WO1980002457A1 - Solarmeter - Google Patents

Solarmeter Download PDF

Info

Publication number
WO1980002457A1
WO1980002457A1 PCT/CH1980/000036 CH8000036W WO8002457A1 WO 1980002457 A1 WO1980002457 A1 WO 1980002457A1 CH 8000036 W CH8000036 W CH 8000036W WO 8002457 A1 WO8002457 A1 WO 8002457A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switch
analog
output
digital switch
Prior art date
Application number
PCT/CH1980/000036
Other languages
German (de)
French (fr)
Inventor
E Schindler
H Zumsteg
Original Assignee
Haenni & Cie Ag
E Schindler
H Zumsteg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haenni & Cie Ag, E Schindler, H Zumsteg filed Critical Haenni & Cie Ag
Publication of WO1980002457A1 publication Critical patent/WO1980002457A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/04Shaping pulses by increasing duration; by decreasing duration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/06Frequency or rate modulation, i.e. PFM or PRM

Definitions

  • the invention relates to a solarimeter, it is based on the object of measuring the intensity and / or the energy of the solar radiation with a simple device which consumes little power and therefore has a long-term function with a small battery, e.g. for assessing the productivity of solar heating systems in a specific area.
  • the current flowing through the photodiode 1 is practically proportional to the intensity of the radiation 2, as long as the voltage at the charging capacitor 3 is small compared to the voltage of the battery 4.
  • the charging capacitor 3 is discharged - as described in more detail below - by a controllable electronic switch in the form of a transistor 5, whereupon the charging process is repeated.
  • a pulse is generated with each unloading process. Each of these pulses corresponds to a specific energy of the radiation 2. This energy can be set to a specific fraction of an energy unit by adjusting the voltage at which the discharge of the charging capacitor 3 is triggered.
  • the pulses are counted continuously by a counter 6 over a (generally) long period of time.
  • the count rate ie the number of pulses per unit of time
  • a count rate meter 7 Depending on the position of a switch (not shown), a digital display device 8 shows the energy (for example in kWh / m 2 ) or power (for example W / m 2 ) related to a unit area of the irradiated surface of the photodiode 1.
  • the number of pulses counted is only a measure of the energy or power if the discharge duration is negligibly short compared to the shortest charging duration.
  • the discharge not only has to be triggered at the same capacitor voltage, but it also has to be complete or always down to the same each time Residual voltage can be discharged. This is accomplished as described below.
  • the voltage of the charging capacitor 3 (0.5 to 1 microfarad) is at a first input 11 of an analog-digital switch 12, for which the usual short designation AD switch is used below.
  • an analog-digital switch 12 At the second input 13 of the AD switch 12 there is a constant DC voltage (reference voltage U 1.5 volts) which is set at a tap of a partial resistor 15 of a voltage divider 15/16 which is connected in parallel with a Zener diode 14 and which detects the battery voltage (6 volts ) Splits.
  • a capacitor 17 (1 microfarad) is connected to this comparison voltage U.
  • the AD switch 12 delivers at its output 18 the signal "one" (+ 6 volts) when the voltage at its first input 11 is greater than the voltage at the second input 13, i.e.
  • the semiconductor component contained in the AD switch 12, which switches the digital signal at the output 18, cannot be loaded with the control current which would be necessary to drive the transistor .5 to such an extent that its collector-emitter path CE charged charging capacitor 3 discharged in a time that is negligibly short compared to the shortest charging time (ie the charging time at the upper end of the measuring range of the solarimeter). That is why Electronic relay, namely an AND gate (or OR gate) 19 is provided, the inputs of which are connected to one another and to the output 18 and the output of which is connected to the base B of the transistor 5 via a resistor 20 (2.2 kilohms).
  • the output 18 of the AD switch 12 supplies the signal "zero", so that the base B of the transistor 5 has the potential zero, corresponding to the potential of the emitter E.
  • the collector -Emitter path CE of transistor 5 is non-conductive.
  • the capacitor 3 is corresponding to the intensity of the solar radiation falling on the photodiode 2
  • the AD switch 12 supplies the signal "one” (+ 6 volts) at the output 18, the transistor 5 becomes conductive and begins to discharge the capacitor 3.
