obtained about 10 times as much as the amount of liquefied nitrogen used. The cost of nitrogen gas can be significantly reduced, and liquid nitrogen, which does not use an expansion turbine and can be adjusted finely because of liquid level, is used as a cold source for compressed air. (A change in the amount of product nitrogen gas extracted) can be carefully followed, and nitrogen gas with stable purity and extremely high purity can be produced.
、 この装置は、 故障の癸生しやすい膨張タービンを用いず、 また P S A方式のように多数の弁を要しないため故障が殆ど生じない。 す なわち、 この装置は、 上記従来例に比べて動く部分が殆どないため 故障の発生が極めて少な く なるのである。 したがって、 P S A方式 のように、 2個 1組の吸着槽を予備にもう 1組設けるというような ことは全く不要になり設備費も節約できるようになる。 However, this device does not use an expansion turbine that is prone to failure and does not require a large number of valves unlike the PSA system, so that there is almost no failure. In other words, this device has few moving parts as compared with the above conventional example, so that the occurrence of failures is extremely reduced. Therefore, there is no need to provide another set of two adsorption tanks as a spare, as in the PSA method, and the facility costs can be reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は従来例の説明図、 第 2図はこの発明の一実施例の構成図 、 第 3図は他の実施例の構成図、 第 4図はそれに用いる合成ゼオラ ィ トの特性曲線図、 第 5図および第 6図はそれぞれ第 3図のものの 変形例の説明図、'第 7図はさ らに他の実施例の構成図、 第 8図およ び第 9図はそれぞれその変形例の説明図である。  FIG. 1 is an explanatory diagram of a conventional example, FIG. 2 is a configuration diagram of one embodiment of the present invention, FIG. 3 is a configuration diagram of another embodiment, and FIG. 4 is a characteristic curve diagram of a synthetic zeolite used therein. FIGS. 5 and 6 are explanatory diagrams of modifications of FIG. 3, respectively. FIG. 7 is a block diagram of another embodiment, and FIGS. 8 and 9 are modifications thereof. It is explanatory drawing of an example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
この発明を実施例にもとづいて詳し く説明する。  The present invention will be described in detail based on examples.
第 2図はこの発明の一実施例の構成を示している。 図において、  FIG. 2 shows the configuration of one embodiment of the present invention. In the figure,
O PI 9 は空気圧縮器、 1 0 はドレン分離器、 1 1 はフロ ン冷却器、 1 2 は 2個 1組の吸着筒である。 吸着筒 1 2 は内部にモレキユラシーブ が充填されていて空気圧縮器 9により圧縮された空気中の H 2 0お よび C 0 2 を吸着除去する作用をする。 1 3 は第 1 の熱交換器であ り、 吸着筒 1 2により H 2 0および C 0 2 が吸着除去された圧縮空 気が送り込まれる。 1 4は第 2 の熱交換器であり、 第 1 の熱交換器 1 3を経た圧縮空気が送り込まれる。 1 5 は塔頂に分縮器 1 6を備 えた精留塔であり、 第 1および第 2 の熱交換器 1 3 , 1 4により超 低温に冷却された圧縮空気をさ らに冷却し、 その一部を液化して底 部に溜め、 窒素のみを気体伏態で取り出すようになつている。 すな わち、 この精留塔 1 5 は、 第 1および第 2 の熟交換器 1 3 , 1 4を 経て超低温 (約一 1 7 0 で) に冷却された圧縮空気を、 パイプ 1 7 により精留塔 1 5 の底部の聍留液体空気 (N 2 5 0 〜 7 0 0 2 3 0 〜 5 0 % ) 1 8中.を通してさらに冷却し、 ついで膨張弁 1 9を 経て内部に噴射させ、 分縮器 1 6で酸素等を液化し、 窒素を気体の まま残すようになつている。 この分縮器 1 6 は、 多数のチューブ 2 0が植設されている仕切板 2 1 によって塔部 2 2 と区切られていて 、 仕切板 2 1上に液体窒素貯槽 2 3から液体窒素がパイ プ 2 4を经 て供給され、 塔部 2 2內に噴射された圧縮空気をチューブ 2 0内に 案内して冷却し、 酸素 (沸点一 .1 8 3 'C ) を液化して落下させ窒素 O PI 9 is an air compressor, 10 is a drain separator, 11 is a flow cooler, and 12 is a set of two adsorption cylinders. Adsorption cylinder 1 2 serves to adsorb and remove C 0 2 and H 2 0 up for in the compressed air by the air compressor 9 have Morekiyurashibu therein is filled. 1 3 Ri first heat exchanger der, H 2 0 and C 0 2 is fed compressed air which has been adsorbed and removed by adsorption cylinder 1 2. Reference numeral 14 denotes a second heat exchanger to which compressed air passed through the first heat exchanger 13 is fed. Reference numeral 15 denotes a rectification column provided with a decomposer 16 at the top, which further cools the compressed air cooled to ultra-low temperature by the first and second heat exchangers 13 and 14. Part of it is liquefied and stored at the bottom, and only nitrogen is taken out in gaseous form. In other words, the rectification tower 15 passes compressed air cooled to an extremely low temperature (about 170) through the first and second maturation exchangers 13 and 14 by a pipe 17. fractionator 1 5 of the bottom聍留liquid air (N 2 5 0 ~ 7 0 0 2 3 0 ~ 5 0%) 1 8 in. further cooling through, was then injected therein through the expansion valve 1 9, Oxygen and the like are liquefied by the decomposer 16 and nitrogen is left as a gas. The decomposer 16 is separated from the tower 22 by a partition plate 21 in which a large number of tubes 20 are planted. Liquid nitrogen is supplied from the liquid nitrogen storage tank 23 onto the partition plate 21. The compressed air supplied through the pump 24 and injected into the tower 22 is guided into the tube 20 to cool it, and oxygen (boiling point: 1.83'C) is liquefied and dropped to drop nitrogen.