  • the state of the output 18 of the AD switch already changes from "one" to "zero", whereupon the transistor 5 blocks. In this way, only a very short output pulse from the AD switch 12 can arise.
  • the equally short time during which the collector-emitter path CE of the transistor 5 is in the conductive state would not reliably guarantee a complete discharge of the capacitor 3. Therefore, a circuit for stretching the pulse supplied by the AD switch 12 and controlling the transistor 5 is provided.
  • a pulse stretcher can be connected between the output of the AND gate 19 and the base B of the transistor 5 (not shown).
  • the circuit shown is particularly advantageous.
  • a complete discharge of the charging capacitor 3 (apart from the residual voltage between the collector C and the emitter E caused by the semiconductor effect) is ensured in that, in order to expand the output pulse of the AD switch 12, the output of the AND gate 19 is passed through a capacitor 21 ( 20 pF) is connected to the AD switch input 11, and a resistor 22 (100 kilohms) is connected between this input 11 and the charging capacitor 3.
  • This resistor 22 and the capacitor 21 are dimensioned such that the time constant of the CR element 21/22 is both negligibly small compared to the shortest charging time of the capacitor 3 (ie the charging time at the upper end of the measuring range of the solarimeter) and also less than the time constant is, which results from the capacitance of the charging capacitor 3 and the forward resistance of the transistor 5.
  • the capacitor 21 is connected in series with the resistor 22 in parallel with the charging capacitor 3; because at the output of the AD switch 12 and thus also the AND gate 19, the signal is "zero". Both capacitors 3 and 21 are consequently charged together and at the same time because of the time constant of the CR element 21/22. If the voltage across the charging capacitor 3 is as great as the comparison voltage U (1.5 volts), there is also a voltage of the same magnitude across the capacitor 21.
  • first input 11 of the AD switch 12 a voltage which is equal to the sum (7.5 volts) of the voltage at the capacitor 21 (1.5 volts) and the signal voltage (6 volts) at the output of the AND gate 19.
  • the pulse counter 6, which is preceded by a counter coaster 23, continuously counts the number of pulses generated by the AD switch 12 which are reduced in accordance with the reduction factor (N / m) and each correspond to a charging and discharging process on the capacitor 3.
  • Each charging process corresponds to a specific radiation energy converted by the photodiode 1, which depends, among other things, on the voltage at the capacitor 3 at which the charging process ends, ie the discharge takes place. This voltage is equal to the comparison voltage U at the second input 13 of the AD switch 12, which is adjusted by adjusting the Ab handles of the resistor 15 can be adjusted. It is set such that each charging process corresponds to a specific, integral fraction of an energy unit related to a unit area of the irradiated surface of the photodiode 1. This fraction is chosen so that the digital, decadal display device
  • the counting rate meter 7 used for this purpose is designed like a pulse frequency meter counting in this way, the period of time during which the counting takes place, taking into account the corresponding time for each counted pulse
  • the display device 8 shows, for example, W / m 2 .
  • the display device 8 is controlled by means of a switch (not shown) either by the counter 6 or the count rate meter 7, the counter 6 continuing to count unaffected during a power measurement (pulse rate measurement).
  • the switch can be combined with a measuring range switch.
  • the counting rate meter 7 is expediently fed from the battery 4 only during a power measurement.
  • the polarity of the semiconductor elements and corresponding to the battery can be reversed and the assignment of the binary signals to the relevant states or effects can be interchanged. It is clearly necessary, however, that the state of the AD switch, in which the voltage at the charging capacitor is greater than the reference voltage, is assigned the conductive state of the transistor, in which the latter discharges the charging capacitor.
  • the output of the AD switch could be live when the voltage at the charging capacitor falls below the reference voltage, in which case a non-gate (negator, inverter) must be used instead of the AND gate.
  • the AND gate (but not the NOT gate of the variant just mentioned) can be omitted if the binary signal of the AD switch is sufficient to control the transistor.
  • the capacitor of the circuit for pulse stretching is to be connected to the output of the AD switch instead of to the output of the AND gate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

A converter (photodiode 1) exposed to solar radiation (2) provides a d.c. current proportionnal to the radiation, charging a charge capacitor (3). This capacitor is connected at the input (11) of an analogue-digital switch (12) which provide an output pulse as long as the voltage across the terminals of the capacitor exceeds a pretermined value (U). The output pulse controls a semi-conductor switch (5) so that, during the pulse, the charge capacitor (3) will run down through this switch (5). Since the pulse would stop and the discharge would already be finished when the voltage across the terminals of the charge capacitor falls below the predetermined value, the pulse is prolonged. To this effect and preferably, the pulse is brought back by a capacitor (21) at the input (11) of the analogue-digital switch (12) while a resistor (22) is connected between this input (11) and the charge capacitor (3). To measure the radiation energy the pulses are counted (counter 6) and to measure the radiation power a speed counter device (7) is used.

Description

SolarimeterSolarimeter
Die Erfindung betrifft ein Solarimeter, ihr liegt die Aufgabe zugrunde, die Intensität und/oder die Energie der Sonnenstrahlung mit einem einfachen, wenig Speisestrom verbrauchenden und daher mit einer kleinen Batterie über lange Zeit funktionsfähigen Gerät zu messen, z.B. für die Beurteilung der Ergiebigkeit von Sonnenheizungsanlagen in einer bestimmten Gegend.The invention relates to a solarimeter, it is based on the object of measuring the intensity and / or the energy of the solar radiation with a simple device which consumes little power and therefore has a long-term function with a small battery, e.g. for assessing the productivity of solar heating systems in a specific area.
Diese Aufgabe wird erfindungsgemäss durch den Gegenstand des Patentanspruchs 1 gelöst. In den Patentansprüchen 2 bis 4 sind besondere Ausführungsarten dieses Gegenstandes umschrieben.This object is achieved according to the invention by the subject matter of patent claim 1. In the claims 2 to 4 special embodiments of this subject are described.
Im folgenden wird die Erfindung anhand der lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Die einzige Figur zeigt das vereinfachte Schaltungschema eines Solarimeters.The invention is explained in more detail below with reference to the drawing, which merely shows an exemplary embodiment. The only figure shows the simplified circuit diagram of a solarimeter.
Eine Silizium-Fotodiode 1, die der Sonnenstrahlung 2 auszusetzen ist, liegt in Reihe mit einem Ladekondensator 3 an einer Batterie 4. Der durch die Fotodiode 1 fliessende Strom ist der Intensität der Strahlung 2 praktisch proportional, solange die Spannung am Ladekondensator 3 klein im Vergleich zur Spannung der Batterie 4 ist. Wenn die Kondensatorspannung einen bestimmten Betrag erreicht, der diese Bedingung noch erfüllt, wird der Ladekondensator 3 - wie im folgenden ausführlicher beschrieben durch einen als Transistor 5 ausgeführten, steuerbaren elektronischen Schalter entladen, woraufhin sich der Ladevorgang wiederholt. Bei jedem Entladevorgang wird ein Impuls erzeugt. Jeder dieser Impulse entspricht einer bestimmten Energie der Strahlung 2. Diese Energie kann durch Einstellung der Spannung, bei der die Entladung des Ladekondensators 3 ausgelöst wird, auf einen bestimmten Bruchteil einer Energieeinheit eingestellt werden. Zur Messung der Strahlungsenergie werden die Impulse über einen(in der Regel) langen Zeitraum von einem Zähler 6 fortlaufend gezählt. Zur Messung der augenblicklichen Strahlungsintensität wird die Zählrate (d.i. die Anzahl Impulse pro Zeiteinheit) in einem Zählratenmesser 7 gemessen. Eine digitale Anzeigevorrichtung 8 zeigt abhängig von der Stellung eines nicht dargestellten Umschalters, die auf eine Flächeneinheit der bestrahlten Fläche der Fotodiode 1 bezogene Energie (z.B. in kWh/m2) oder Leistung (z.B. W/m2) an.A silicon photodiode 1, which is to be exposed to solar radiation 2, is in series with a charging capacitor 3 on a battery 4. The current flowing through the photodiode 1 is practically proportional to the intensity of the radiation 2, as long as the voltage at the charging capacitor 3 is small compared to the voltage of the battery 4. When the capacitor voltage reaches a certain amount that still fulfills this condition, the charging capacitor 3 is discharged - as described in more detail below - by a controllable electronic switch in the form of a transistor 5, whereupon the charging process is repeated. A pulse is generated with each unloading process. Each of these pulses corresponds to a specific energy of the radiation 2. This energy can be set to a specific fraction of an energy unit by adjusting the voltage at which the discharge of the charging capacitor 3 is triggered. To measure the radiation energy, the pulses are counted continuously by a counter 6 over a (generally) long period of time. In order to measure the instantaneous radiation intensity, the count rate (ie the number of pulses per unit of time) is measured in a count rate meter 7. Depending on the position of a switch (not shown), a digital display device 8 shows the energy (for example in kWh / m 2 ) or power (for example W / m 2 ) related to a unit area of the irradiated surface of the photodiode 1.
Da die Dauer jeder Ladung des Ladekondensators 3,nicht aber die Dauer der jeweils anschliessenden Entladung von der umgesetzten Strahlungsenergie abhängt, ist die Anzahl der gezählten Impulse nur dann ein Mass der Energie bzw. Leistung, wenn die Entladedauer vernachlässigbar kurz gegenüber der kürzesten Ladedauer ist. Ausserdem muss die Entladung nicht nur jeweils bei derselben Kondensatorspannung ausgelöst, sondern es muss auch jedesmal vollständig oder stets bis auf dieselbe Restspannung entladen werden. Dies wird, wie im folgenden beschrieben, erreicht.Since the duration of each charge of the charging capacitor 3, but not the duration of the subsequent discharge, depends on the radiation energy converted, the number of pulses counted is only a measure of the energy or power if the discharge duration is negligibly short compared to the shortest charging duration. In addition, the discharge not only has to be triggered at the same capacitor voltage, but it also has to be complete or always down to the same each time Residual voltage can be discharged. This is accomplished as described below.