(沸点 1 9 6 'c ) を気体のまま上方に移行させるようになっている 。 分縮器 1 6の上部空間には、 このようにして得られた、 圧縮空気 からの窒素ガスと、 液体窒素貯槽 2 3から供袷された液体窒素の気 化窒素ガスとが混合状態で溜る。 なお、 上記の場合において、 精留 塔 1 5 の塔部 2 2内に噴射された圧縮空気は、 チューブ 2 0から落 下する液体酸素と向流的に接触するため、 酸素の液化分離が一層促 進される。 2 5 は液面計であり、 分縮器 1 6内の液体窒素の液面に 応じてバルブ 2 6を制御し液体窒素聍槽 2 3からの液体窒素の供袷  (Boiling point 1966'c) is shifted upward as a gas. In the upper space of the decompressor 16, the nitrogen gas from the compressed air thus obtained and the vaporized nitrogen gas of the liquid nitrogen supplied from the liquid nitrogen storage tank 23 are stored in a mixed state. . In the above case, the compressed air injected into the tower section 22 of the rectification tower 15 comes into countercurrent contact with the liquid oxygen falling from the tube 20, so that the liquefaction and separation of oxygen is further enhanced. Promoted. Reference numeral 25 denotes a liquid level gauge, which controls the valve 26 according to the liquid level of liquid nitrogen in the decomposer 16 to supply liquid nitrogen from the liquid nitrogen tank 23.
O PI , . 量を制御する。 2 7 は分縮器 1 6の上部に溜った窒素ガスを取り出 す取り出しパイ プで、 超低温の窒素ガスを第 2 , 第 1 の熱交換器 1 , 1 3内に案内し、 そこに送り込まれる圧縮空気と熱交換させて 常温にしメ イ ンパイ プ 2 8 に送り込む作用をする。 2 9 は精留塔 1 5 の底部の貯留液体空気 1 8 第 2および第 1 の熱交換器 1 4 , 1 3 に送り込むパイ プであり、 2 9 a はその保圧弁である。 第 2およ び第 1 の熱交換器 1 4 , 1 3で熱交換 (圧縮空気の冷却) を終えた 液体空気は気化して第 1 の熱交換器 1 3から矢印 Aのよう に放出さ れるようになっている。 な'お、 3 0 はバックアップ系ライ ンであり 、 空気圧縮系ライ ンが故障したときに液体窒素貯槽 2 3内の液体窒 素を蒸発器 3 1 により蒸発させてメ イ ンパイ プ 2 8 に送り込み、 窒 素ガスの供袷がとだえることのないようにする。 3 2 は不純物分圻 計であり 、 メ イ ンパイ プ 2 8 に送り出される製品窒素ガスの純度を 分圻し、 $ 度の低いときは、 弁 3 4 , 3 4 aを作動させて製品窒素 ガスを矢印 Bのように外部に投棄する作用をする。 O PI, Control the volume. 27 is a take-out pipe for taking out the nitrogen gas accumulated at the upper part of the decomposer 16, and guides the ultra-low temperature nitrogen gas into the second and first heat exchangers 1 and 13 and sends it into it Heat exchanges with the compressed air to bring it to room temperature and sends it to the main pipe 28. Reference numeral 29 denotes a pipe for feeding the stored liquid air 18 at the bottom of the rectification tower 15 to the second and first heat exchangers 14 and 13, and 29 a is a pressure-holding valve thereof. The liquid air that has completed heat exchange (cooling of compressed air) in the second and first heat exchangers 14 and 13 evaporates and is discharged from the first heat exchanger 13 as shown by arrow A. It is supposed to be. In addition, 30 is a backup line, and when the air compression line breaks down, the liquid nitrogen in the liquid nitrogen storage tank 23 is evaporated by the evaporator 31 to the main pipe 28. The supply and supply of nitrogen gas should not be interrupted. Reference numeral 32 denotes an impurity meter, which determines the purity of the product nitrogen gas sent to the main pipe 28, and when the temperature is low, operates the valves 34, 34a to operate the product nitrogen gas. As shown by arrow B.
この装置は、 つぎのようにして製品窒素ガスを製造する。 すなわ ち、 空気圧縮器 9 により空気を圧縮し、 ドレン分離器 1 0 により圧 縮された空気中の水分を除去してフ α ン冷却器 1 1 により冷却し、 その伏態で吸着简 1 2 に送り込み、 空気中の Η 2 0および C 0 2 を 吸着除去する。 ついで、 H 2 0 , C 0 2 が吸着除去された圧縮空気 を第 1 の熱交換器 1 3および第 2 の熱交換器 1 4に送り込んで超低 温に冷却し、 さらに精留塔 1 5 の下部の貯留液体空気 1 8で冷却し たのち、 精留塔 1 5 の塔部 2 2 内に噴射させる。 そして、 窒素と酸 素の沸点の差 (酸素の沸点— 1 8 3 V , 窒素の沸点— 1 9 6 で) を 利用して空気中の酸素を液化し、 窒素を気体のまま取り出して第 1 およびまたは第 2 の熱交換器 1 3 , 1 4に送り込み常温近く まで昇 温させメ イ ンパイ プ 2 8から窒素ガスとして取り出す。 この場合、 液体窒素貯槽 2 3内の液体窒素は、 精留塔 1 5 の分縮器 1 6 の寒冷 i¾RE OMPI WIPO ― PGT/JP84/00089 This device produces product nitrogen gas as follows. That is, the air is compressed by the air compressor 9, the moisture in the air compressed by the drain separator 10 is removed, and the air is cooled by the fan cooler 11. feed 2, for adsorbing and removing Eta 2 0 and C 0 2 in air. Then, H 2 0, C 0 2 is cooled to an ultra low temperature by feeding compressed air adsorbed removed first heat exchanger 1 3 and the second heat exchanger 1 4, further rectification column 1 5 After cooling with stored liquid air 18 at the lower part of the column, it is injected into the tower 22 of the rectification tower 15. The oxygen in the air is liquefied using the difference between the boiling points of nitrogen and oxygen (boiling point of oxygen-183 V, boiling point of nitrogen-196). And / or sent to the second heat exchangers 13 and 14 and heated to near normal temperature to be taken out of the main pipe 28 as nitrogen gas. In this case, the liquid nitrogen in the liquid nitrogen storage tank 23 is cooled by the cold i¾RE OMPI WIPO ― PGT / JP84 / 00089
8 源として作用し、 それ自身は気化してメ イ ンパイプ 2 8内に送り込 まれ、 上記精留塔 1 5から得られる空気中の窒素ガスと合わされ製 品窒素ガスとして取り出される。  8 acts as a source, vaporizes itself and is sent into the main pipe 28, and is combined with nitrogen gas in the air obtained from the rectification column 15 and extracted as product nitrogen gas.
このように、 この窒素ガス製造装置によれば、 液体窒素の蒸癸熱 を利用して圧縮空気の一部を液化し酸素等を分離して窒素のみを気 体で取り岀し、 これを寒冷源として ¾いた液体窒素 (それ自身はこ の段階では気化している) と合わせて製品窒素ガスとするため、 極 めて安価に、 かつ高純度の窒素ガスを得ることができる。  As described above, according to the nitrogen gas producing apparatus, a part of the compressed air is liquefied by using the heat of the liquid nitrogen to separate oxygen and the like, and only nitrogen is taken out by gas. Since the product nitrogen gas is used in combination with the liquid nitrogen used as the source (which itself is vaporized at this stage), extremely low-priced and high-purity nitrogen gas can be obtained.
すなわち、 この装置は、 従来例のように膨張タービンを甩いてい ないため、 精留塔 1 5を高純度に設定することにより、 不純酸素量 が 0. 3 ppm 以下の高純度の窒素ガスを得ることができるようになる 。 これに対して、 従来の深冷液化方式のものでは、 不純酸素量が 5 ppm の窒素ガスが得られるにすぎないのであり、 P S A方式の窒素 ガス製造装置では、 不純酸素量が 1 0 0 O p pm のものしか得られな い。 特に、 P S A方式の窒素ガス製造装置では、 不純酸素量が 1 0 0 0 ppm の窒素ガスしか製造できないため、 これをそのまま髙純度 な窒素ガスが要求される電子工業向にすることはできない。 電子ェ 業向にするためには、 別に精製器を設け、 窒素ガスに水素を添加し て窒素ガス中の酸素 (不純分) を水素と化合させて除去 (H 2 0と して) する必要がある。 しかしながら、 このよう にすることによ-り 、 今度ば窒素ガス中に水素が不純分として入り込むようになるため 、 精製器を通しても結局純度は僅かに向上するにすぎない。 そのう え、 P S A方式の窒素ガス製造装置から得られる窒素ガス中には、 5 〜 1 O ppm の炭酸ガスが不純物として含まれているため、 この除 去のために別個に炭酸ガス用の吸着槽も必要になる。 これに'対して 、 この発明の窒素ガス製造装置によれば高純度の窒素ガスが得られ るため、 それをそのまま電子工業向にすることができる。 しかもこ のガスには炭酸ガスが舍まれていない (製造装置内で液化除去され That is, since this apparatus does not use an expansion turbine as in the conventional example, by setting the rectification column 15 to high purity, high-purity nitrogen gas with an impurity oxygen amount of 0.3 ppm or less is obtained. You will be able to get. On the other hand, the conventional cryogenic liquefaction method only yields nitrogen gas with an impure oxygen content of 5 ppm, and the PSA-type nitrogen gas production device has an impure oxygen content of 100 O Only p pm's are available. In particular, a PSA-type nitrogen gas production apparatus can produce only nitrogen gas having an impurity oxygen amount of 100 ppm, and therefore cannot be used directly for the electronics industry where high-purity nitrogen gas is required. In order to make it suitable for the electronic industry, it is necessary to install a separate purifier and add hydrogen to nitrogen gas to combine and remove oxygen (impurities) from the nitrogen gas (as H 20 ). There is. However, in this case, since hydrogen enters into the nitrogen gas as an impurity in this case, the purity is only slightly improved after all through the purifier. Since nitrogen gas obtained from the PSA-type nitrogen gas production equipment contains 5-1 O ppm of carbon dioxide as an impurity, it is separately adsorbed for carbon dioxide for this removal. A tank is also required. On the other hand, according to the nitrogen gas producing apparatus of the present invention, high-purity nitrogen gas can be obtained, which can be directly used for the electronics industry. In addition, this gas does not contain carbon dioxide (it is liquefied and removed in the production equipment).
O PI る) ため、 炭酸ガス用の吸着槽を別個に装備する必要がない。 さ ら に、 少量の液体窒素を供袷するだけで大量の窒素ガスが得られるよ うになる。 すなわち、 この発明の窒素ガス製造装置によれば、 液体 窒素ガス貯槽から 1 0 0 N m3の液体窒素ガスを分縮器 1 6 に送り込 むこ とにより 、 1 0 0 O N n の製品窒素ガスを得ることができる。 このように、 この製造装置によれば少量の液体窒素を供給するだけ で、 その 1 0倍の製品窒素ガスが得られるよう になるのである。 し たがって、 極めて安価を窒素ガスが得られるようになる。 また、 P S A方式による窒素ガス製造装置や ½来の深冷液化方式のものに く らベて、 装置が簡単であるため装置全体が安価であり、 かつ多数の 弁や膨張タービン等が不要なため、 装置の ί言頼度が大である。 しか も、 バックアップ系ライ ンが設けられているため、 空気圧縮系ライ ンの不調時にも窒素ガスを供給しう るのであり、 窒素ガスの供袷が 中断されるという ことが生じない。 O PI Therefore, there is no need to provide a separate carbon dioxide adsorption tank. Furthermore, a large amount of nitrogen gas can be obtained simply by supplying a small amount of liquid nitrogen. That is, according to the nitrogen gas producing apparatus of the present invention, 100 Nm 3 of liquid nitrogen gas is sent from the liquid nitrogen gas storage tank to the decomposer 16, thereby producing 100 ON n of product nitrogen gas. Can be obtained. As described above, according to this manufacturing apparatus, only a small amount of liquid nitrogen is supplied, and a product nitrogen gas that is 10 times as large as that of the liquid nitrogen can be obtained. Therefore, nitrogen gas can be obtained at extremely low cost. In addition, compared to the nitrogen gas production system using the PSA system and the conventional cryogenic liquefaction system, the system is simple and the whole system is inexpensive, and many valves and expansion turbines are not required. The reliability of the device is high. In addition, since a backup system line is provided, nitrogen gas can be supplied even when the air compression system line is malfunctioning, and supply of nitrogen gas is not interrupted.