Die Spannung des Ladekondensators 3 (0,5 bis 1 Mikrofarad) liegt an einem ersten Eingang 11 eines Analog-DigitalSchalters 12, für den im folgenden die übliche Kurzbezeichnung AD-Schalter verwendet wird. Am zweiten Eingang 13 des AD-Schalters 12 liegt eine konstant gehaltene Gleichspannung (Vergleichsspannung U 1,5 Volt), die an einem Abgriff eines parallel zu einer Zenerdiode 14 geschalteten Teilwiderstandes 15 eines Spannungsteilers 15/16 eingestellt ist, der die Batteriespannung (6 Volt) teilt. An dieser Vergleichsspannung U liegt ein Kondensator 17 (1 Mikrofarad). Der AD-Schalter 12 liefert an seinem Ausgang 18 das Signal "Eins" (+ 6 Volt), wenn die Spannung an seinem ersten Eingang 11 grösser als die Spannung am zweiten Eingang 13 ist, d..h., wenn die Spannung am Ladekondensator 3 die Vergleichsspannung U (+ 1,5 Volt) überschreitet. Wenn umgekehrt die Spannung am Ladekondensator 3 kleiner als die Vergleichsspannung U ist, ist der Ausgang 18 des AD-Schalters 12 spannungslos (mit dem Minuspol der Batterie 4 verbunden), entsprechend dem Signal "Null".The voltage of the charging capacitor 3 (0.5 to 1 microfarad) is at a first input 11 of an analog-digital switch 12, for which the usual short designation AD switch is used below. At the second input 13 of the AD switch 12 there is a constant DC voltage (reference voltage U 1.5 volts) which is set at a tap of a partial resistor 15 of a voltage divider 15/16 which is connected in parallel with a Zener diode 14 and which detects the battery voltage (6 volts ) Splits. A capacitor 17 (1 microfarad) is connected to this comparison voltage U. The AD switch 12 delivers at its output 18 the signal "one" (+ 6 volts) when the voltage at its first input 11 is greater than the voltage at the second input 13, i.e. when the voltage at the charging capacitor 3 exceeds the reference voltage U (+ 1.5 volts). Conversely, if the voltage at the charging capacitor 3 is less than the comparison voltage U, the output 18 of the AD switch 12 is without voltage (connected to the negative pole of the battery 4), corresponding to the signal "zero".
Bei der dargestellten Schaltung ist das im AD-Schalter 12 enthaltene Halbleiterbauelement, welches das Digitalsignal am Ausgang 18 schaltet, nicht mit dem Steuerstrom belastbar, der nötig wäre, um den Transistor .5 so weit auszusteuern, dass seine Kollektor-Emitter-Strecke C-E den geladenen Ladekondensator 3 in einer Zeit entladet, die vernachlässigbar kurz gegenüber der kürzesten Ladezeit (d.i. die Ladezeit am oberen Ende des Messbereiches des Solarimeters) ist. Deshalb ist ein elektronisches Relais, nämlich ein UND-Glied (oder ODER-Glied) 19 vorgesehen, dessen Eingänge miteinander und mit dem Ausgang 18 und dessen Ausgang über einen Widerstand 20 (2,2 Kiloohm) mit der Basis B des Transistors 5 verbunden ist.In the circuit shown, the semiconductor component contained in the AD switch 12, which switches the digital signal at the output 18, cannot be loaded with the control current which would be necessary to drive the transistor .5 to such an extent that its collector-emitter path CE charged charging capacitor 3 discharged in a time that is negligibly short compared to the shortest charging time (ie the charging time at the upper end of the measuring range of the solarimeter). That is why Electronic relay, namely an AND gate (or OR gate) 19 is provided, the inputs of which are connected to one another and to the output 18 and the output of which is connected to the base B of the transistor 5 via a resistor 20 (2.2 kilohms).
Solange die Spannung am Ladekondensator 3 kleiner als die VergleichsSpannung U ist, liefert der Ausgang 18 des AD-Schalters 12 das Signal "Null", damit hat die Basis B des Transistors 5 das Potential Null, übereinstimmend mit dem Potential des Emitters E. Die Kollektor-Emitter-Strecke C-E des Transistors 5 ist nichtleitend. Der Kondensator 3 wird entsprechend der Intensität der auf die Fotodiode 2 fallenden SonnenstrahlungAs long as the voltage at the charging capacitor 3 is lower than the comparison voltage U, the output 18 of the AD switch 12 supplies the signal "zero", so that the base B of the transistor 5 has the potential zero, corresponding to the potential of the emitter E. The collector -Emitter path CE of transistor 5 is non-conductive. The capacitor 3 is corresponding to the intensity of the solar radiation falling on the photodiode 2
2 aufgeladen. Sobald die Spannung des Ladekondensators2 charged. Once the voltage of the charging capacitor
3 den Betrag der Vergleichsspannung U überschreitet, liefert der AD-Schalter 12 am Ausgang 18 das Signal "Eins" (+ 6 Volt), der Transistor 5 wird leitend und beginnt, den Kondensator 3 zu entladen. In dem Augenblick, in dem die Spannung am Ladekondensator 3 nun wied kleiner wird als die Vergleichsspannung U, wechselt der Zustand des Ausgangs 18 des AD-Schalters bereits wieder von "Eins" auf "Null", woraufhin der Transistor 5 sperrt. Auf diese Weise kann nur ein sehr kurzer Ausgangsimpuls des AD-Schalters 12 entstehen. Die gleich kurze Zeit, während der die Kollektor-Emitter-Strecke C-E des Transistors 5 in leitfähigem Zustand ist, würde eine vollständige Entladung des Kondensators 3 nicht zuverlässig gewährleisten. Deshalb ist eine Schaltung zur Dehnung des vom AD-Schalter 12 gelieferten, den Transistor 5 steuernden Impulses vorgesehen. Zur Impulsdehnung kann ein Impulsdehner zwischen den Ausgang des UND-Tores 19 und die Basis B des Transistors 5 geschaltet werden (nicht dargestellt).3 exceeds the amount of the comparison voltage