第 3図は他の実施例の構成を示している。  FIG. 3 shows the configuration of another embodiment.
すなわち、 この高純度ガス製造装置は、 取り出しパイ プ 2 7 に、 超低温において酸素および一酸化炭素を選択的に吸着する吸着剤内 蔵の酸素吸着筒 2 7 aを設けている。 それ以外の部分は第 2図の装 置と実質的に同じであるから相当部分に同一符号を付して説明を省 略する。  That is, in this high-purity gas production apparatus, the take-out pipe 27 is provided with an oxygen adsorbing cylinder 27a containing an adsorbent for selectively adsorbing oxygen and carbon monoxide at an extremely low temperature. The other parts are substantially the same as those in the apparatus shown in FIG. 2, and the corresponding parts are denoted by the same reference numerals and description thereof will be omitted.
上記吸着剤としては、 例えば 3 A , 4 Aもし く は 5 Aの細孔径を もつ合成ゼォライ ト 3 A , 4 Aも し く は 5 A (モレキュラー シ一ブ 3 A , 4 A , 5 Α、 ユニオンカーバイ ト社製) が用いられる。 この 合成ゼォライ ト 3 Α , 4 A , 5 Aは、 それぞれ第 4図に示すように 、 超低温における酸素および一酸化炭素 (第 4図では示していない が同図の 0 2 曲線と同様の曲線を示す) に対する優れた選択吸着性 を有している。 したがって、 分縮器 1 6 の上部空間から排出された 窒素ガス中の上記不純分が除去され、 製品窒素ガスの純度が一層向 Examples of the adsorbent include synthetic zeolite 3A, 4A or 5A having a pore size of 3A, 4A or 5A (molecular sieves 3A, 4A, 5Α, Union Carbide Co., Ltd.) is used. This synthetic Zeorai DOO 3 Alpha, is 4 A, 5 A, as shown in FIG. 4, respectively, the 0 2 similar curves and the curve of the not shown in the oxygen and carbon monoxide (Fig. 4 at very low temperature but the figure (See below). Therefore, the impurities in the nitrogen gas discharged from the upper space of the decomposer 16 are removed, and the purity of the product nitrogen gas is further improved.
ΟΜΡΪ 上する。 なお、 上記の合成ゼォライ ト 3 A , 4 A , 5 Aに代えて上 記 U C社製の合成ゼォライ ト 1 3 Xを用いることも行われる。 ΟΜΡΪ Up. The above-mentioned synthetic zeolite 13X manufactured by UC may be used in place of the above-mentioned synthetic zeolite 3A, 4A, 5A.
この製造装置は、 合成ゼォライ トの有する上記の特性を利用して 極めて簡易に不純酸素および一酸化炭素を除去するものであり、 こ れがその特徴である。 すなわち、 この装置は、 液体窒素貯槽 7の液 体窒素の気化によって生じた窒素ガスも圧縮空気から得られた窒素 ガスと同様に酸素吸着筒 1 1 を通過させるため、 液体窒素貯槽 7の 液体窒素に不純酸素および一酸化炭素が混入しているようなときで も、 得られる製品窒素ガスの純度が下がらないという効果を奏する This production apparatus removes impure oxygen and carbon monoxide extremely easily by utilizing the above-mentioned properties of synthetic zeolite, and this is a feature of the apparatus. In other words, this device allows the nitrogen gas generated by the vaporization of the liquid nitrogen in the liquid nitrogen storage tank 7 to pass through the oxygen adsorption column 11 in the same manner as the nitrogen gas obtained from the compressed air. Even when impure oxygen and carbon monoxide are mixed in the product, the purity of the obtained product nitrogen gas does not decrease.
。 この場合、 酸素吸着筒 1 1内へ導入される超低温窒素ガス中の不 純酸素および一酸化炭素量が精留塔 1 5を経ることによりすでに低 レベルになっているため、 吸着される酸素および一酸化炭素量は微 量である。 したがって、 吸着筒も 1基のみで足り、 ゼォライ 卜の再 生も年 1 画で十分なのである。 . In this case, since the amounts of impurity oxygen and carbon monoxide in the ultra-low temperature nitrogen gas introduced into the oxygen adsorption column 11 have already become low levels through the rectification column 15, the adsorbed oxygen and The amount of carbon monoxide is very small. Therefore, only one adsorption cylinder is required, and the regeneration of zeolite is sufficient for one year.
なお、 第 3図の装置は、 精留塔 1 5の底部に溜った液体空気を塔 1 5 の途中において内部に噴射させ、 液体窒素貯槽 7の液体窒素を 分縮器 1 6に送り込んでいるが、 第 5図に示すように、 精留塔 1 5 の底部に溜った液体空気を塔頂の分縮器 1 6 (内部は上部仕切板 1 6 a と下部 ft切板 1 6 bによって密封構造になっており、 分縮器 1 6 の上部空間と精留塔 1 5の塔部.2 2 とは複数のパイ プ 2 0 により 連通している) の内部に溜め、 液体窒素貯槽 7 の液体窒素を精留塔 1 0 の上部に送り込んで、 そこから流下させ冷却作用を癸揮させる ようにしてもよい。  In the apparatus shown in FIG. 3, the liquid air collected at the bottom of the rectification tower 15 is injected into the inside of the tower 15 in the middle, and the liquid nitrogen in the liquid nitrogen storage tank 7 is sent to the separator 16. However, as shown in Fig. 5, the liquid air collected at the bottom of the rectification column 15 is sealed with a separator 16 at the top (the interior is sealed by an upper partition plate 16a and a lower ft plate 16b). And the upper part of the decomposer 16 and the tower part 22 of the rectification tower 15 are connected to each other by a plurality of pipes 20). Liquid nitrogen may be sent to the upper part of the rectification column 10 and may flow down from there to have a cooling effect.
また、 第 6図に示すように、 分縮器 1 6 の内部に凝縮器 1 6 cを 設け、 これを塔部 2 2の底部の液体空気 1 8で冷却し、 圧縮空気の う ちの液化分を塔部 2 2内へ還流し、 気化分は大気中に放出するよ うにし、 かつ分縮器 1 6 の上部から窒素ガスを取り出すのではな く 塔部 2 2 の上部から取り出すよう にしてもよい。 分縮器 1 6 の上部  Also, as shown in FIG. 6, a condenser 16c is provided inside the condenser 16 and cooled by the liquid air 18 at the bottom of the tower 22 to form a liquefied fraction of the compressed air. Is returned to the tower 22, the vaporized components are released to the atmosphere, and the nitrogen gas is taken out from the top of the tower 22 instead of taking out the nitrogen gas from the top of the decomposer 16. Is also good. Upper part of the divider 1 6
OMPI には沸点のより低い H e (— 2 6 9 で) , H 2 (一 2 5 3 で) が溜 るため、 ここから窒素ガスを取り出すとこれらが混入することとな るから、 その混入を避けるためには、 分縮器 1 6 の上部からではな く塔部 2 2 の上部から窒素ガスを取り出すようにすることが望ま し いのである。 なお、 第 6図において、 1点鎮線は真空保冷函を示し ており、 その内部に熱交換器 5 , 6および精留塔 1 0が収容され真 空パーライ ト断熱されている。 OMPI Lower H e of boiling point in the (- at 2 6 9), H 2 (one 2 5 3) are accumulated because, from Do that and that they are mixed when taking out the nitrogen gas from here, the contaminating To avoid this, it is desirable to extract nitrogen gas not from the top of the decomposer 16 but from the top of the tower 22. In FIG. 6, the one-point line indicates a vacuum insulated box, in which heat exchangers 5, 6 and a rectification tower 10 are housed and insulated by vacuum perlite.
第 7図はさ らに他の実施例の構成を示している。 この窒素ガス製 造装置は、 精留塔 1 5 の外部上方に凝縮器 3 '5を設けて連通パイ プ 3 6により分縮器 1 6 の上部と連通させ、 分縮器 1 6 の上部空間に 溜められた窒素ガス (分縮器 1 6 によって酸素が液化分離され得ら れた窒素ガス +液体窒素貯槽 7·から供給された液体窒素の気化窒素 ガス) を凝縮器 3 5内に入れるように構成している。 そして、 この 窒素ガスを、 一端 3 5 bが精留塔 1 5 の底部と連通し他端 3 5 cが 第 2および第 1 の熱交換器 1 4 , 1 3を通って空気中に開放されて いる冷却パイ プ 3 5 a で冷却して (冷媒は精留塔 1 5底部の貯留液 体空気) その一部を凝縮させ、 生成した液体窒素 3 7を、 ヘッ ド差 を利用して、 戻しパイ ブ 3 8から分縮器 1 6 内へ戻し、 未凝縮の窒 素ガスを第 2および第 1 の熱交換器 1 4 , 1 3を通してメ イ ンパイ プ 2 8に送り込むようにしている。 それ以外の部分は第 2図の実施 . 例と同じであり、 同一部分に同一符号を付している。  FIG. 7 shows the configuration of still another embodiment. In this nitrogen gas production apparatus, a condenser 3′5 is provided above the outside of the rectification tower 15 and communicates with the upper part of the decomposer 16 by a communication pipe 36, and the upper space of the Into the condenser 35 (nitrogen gas obtained by liquefaction and separation of oxygen by the decomposer 16 + liquid nitrogen vapor gas supplied from the liquid nitrogen storage tank 7). It is composed. Then, this nitrogen gas is released into the air through one end 35 b communicating with the bottom of the rectification column 15 and the other end 35 c through the second and first heat exchangers 14, 13. (Refrigerant liquid air at the bottom of the rectification tower 15) is condensed by using a cooling pipe 35a, and a part of it is condensed. The return pipe 38 is returned to the decompressor 16 so that the uncondensed nitrogen gas is sent to the main pipe 28 through the second and first heat exchangers 14 and 13. The other parts are the same as those in the embodiment of FIG. 2, and the same parts are denoted by the same reference numerals.
すなわち、 この窒素ガス製造装置は、 分縮器 1 6 の上部から得ら れる製品窒素ガスを凝縮器 3 5 に導き、 その一部を凝縮させて分縮 器 1 6内に戻し、 液体窒素貯槽 2 3から供袷される液体窒素に合わ せるようにするため、 液体窒素貯槽 2 3からの液体窒素の供袷量を 低減しう るようになる。 したがって、 第 2図の実施例の装置に比べ て、 得られる製品窒素ガスのコス トをより低く しう るという優れた 効果を得ることができるようになる。  In other words, this nitrogen gas production device guides the product nitrogen gas obtained from the upper part of the condenser 16 to the condenser 35, condenses a part of it, and returns it to the condenser 16. In order to match the liquid nitrogen supplied from 23, the amount of liquid nitrogen supplied from the liquid nitrogen storage tank 23 can be reduced. Therefore, as compared with the apparatus of the embodiment shown in FIG. 2, an excellent effect of lowering the cost of the obtained product nitrogen gas can be obtained.
OMPI なお、 上記の装置は、 戻しバイプ 3 8を分縮器 1 6に接続し、 凝 縮器 3 5内で凝縮し生成した液体窒素を分縮器 1 6內に戻すように しているが、 第 8図に示すように、 戻しパイプ 3 8を塔部 2 2の上 部へ苠すようにしてもよい。 このよう にすると、 液体窒素の消費量 を節約しう るほか、 精留効果の向上効果も得られるようになる。 ま た、 第 9図に示すように、 凝縮器 3 5 と第 2の熱交換器 1 4 との間 の取り出しパイ プ 2 7の部分に第 3図の装置同様、 超低温において 酸素, 一酸化炭素を選択的に吸着する吸着剤内蔵の酸素吸着筒 2 7 aを設けるようにしてもよい。 このようにすることにより、 窒素ガ ス中の不純分が吸着除去され、 上記の効果に加えて、 製品窒素ガス の一層の純度向上効果が得られるようになる。 OMPI In the above apparatus, the return pipe 38 is connected to the condenser 16 to return the liquid nitrogen generated by condensation in the condenser 35 to the condenser 16 內. As shown in FIG. 8, the return pipe 38 may extend to the upper part of the tower 22. This not only saves liquid nitrogen but also improves the rectification effect. Also, as shown in FIG. 9, the portion of the extraction pipe 27 between the condenser 35 and the second heat exchanger 14 is similar to the apparatus of FIG. May be provided with an oxygen adsorbing cylinder 27a with a built-in adsorbent for selectively adsorbing oxygen. By doing so, the impurities in the nitrogen gas are adsorbed and removed, and in addition to the above effects, an effect of further improving the purity of the product nitrogen gas can be obtained.