U, the AD switch 12 supplies the signal "one" (+ 6 volts) at the output 18, the transistor 5 becomes conductive and begins to discharge the capacitor 3. At the moment when the voltage at the charging capacitor 3 is again lower than the comparison voltage U, the state of the output 18 of the AD switch already changes from "one" to "zero", whereupon the transistor 5 blocks. In this way, only a very short output pulse from the AD switch 12 can arise. The equally short time during which the collector-emitter path CE of the transistor 5 is in the conductive state would not reliably guarantee a complete discharge of the capacitor 3. Therefore, a circuit for stretching the pulse supplied by the AD switch 12 and controlling the transistor 5 is provided. For pulse stretching, a pulse stretcher can be connected between the output of the AND gate 19 and the base B of the transistor 5 (not shown).
Besonders vorteilhaft ist die dargestellte Schaltung. Bei dieser ist eine vollständige Entladung des Ladekondensators 3 (bis auf die durch den Halbleitereffekt bedingte Restspannung zwischen Kollektor C und Emitter E) dadurch sichergestellt, dass zur Dehnung des Ausgangsimpulses des AD-Schalters 12 der Ausgang des UND-Gliedes 19 über einen Kondensator 21 (20 pF) mit dem AD-Schalter-Eingang 11 verbunden, und zwischen diesen Eingang 11 und den Ladekondensator 3 ein Widerstand 22 (100 Kiloohm) geschaltet ist. Dieser Widerstand 22 und der Kondensator 21 sind so bemessen, dass die Zeitkonstante des CR-Gliedes 21/22 sowohl vernachlässigbar klein gegenüber der kürzesten Ladezeit des Kondensators 3, (d.i. die Ladezeit am oberen Ende des Messbereiches des Solarimeters) als auch kleiner als die Zeitkonstante ist, die sich aus der Kapazität des Ladekondensators 3 und dem Durchlasswiderstand des Transistors 5 ergibt.The circuit shown is particularly advantageous. In this case, a complete discharge of the charging capacitor 3 (apart from the residual voltage between the collector C and the emitter E caused by the semiconductor effect) is ensured in that, in order to expand the output pulse of the AD switch 12, the output of the AND gate 19 is passed through a capacitor 21 ( 20 pF) is connected to the AD switch input 11, and a resistor 22 (100 kilohms) is connected between this input 11 and the charging capacitor 3. This resistor 22 and the capacitor 21 are dimensioned such that the time constant of the CR element 21/22 is both negligibly small compared to the shortest charging time of the capacitor 3 (ie the charging time at the upper end of the measuring range of the solarimeter) and also less than the time constant is, which results from the capacitance of the charging capacitor 3 and the forward resistance of the transistor 5.
Während der Ladung des Ladekondensators 3 ist der Kondensator 21 in Reihe mit dem Widerstand 22 parallel zum Ladekondensator 3 geschaltet; denn am Ausgang des ADSchalters 12 und somit auch des UND-Tores 19 ist das Signal "Null". Beide Kondensatoren 3 und 21 werden folglich gemeinsam und wegen der Zeitkonstante des CR-Gliedes 21/22 gleichzeitig aufgeladen. Wenn die Spannung am Ladekondensator 3 so gross wie die Vergleichsspannung U (1,5 Volt) ist, liegt auch am Kondensator 21 eine Spannung gleicher Grosse. Wenn der AD-Schalter 12 nun schaltet und das Signal "Eins" am AD-Schalter-Ausgang 18 und am Ausgang des UND-Gliedes 19 auftritt, herrscht am ersten Eingang 11 des AD-Schalters 12 eine Spannung, die gleich der Summe (7,5 Volt) aus der Spannung am Kondensator 21 (1,5 Volt) und der Signalspannung (6 Volt) am Ausgang des UND-Gliedes 19 ist. Das Ausgangssignal "Eins" am Ausgang des UND-Tores 19, das die Kollektor-EmitterStrecke C-E des Transistors in leitendem Zustand hält, wobei der Ladekondensator 3 entladen wird, bleibt nun so lange bestehen, bis der Kondensator 21 durch den Wider stand 22 von der genannten Summenspannung (7,5 Volt) bis auf 0 entladen und auf eine dieser entgegengesetzte Spannung aufgeladen wurde , deren Betrag (4,5 Volt) gleich der Differenz aus der AusgangsSignalspannung (6 Volt) des UND-Gliedes 19 und der Vergleichsspannung U (1,5 Volt ist. Erst dann schaltet der AD-Schalter 12 wieder zurück, das AusgangsSignal wird wieder "Null", so dass der Transistor 5 wieder gesperrt ist, und der Kondensator 3 wieder geladen wird. Wegen der genannten Bemessung derZeitkonstanten von 21/22 und 3/C-E ist die Entladung des Ladekondensators 3 jeweils vollständig und die damit zusammenhängende Zeit zwischen dem Ende einer Ladung und dem Beginn der nächsten Ladung vernachlässigbar.During the charging of the charging capacitor 3, the capacitor 21 is connected in series with the resistor 22 in parallel with the charging capacitor 3; because at the output of the AD switch 12 and thus also the AND gate 19, the signal is "zero". Both capacitors 3 and 21 are consequently charged together and at the same time because of the time constant of the CR element 21/22. If the voltage across the charging capacitor 3 is as great as the comparison voltage U (1.5 volts), there is also a voltage of the same magnitude across the capacitor 21. If the AD switch 12 now switches and the signal "one" occurs at the AD switch output 18 and at the output of the AND gate 19, then first input 11 of the AD switch 12 a voltage which is equal to the sum (7.5 volts) of the voltage at the capacitor 21 (1.5 volts) and the signal voltage (6 volts) at the output of the AND gate 19. The output signal "one" at the output of the AND gate 19, which holds the collector-emitter path CE of the transistor in a conductive state, with the charging capacitor 3 being discharged, now remains until the capacitor 21 has stood by the resistor 22 from the said sum voltage (7.5 volts) was discharged to 0 and charged to an opposite voltage, the amount (4.5 volts) equal to the difference between the output signal voltage (6 volts) of the AND gate 19 and the comparison voltage U (1 , 5 V. Only then does the AD switch 12 switch back again, the output signal becomes "zero" again, so that the transistor 5 is blocked again and the capacitor 3 is charged again, because of the above-mentioned dimensioning of the time constant of 21/22 and 3 / CE, the discharge of the charging capacitor 3 is complete and the associated time between the end of a charge and the beginning of the next charge is negligible.