Claims

請求の範囲 The scope of the claims
(1) 外部より取り入れた空気を圧縮する空気圧縮手段と、 この空 気圧縮手段によって圧縮された圧縮空気中の炭酸ガスと水とを除去 する除去手段と、 液体窒素を貯蔵する液体窒素貯蔵手段と、 上記圧 縮空気を超低温に冷却する熱交換手段と、 この熱交換手段により超 低温に冷却された圧縮空気の一部を液化して内部に溜め窒素のみを 気体として保持する精留塔と、 上記液体窒素貯蔵手段内の液体窒素 を圧縮空気液化用の寒冷源として上記精留塔内に導く導入路と、 寒 冷源としての作用を終えて気化した液体窒素および上 1¾精留塔内に 保持されている気化窒素の双方を製品窒素ガスと して上記精留塔よ り取り出す取出路を備えていることを特徴とする高純度窒素ガス製  (1) Air compression means for compressing air taken in from outside, removal means for removing carbon dioxide and water in the compressed air compressed by the air compression means, and liquid nitrogen storage means for storing liquid nitrogen A heat exchange means for cooling the compressed air to an extremely low temperature; and a rectification column for liquefying a part of the compressed air cooled to an extremely low temperature by the heat exchange means, storing the compressed air therein and retaining only nitrogen as a gas. An introduction path for guiding the liquid nitrogen in the liquid nitrogen storage means into the rectification tower as a refrigeration source for compressed air liquefaction; and a liquid nitrogen vaporized after the operation as the refrigeration source and the upper 1 上 rectification tower. A high-purity nitrogen gas characterized by having an extraction path for taking out both of the vaporized nitrogen retained in the rectification column as product nitrogen gas from the rectification column.
(2) 精留塔が分縮器部を備えている精留塔であり、 液体窒素がそ の分縮器部へ導かれるようになつている特許請求の範囲第 1項記載 の高純度窒素ガス製造装置。 (2) The high-purity nitrogen according to claim 1, wherein the rectification column is a rectification column provided with a condensing unit, and liquid nitrogen is led to the condensing unit. Gas production equipment.
(3) 取出路中に超低温において酸素および一酸化炭素を選釈吸着 する吸着剤を内蔵する吸着手段が配設されている特許請求の範囲第 (3) An adsorbing means having a built-in adsorbent for selectively adsorbing oxygen and carbon monoxide at an extremely low temperature in the extraction path is provided.
1項または第 2項記載の高純度窒素ガス製造装置。 3. The high-purity nitrogen gas production apparatus according to paragraph 1 or 2.
(4) 取出路の精留塔側の部分に、 製品窒素ガスの一部を凝縮させ この凝縮窒素ガスを上記精留塔に戻す凝縮手段が設けられている特: 許請求の範囲第 1項記載の髙純度窒素ガス製造装置。  (4) Condensing means for condensing a part of the product nitrogen gas and returning the condensed nitrogen gas to the rectification tower is provided in a portion of the extraction path on the rectification tower side. Purified nitrogen gas production equipment as described.
(5) 取出路の精留塔側の部分に、 製品窒素ガスの一部を凝縮させ この凝縮窒素ガスを上記精留塔に戻す凝縮手段が設けられ、 取出路 の凝縮手段に続く 部分に超低温において製品窒素ガス中の酸素およ び一酸化炭素を選択吸着する吸着剤を内蔵する吸着手段が設けられ ている特許請求の範囲第 4項記載の高純度窒素ガス製造装置。  (5) Condensing means for condensing a part of the product nitrogen gas and returning this condensed nitrogen gas to the rectification tower is provided in the rectification tower side of the extraction path. 5. The high-purity nitrogen gas producing apparatus according to claim 4, further comprising an adsorbing means which incorporates an adsorbent for selectively adsorbing oxygen and carbon monoxide in the product nitrogen gas.
(6) 吸着手段が、 細孔径約 3 A , 4 A も し く は 5 Aの合成ゼォラ ィ トが充锾されている酸素吸着筒である特許請求の範囲第 3項また  (6) The method according to claim 3, wherein the adsorption means is an oxygen adsorption cylinder filled with synthetic zeolite having a pore diameter of about 3 A, 4 A or 5 A.
OMPI 4/03554 OMPI 4/03554
1 4 PCT/JP84/00089 は第 5項記載の高純度窒素ガス製造装置,  1 4 PCT / JP84 / 00089 is a high-purity nitrogen gas production device described in Section 5,
OMPI  OMPI
PCT/JP1984/000089 1983-03-08 1984-03-07 Apparatus for producing high-purity nitrogen gas WO1984003554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE8484901096T DE3476114D1 (en) 1983-03-08 1984-03-07 Apparatus for producing high-purity nitrogen gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58038050A JPS59164874A (en) 1983-03-08 1983-03-08 Device for manufacturing nitrogen gas
JP59004123A JPS60147086A (en) 1984-01-11 1984-01-11 Method and device for manufacturing high-purity nitrogen gas