Der Impulszähler 6, dem ein Zähluntersetzer 23 vorgeschaltet ist, zählt fortlaufend die entsprechend dem Untersetzungsfaktor (N/m) herabgesetzte Anzahl der vom AD-Schalter 12 erzeugten Impulse, die je einem Lade- und Entladevorgang am Kondensator 3 entsprechen. Jeder Ladevorgang entspricht einer bestimmten von der Fotodiode 1 umgesetzten Strahlungsenergie, die u.a. davon abhängt, bei welcher Spannung am Kondensator 3 der Ladevorgang jeweils endet, d.h.die Entladung erfolgt. Diese Spannung ist gleich der Vergleichsspannung U am zweiten Eingang 13 des AD-Schalters 12, die durch Verstellen des Ab griffs des Widerstandes 15 eingestellt werden kann. Sie wird so eingestellt, dass jeder Ladevorgang einem bestimmten, ganzzahligen Bruchteil einer auf eine Flächeneinheit der bestrahlten Fläche der Fotodiode 1 bezogenen Energieeinheit entspricht. Dieser Bruchteil ist so gewählt, dass die digitale, dekadische AnzeigevorrichtungThe pulse counter 6, which is preceded by a counter coaster 23, continuously counts the number of pulses generated by the AD switch 12 which are reduced in accordance with the reduction factor (N / m) and each correspond to a charging and discharging process on the capacitor 3. Each charging process corresponds to a specific radiation energy converted by the photodiode 1, which depends, among other things, on the voltage at the capacitor 3 at which the charging process ends, ie the discharge takes place. This voltage is equal to the comparison voltage U at the second input 13 of the AD switch 12, which is adjusted by adjusting the Ab handles of the resistor 15 can be adjusted. It is set such that each charging process corresponds to a specific, integral fraction of an energy unit related to a unit area of the irradiated surface of the photodiode 1. This fraction is chosen so that the digital, decadal display device
8 z.B. kWh/m2 anzeigt.8 eg kWh / m 2 .
Zur Intensitätsmessung, wird fortlaufend die Anzahl der jeweils während einer vorbestimmten Zeitdauer auftretenden Impulse gezählt und dekadisch digital angezeigt. Der dazu dienende Zählratenmesser 7 ist wie ein derart zählender Impulsfrequenzmesser ausgeführt, wobei die Zeitdauer, während der jeweils gezählt wird, unter Berücksichtigung der jedem gezählten Impuls entsprechendenFor intensity measurement, the number of pulses occurring during a predetermined period of time is continuously counted and displayed digitally in a decade. The counting rate meter 7 used for this purpose is designed like a pulse frequency meter counting in this way, the period of time during which the counting takes place, taking into account the corresponding time for each counted pulse
Energie pro Flächeneinheit so gewählt ist, dass die Anzeigevorrichtung 8 z.B. W/m2 anzeigt. Die Anzeigevorrichtung 8 wird mittels eines (nicht dargestellten) Umschalters wahlweise vom Zähler 6 oder Zählratenmesser 7 gesteuert, wobei der Zähler 6 während einer Leistungsmessung (Impulsratenmessung) von dieser unbeeinflusst weiter zählt. Dabei kann der Umschalter mit einem Messbereichschalter kombiniert sein. Der Zählratenmesser 7 ist zweckmässig nur während einer Leistungsmessung aus der Batterie 4 gespeist.Energy per unit area is selected so that the display device 8 shows, for example, W / m 2 . The display device 8 is controlled by means of a switch (not shown) either by the counter 6 or the count rate meter 7, the counter 6 continuing to count unaffected during a power measurement (pulse rate measurement). The switch can be combined with a measuring range switch. The counting rate meter 7 is expediently fed from the battery 4 only during a power measurement.
Die Polarität der Halbleiterelemente und entsprechend der Batterie kann umgekehrt und die Zuordnung der Binärsignale zu den betreffenden Zuständen bzw. Wirkungen kann vertauscht werden. Ersichtlich notwendig ist jedoch, dass dem Zustand des AD-Schalters, bei dem die Spannugg am Ladekondensator grösser als die Vergleichsspannung ist, der leitende Zustand des Transistors zugeordnet ist, bei dem dieser den Ladekondensator entladet. Beispielsweise könnte der Ausgang des AD-Schalters spannungsführend sein, wenn die Spannung am Ladekondensator die Vergleichsspannung unterschreitet, wobei dann an Stelle des UND-Gliedes ein NICHT-Glied (Negator, Inverter) zu verwenden ist.The polarity of the semiconductor elements and corresponding to the battery can be reversed and the assignment of the binary signals to the relevant states or effects can be interchanged. It is clearly necessary, however, that the state of the AD switch, in which the voltage at the charging capacitor is greater than the reference voltage, is assigned the conductive state of the transistor, in which the latter discharges the charging capacitor. For example, the output of the AD switch could be live when the voltage at the charging capacitor falls below the reference voltage, in which case a non-gate (negator, inverter) must be used instead of the AND gate.
Dass das UND-Glied (nicht aber das NICHT-Glied der soeben genannten Variante) wegfallen kann, wenn das Binärsignal des AD-Schalters zur Steuerung des Transistors ausreicht, war oben bereits ersichtlich. Dabei ist der Kondensator der Schaltung zur Impulsdehnung statt an den Ausgang des UND-Gliedes an den Ausgang des ADSchalters anzuschliessen. It was already evident above that the AND gate (but not the NOT gate of the variant just mentioned) can be omitted if the binary signal of the AD switch is sufficient to control the transistor. The capacitor of the circuit for pulse stretching is to be connected to the output of the AD switch instead of to the output of the AND gate.