Publications (1)

Publication Number Publication Date
WO1984003554A1 true WO1984003554A1 (en) 1984-09-13

Family

ID=26337840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1984/000089 WO1984003554A1 (en) 1983-03-08 1984-03-07 Apparatus for producing high-purity nitrogen gas

Country Status (4)

Country Link
US (1) US4617040A (en)
EP (1) EP0144430B1 (en)
DE (2) DE3476114D1 (en)
WO (1) WO1984003554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390427A (en) * 2014-10-21 2015-03-04 杭州福斯达实业集团有限公司 High-temperature and low-temperature expansion energy-saving nitrogen production device and nitrogen production method
CN110817802A (en) * 2019-10-24 2020-02-21 邯郸钢铁集团有限责任公司 System and method for preparing ultrapure hydrogen by using composite purification process

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175791B1 (en) * 1984-03-29 1988-11-09 Daidousanso Co., Ltd. Apparatus for producing high-purity nitrogen gas
JPS6124967A (en) * 1984-07-13 1986-02-03 大同酸素株式会社 Production unit for high-purity nitrogen gas
JPS6124968A (en) * 1984-07-13 1986-02-03 大同酸素株式会社 Production unit for high-purity nitrogen gas
JPH0721378B2 (en) * 1985-08-12 1995-03-08 大同ほくさん株式会社 Oxygen gas production equipment
GB2181528B (en) * 1985-09-30 1989-09-06 Boc Group Plc Air separation
DE3608160A1 (en) * 1986-03-12 1987-09-24 Kernforschungsz Karlsruhe METHOD FOR THE PRODUCTION OF SUPRAL-CONDUCTING HOMES
DE3610973A1 (en) * 1986-04-02 1987-10-08 Linde Ag METHOD AND DEVICE FOR PRODUCING NITROGEN
DE3722746A1 (en) * 1987-07-09 1989-01-19 Linde Ag METHOD AND DEVICE FOR AIR DISASSEMBLY BY RECTIFICATION
US4902321A (en) * 1989-03-16 1990-02-20 Union Carbide Corporation Cryogenic rectification process for producing ultra high purity nitrogen
DE4017410A1 (en) * 1989-06-02 1990-12-06 Hitachi Ltd METHOD AND DEVICE FOR PRODUCING EXTREMELY PURE NITROGEN
US5074898A (en) * 1990-04-03 1991-12-24 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation method for the production of oxygen and medium pressure nitrogen
US5144808A (en) * 1991-02-12 1992-09-08 Liquid Air Engineering Corporation Cryogenic air separation process and apparatus
US5224336A (en) * 1991-06-20 1993-07-06 Air Products And Chemicals, Inc. Process and system for controlling a cryogenic air separation unit during rapid changes in production
US5170630A (en) * 1991-06-24 1992-12-15 The Boc Group, Inc. Process and apparatus for producing nitrogen of ultra-high purity
DE4135302A1 (en) * 1991-10-25 1993-04-29 Linde Ag DEVICE FOR LOW TEMPERATURE DISPOSAL OF AIR
FR2694383B1 (en) * 1992-07-29 1994-09-16 Air Liquide Production and installation of nitrogen gas production with several different purities.
FR2697620B1 (en) * 1992-10-30 1994-12-23 Air Liquide Process and installation for the production of nitrogen gas with variable flow.
US5682763A (en) * 1996-10-25 1997-11-04 Air Products And Chemicals, Inc. Ultra high purity oxygen distillation unit integrated with ultra high purity nitrogen purifier
US5740683A (en) * 1997-03-27 1998-04-21 Praxair Technology, Inc. Cryogenic rectification regenerator system
EP0908689A3 (en) * 1997-08-20 1999-06-23 AIR LIQUIDE Japan, Ltd. Method and apparatus for air distillation
US5983667A (en) * 1997-10-31 1999-11-16 Praxair Technology, Inc. Cryogenic system for producing ultra-high purity nitrogen
DE19748966B4 (en) * 1997-11-06 2008-09-04 Air Liquide Deutschland Gmbh Apparatus and process for the production and storage of liquid air
US5996373A (en) * 1998-02-04 1999-12-07 L'air Liquide, Societe Ananyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
WO2007057730A1 (en) * 2005-11-17 2007-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of air by cryogenic distillation
JP5026736B2 (en) * 2006-05-15 2012-09-19 パナソニックヘルスケア株式会社 Refrigeration equipment
EP2026025A1 (en) * 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing high pressure nitrogen by cryogenic separation of air in a single column
FR2929384A1 (en) * 2008-03-27 2009-10-02 Air Liquide Air separating apparatus, has distillation column comprising head condenser with dephlegmator whose horizontal section covers seventy percentage of section of column, and extracting unit extracting nitrogen enriched product in column head
US7821158B2 (en) * 2008-05-27 2010-10-26 Expansion Energy, Llc System and method for liquid air production, power storage and power release