Claims

Patentansprüche Claims
1. Solarimeter, gekennzeichnet durch einen der Sonnenstrahlung (2) auszusetzenden Umsetzer (1), der einen der Strahlungsintensität praktisch proportionalen Strom liefert und in Reihe mit einem Ladekondensator £3) an eine Gleichspannungsquelle (4) angeschlossen ist, einen Analog-Digital-Schalter (12) mit zwei Eingängen (11, 13), deren erster (11) mit dem Ladekondensator (3) und deren zweiter (13) mit einer stabilisierten Gleichspannungsquelle (14 - 17) verbunden ist, eine Schaltung (21, 22) zur Dehnung des Ausgangsimpulses des Analog-Digital-Schalters (12), einen parallel zum Ladekondensator (3) geschalteten, elektronischen, steuerbaren Schalter (5) der vom gedehnten Ausgangssignal des Analog-Digital-Schalters (12) gesteuert ist, wobei dem leitenden Zustand des parallel zum Ladekondensator (3) geschalteten Schalters (5) der Zustand des Analog-Digital-Schalters (12) zugeordnet ist, in dem die Spannung am ersten Eingang (11) grösser als die am zweiten Eingang (13) ist, einen mit dem Ausgang (18) des Analog-Digital-Schalters (12) verbundenen Zähler (6) mit einer Anzeigevorrichtung (8) für die gezählten, je einer bestimmten Energie entsprechenden Impulse und/oder einem Zählratenmesser (7) mit einer Anzeigevorrichtung (8) für die jeweilige, der Strahlungsleistung entsprechende Zählrate. 1. Solarimeter, characterized by a converter (1) to be exposed to solar radiation (1), which delivers a current practically proportional to the radiation intensity and is connected in series with a charging capacitor £ 3) to a direct voltage source (4), an analog-digital switch (12) with two inputs (11, 13), the first (11) of which is connected to the charging capacitor (3) and the second (13) of which is connected to a stabilized direct voltage source (14-17), a circuit (21, 22) for expansion of the output pulse of the analog-digital switch (12), an electronic, controllable switch (5) connected in parallel to the charging capacitor (3) which is controlled by the stretched output signal of the analog-digital switch (12), the conductive state of the parallel assigned to the charging capacitor (3) switch (5) is the state of the analog-digital switch (12) in which the voltage at the first input (11) is greater than that at the second input (13), one with the A Output (18) of the analog-digital switch (12) connected counter (6) with a display device (8) for the counted, each corresponding to a certain energy pulses and / or a count rate meter (7) with a display device (8) for respective count rate corresponding to the radiation power.
2. Solarimeter nach Anspruch 1, dadurch gekennzeichnet, dass zwischen den Ausgang (18) des Analog-DigitalSchalters (12) und den Steuereingang(B) des elektronischen Schalters (5) ein verstärkendes Glied (19) geschaltet ist.2. Solarimeter according to claim 1, characterized in that a reinforcing element (19) is connected between the output (18) of the analog-digital switch (12) and the control input (B) of the electronic switch (5).
3. Solarimeter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schaltung zum Dehnen der Ausgangsimpulse des Analog-Digital-Schalters (12) einen Widerstand (22), der zwischen den Ladekondensator (3) und den ersten Eingang (11) des Analog-Digital-Schalters (12) geschaltet ist, und einen Kondensator (21) aufweist, der zwischen den ersten Eingang (11) des Analog-DigitalSchalters (12) und, dessen Ausgang (18) oder den Ausgang eines auf diesen (12, 18) folgenden, verstärkenden Gliedes (19) geschaltet ist, und dass die Zeitkonstante des aus dem Widerstand (22) und dem Kondensator (21) bestehenden RC-Gliedes vernachlässigbar klein gegenüber der Ladezeit des Ladekondensators (3) am oberen Ende des Messbereiches und die Kapazität des Kondensators (21) vernachlässigbar klein gegenüber der des Ladekondensators (3) ist.3. Solarimeter according to claim 1 or 2, characterized in that the circuit for stretching the output pulses of the analog-digital switch (12) has a resistor (22) between the charging capacitor (3) and the first input (11) of the analog -Digital switch (12) is connected, and has a capacitor (21) which is between the first input (11) of the analog-digital switch (12) and, its output (18) or the output of one on this (12, 18th ) following, amplifying element (19) is connected, and that the time constant of the RC element consisting of the resistor (22) and the capacitor (21) is negligibly small compared to the charging time of the charging capacitor (3) at the upper end of the measuring range and the capacitance of the capacitor (21) is negligibly small compared to that of the charging capacitor (3).
4. Solarimeter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen den Ausgang (18) des Analog-Digital-Schalters (12) oder eines auf diesen (12, 18) folgenden, verstärkenden Gliedes (19) und den Zähler (6) und/oder Zählratenmesser (7) ein Zähluntersetzer (23) geschaltet ist. 4. Solarimeter according to one of claims 1 to 3, characterized in that between the output (18) of the analog-digital switch (12) or one of these (12, 18) following, reinforcing member (19) and the counter ( 6) and / or count rate meter (7) a counting reducer (23) is connected.
PCT/CH1980/000036 1979-05-08 1980-03-12 Solarmeter WO1980002457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH429079A CH636959A5 (en) 1979-05-08 1979-05-08 Solari meter.
CH4290/79 1979-05-08