FR2959297B1 (en) * 2010-04-22 2012-04-27 Air Liquide PROCESS AND APPARATUS FOR NITROGEN PRODUCTION BY CRYOGENIC AIR DISTILLATION
CN102589251A (en) * 2012-02-24 2012-07-18 苏州制氧机有限责任公司 High purity nitrogen device
US8907524B2 (en) 2013-05-09 2014-12-09 Expansion Energy Llc Systems and methods of semi-centralized power storage and power production for multi-directional smart grid and other applications
FR3051892B1 (en) * 2016-05-27 2018-05-25 Waga Energy PROCESS FOR THE CRYOGENIC SEPARATION OF A SUPPLY RATE CONTAINING METHANE AND AIR GASES, INSTALLATION FOR THE PRODUCTION OF BIO METHANE BY PURIFYING BIOGAS FROM NON-HAZARDOUS WASTE STORAGE FACILITIES (ISDND) USING THE SAME THE PROCESS
CN112551492A (en) * 2020-12-21 2021-03-26 苏州艾唯尔气体设备有限公司 Nitrogen making equipment with sound insulation function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124188A (en) * 1977-04-06 1978-10-30 Hitachi Ltd Utilizing method for chillness of liquefied natural gas in air separator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3210947A (en) * 1961-04-03 1965-10-12 Union Carbide Corp Process for purifying gaseous streams by rectification
GB975729A (en) * 1963-11-12 1964-11-18 Conch Int Methane Ltd Process for the separation of nitrogen and oxygen from air by fractional distillation
US3363427A (en) * 1964-06-02 1968-01-16 Air Reduction Production of ultrahigh purity oxygen with removal of hydrocarbon impurities
GB1052146A (en) * 1965-02-26 1966-12-21
FR1530349A (en) * 1966-07-08 1968-06-21 Grace W R & Co Process for separating a gas mixture into its constituents
GB1463075A (en) * 1973-04-13 1977-02-02 Cryoplants Ltd Air separation
NZ190528A (en) * 1978-05-25 1983-07-29 New Zealand Ind Gases Separation of air
JPS56163717A (en) * 1980-05-22 1981-12-16 Mitsubishi Heavy Ind Ltd Selective adsorbing method of oxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124188A (en) * 1977-04-06 1978-10-30 Hitachi Ltd Utilizing method for chillness of liquefied natural gas in air separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0144430A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390427A (en) * 2014-10-21 2015-03-04 杭州福斯达实业集团有限公司 High-temperature and low-temperature expansion energy-saving nitrogen production device and nitrogen production method
CN110817802A (en) * 2019-10-24 2020-02-21 邯郸钢铁集团有限责任公司 System and method for preparing ultrapure hydrogen by using composite purification process

Also Published As

Publication number Publication date
DE3476114D1 (en) 1989-02-16
DE3486017T3 (en) 1999-03-04
EP0144430A4 (en) 1985-07-30
EP0144430A1 (en) 1985-06-19
EP0144430B1 (en) 1989-01-11
DE3486017T2 (en) 1993-07-15
DE3486017D1 (en) 1993-02-04
US4617040A (en) 1986-10-14

Similar Documents

Publication Publication Date Title
WO1984003554A1 (en) Apparatus for producing high-purity nitrogen gas
EP0211957B1 (en) Apparatus for producing high-purity nitrogen and oxygen gases
KR900005985B1 (en) High- purity nitrogen gas production equipment
EP0175791B1 (en) Apparatus for producing high-purity nitrogen gas
KR890001744B1 (en) High-purity nitrogen gas production equipment
JPS6158747B2 (en)
JPS6119902B2 (en)
JP2672251B2 (en) Nitrogen gas production equipment
JPH06281322A (en) Manufacturing apparatus for high purity nitrogen and oxygen gas
JP2540244B2 (en) Nitrogen gas production equipment
JPH0587447A (en) Producing apparatus for nitrogen gas
KR900005986B1 (en) High-purity nitrogen gas production equipment
JPS6152388B2 (en)
JPS6152389B2 (en)
JPS6115070A (en) Production unit for high-purity nitrogen gas
JPS6115068A (en) Production unit for high-purity nitrogen gas
JPS6124969A (en) Production unit for high-purity nitrogen gas
JPS628710B2 (en)
JPH0719724A (en) High purity nitrogen gas preparing apparatus
JPH07305952A (en) Preparation of nitrogen gas
JPH0665947B2 (en) High-purity nitrogen gas production equipment
JPH07270063A (en) High-purity nitrogen gas manufacturing device
JPH0512638B2 (en)
JPH04297780A (en) High purity nitrogen gas manufacturing equipment
JPS6152390B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE GB NL SU US

AL Designated countries for regional patents

Designated state(s): DE FR GB NL

WWE Wipo information: entry into national phase

Ref document number: 1984901096

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1984901096

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1984901096

Country of ref document: EP