Publications (1)

Publication Number Publication Date
WO1980002457A1 true WO1980002457A1 (en) 1980-11-13

Family

ID=4273341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1980/000036 WO1980002457A1 (en) 1979-05-08 1980-03-12 Solarmeter

Country Status (3)

Country Link
EP (1) EP0028603A1 (en)
CH (1) CH636959A5 (en)
WO (1) WO1980002457A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071654A1 (en) * 1981-08-04 1983-02-16 McMichael, John Methods and materials for detection of multiple sclerosis
WO1995020750A1 (en) * 1994-01-26 1995-08-03 Försvarets Forskningsanstalt Sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482116A (en) * 1966-08-05 1969-12-02 Bendix Corp Voltage to frequency converter
US3879118A (en) * 1973-02-01 1975-04-22 Canon Kk Exposure control apparatus
DE2405567A1 (en) * 1974-02-06 1975-08-14 Original Hanau Quarzlampen ARRANGEMENT FOR MEASURING THE RADIATION ENERGY AT A CERTAIN PERIOD
US3917948A (en) * 1973-09-18 1975-11-04 Biviator Sa Device for measuring the dose of ultraviolet radiation in the erythem-effective range

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3482116A (en) * 1966-08-05 1969-12-02 Bendix Corp Voltage to frequency converter
US3879118A (en) * 1973-02-01 1975-04-22 Canon Kk Exposure control apparatus
US3917948A (en) * 1973-09-18 1975-11-04 Biviator Sa Device for measuring the dose of ultraviolet radiation in the erythem-effective range
DE2405567A1 (en) * 1974-02-06 1975-08-14 Original Hanau Quarzlampen ARRANGEMENT FOR MEASURING THE RADIATION ENERGY AT A CERTAIN PERIOD

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Journal of Physics E.: Scientific Instruments, Volume 9, No. 9, veroffenlicht imAugust 1976, London (GB) N. McLAUGHLIN et al.: "An inexpensive radiant energie integrator", siehe seiten 651 bis 653, siehe insbesondere seite 652, Figur 4. *
Messen & Prufen/Automatik, veroffenlicht im Januar-Februar 1979, H Holzmann Vg in Bad Worishofen (DE) A. HAUG: "Widerstands Frequenz Umsetzer nach der Ladungsbilanzmethode", Seiten 65-68, siehe insbesondere seite 67, Figur 7. *
R. OSBORNE: "Instrument for measuring ultra-violet exposures", Rapport AECL-3384, veroffenlicht im September 1969, Atomic Energy of Cananda, Ottawa (CA), sieheinsbesondere seiten 6,7; Figur 4. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0071654A1 (en) * 1981-08-04 1983-02-16 McMichael, John Methods and materials for detection of multiple sclerosis
WO1995020750A1 (en) * 1994-01-26 1995-08-03 Försvarets Forskningsanstalt Sensor device

Also Published As

Publication number Publication date
CH636959A5 (en) 1983-06-30
EP0028603A1 (en) 1981-05-20

Similar Documents

Publication Publication Date Title
DE1276695B (en) Analog-digital converter with a voltage-frequency converter
DE1616374B1 (en) Arrangement for switching the measuring range with a digital voltmeter
DE1905176C3 (en) Process for analog-digital conversion with improved differential linearity of the conversion and arrangement for carrying out this process
DE2430652A1 (en) ANALOG-DIGITAL CONVERTER
EP0232451B1 (en) Method and device for the conversion of an electrical signal into a proportional frequency
DE2139126B2 (en) VOLTAGE METER DISPLAYING DIGITAL IN LOGARITHMIC DIMENSIONS
EP0604444B1 (en) Circuit arrangement to detect a voltage
EP0415490B1 (en) Circuit arrangement for power supply to a load
WO1980002457A1 (en) Solarmeter
DE1773885C3 (en) Electric two-beam measuring device for measuring optical transmissions
DE2363522C2 (en) Correction circuit for a circuit arrangement for processing analog signals
DE1298546C2 (en) PROCEDURE AND ARRANGEMENT FOR ANALOG-DIGITAL IMPLEMENTATION
DE2321517C3 (en) Analog-to-digital converter
DE2352049C3 (en) Arrangement for the automatic zero point correction of analog-digital converters
DE2202059A1 (en) Method and device for integrating an electrical voltage with a digital display
DE4002615C2 (en) Circuit arrangement for analog-digital conversion of electrical measured values
DE1040072B (en) Method for the delayed generation of pulses, in which the delay time is proportional to the time interval between two external pulses
DE3217376A1 (en) Pulse generator
DE1951434A1 (en) Circuit arrangement for the digital measurement of analog measured quantities
DE2526044A1 (en) DRIFT COMPENSATION CIRCUIT FOR A STORAGE CAPACITOR
DE1095938B (en) Method and device for locating insulation faults and for measuring insulation resistance under high voltage
DE2137281C (en) RMS meter
DE1537046B2 (en) CIRCUIT ARRANGEMENT FOR CONVERTING AN AC VOLTAGE INTO A PULSE SEQUENCE
DE1960673C (en) Circuit arrangement for the multiplication of two sizes
DE3046487A1 (en) Control regulating charging of storage heater - uses precisely-varying auxiliary voltages derived via D=A converter

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AT BR DE GB JP NL US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB LU NL SE