USRE48094E1 - Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners - Google Patents

Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners Download PDF

Info

Publication number
USRE48094E1
USRE48094E1 US15/147,518 US201615147518A USRE48094E US RE48094 E1 USRE48094 E1 US RE48094E1 US 201615147518 A US201615147518 A US 201615147518A US RE48094 E USRE48094 E US RE48094E
Authority
US
United States
Prior art keywords
vacuum cleaner
fluid
duct
cyclone chamber
tangential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US15/147,518
Inventor
Carl L. C. Kah, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/209,867 external-priority patent/US9119511B2/en
Application filed by Individual filed Critical Individual
Priority to US15/147,518 priority Critical patent/USRE48094E1/en
Priority to US15/842,289 priority patent/USRE48116E1/en
Application granted granted Critical
Publication of USRE48094E1 publication Critical patent/USRE48094E1/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/14Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum cleaning by blowing-off, also combined with suction cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1608Cyclonic chamber constructions
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1616Multiple arrangement thereof
    • A47L9/1641Multiple arrangement thereof for parallel flow
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/16Arrangement or disposition of cyclones or other devices with centrifugal action
    • A47L9/1683Dust collecting chambers; Dust collecting receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • B01D50/002
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/08Vortex chamber constructions
    • B04C5/103Bodies or members, e.g. bulkheads, guides, in the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/14Construction of the underflow ducting; Apex constructions; Discharge arrangements ; discharge through sidewall provided with a few slits or perforations
    • B04C5/185Dust collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/004Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with internal filters, in the cyclone chamber or in the vortex finder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/005Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with external rotors, e.g. impeller, ventilator, fan, blower, pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/03Vacuum cleaner

Definitions

  • the present application relates to an apparatus for separating dirt or dust particles from an air flow by cyclonic means.
  • the application relates particularly, but not exclusively, to a cyclonic dust separation apparatus for use in a vacuum cleaner.
  • Cyclone dust separation devices typically include a frustoconical (truncated cone) cyclone having a tangential air inlet at the one end having a large diameter and a cone opening leading to a dirt or dust collection area at the other end which has a smaller diameter.
  • U.S. Pat. No. 6,261,330 discloses a device including a fan for causing fluid to flow through the cyclone separator, the cyclone separator having an inlet and an interior wall having a frusto-conical portion tapering away from the inlet, wherein the fan is positioned in the inlet to the cyclone separator chamber on the same axis thereof, such that fluid passing through the fan is accelerated towards the interior wall, and thereby, given sufficient tangential velocity to cause cyclonic separation of particles from the fluid flow within the cyclonic separator chamber.
  • the fan motor is located on the centerline of the cyclone separator chamber, and thus, adds to the size of the cyclone separator chamber.
  • a cyclonic separation device in accordance with an embodiment of the present application preferably includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the first cyclone chamber including, a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the first cyclone chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and on an opposite side of the baffle plate from the tangential inlet and a center exit duct mounted in the center of the cyclone chamber having an inlet opening positioned upstream from the baffle plate such the centrifuged fluid without particles flows into the center exit duct and out of the cyclone chamber.
  • the cyclonic separation device of the present application may be used in a variety of applications, including, but limited to use in centrifugal separation type vacuum cleaners.
  • a vacuum cleaner in accordance with an embodiment of the present invention preferably includes a handle and a floor housing to which the handle is pivotally connected.
  • the floor housing preferably includes a suction fan motor, a suction fan driven by the motor and including a plurality of fan blades driven at a high velocity by the suction fan motor to suck a fluid from a first side of the fan to the second side of the fan, a pick up head positioned adjacent to a floor and in fluid communication with the suction fan and a cyclonic separator device.
  • the cyclonic separator device includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the first cyclone chamber including a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the first cyclone chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and on an opposite side of the baffle plate from the tangential inlet; and a center exit duct mounted in the center of the first cyclone chamber having an inlet opening positioned upstream from the baffle plate such the centrifuged fluid without particles flows into the center exit duct and out of the first cyclone chamber, wherein the pick up head and suction fan are connected in fluid communication with the first cyclone chamber such that fluid flows from the pick up head through the tangential inlet into the first cyclone chamber and rotates therein at high velocity such that particles in the fluid are forced out to the inner surface of an outer
  • a vacuum cleaner in accordance with another embodiment of the present invention preferably includes a handle and a floor housing to which the handle is pivotally attached,
  • the floor housing preferably includes a suction fan motor, a suction fan, driven by the motor, a first cyclone separator connected to an inlet of the suction fan.
  • the first cyclone separator preferably includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the cyclone chamber including a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and downstream of the baffle plate, a center exit duct mounted in the center of the cyclone chamber having an inlet opening positioned downstream from the baffle and in fluid communication with the suction fan inlet such that rotation of the suction fan draws fluid into the first cyclone chamber to rotate at high velocity forcing particles in the fluid past the baffle plate and out of the tangential dirt outlet and a removable dirt collector in fluid communication with the tangential dirt outlet and structured to store the particles discharged from the tangential dirt outlet.
  • FIG. 1 illustrates an upright floor sweeper vacuum cleaner in accordance with an embodiment of the present application
  • FIG. 2 shows a top view of the vacuum cleaner described for FIG. 1 .
  • FIG. 3 shows a front view of the conceptual configuration of FIG. 1 .
  • FIG. 4 shows a cross sectional side view of the upright floor sweeper of FIG. 1 .
  • FIG. 5 shows a schematic type top view of the vacuum shown in FIG. 4 .
  • FIG. 6 shows a perspective schematic type view of a basic pressure driven cyclone separator for use with the vacuum cleaner of FIG. 1 .
  • FIG. 7 shows a schematic type side view of a basic pressure driven compact cyclone separator for use with the vacuum cleaner of FIG. 1 .
  • FIG. 8a shows a partial cross sectional perspective flow drawing of a bank of small diameter cyclone separators for a secondary separator for use with the vacuum cleaner of FIG. 1 .
  • FIG. 8b is a top view schematic of FIG. 8a .
  • FIG. 9 shows a cross section of a floor sweeper upright type vacuum including the secondary separator of FIG. 8 .
  • FIG. 10a illustrates an alternative embodiment of a vacuum cleaner in accordance with the present invention.
  • FIG. 10b illustrates another alternative embodiment of a vacuum cleaner in accordance with the present invention.
  • FIG. 11a shows the vacuum cleaner of FIG. 10a with a bottom dirt collector removed.
  • FIG. 11b shows the vacuum cleaner of FIG. 10b with a bottom dirt collector removed.
  • FIG. 12 shows an alternative embodiment of a primary cyclone separator of the vacuum cleaner of FIG. 1 .
  • FIG. 13 shows a side view of an embodiment of a primary cyclone separator for the vacuum cleaner of FIG. 1 .
  • FIG. 14a shows an alternate configuration of the vacuum cleaner of FIG. 10 .
  • FIG. 14b shows the vacuum cleaner of FIG. 14a with the dirt bag removed and the retention spring rolled back.
  • FIG. 15 is an exemplary illustration of a HEPA type very small particle filter for use with the vacuum cleaner of the present application.
  • FIG. 16 illustrates another exemplary embodiment of a vacuum cleaner in accordance with the present application.
  • FIG. 17 shows a bottom view of the vacuum cleaner of FIG. 16 without a bottom cover.
  • FIG. 18 shows an external view of the bottom of the vacuum cleaner of FIG. 17 with the bottom cover in place.
  • FIG. 19 shows cross sectional side view of the vacuum cleaner of FIGS. 16-18 .
  • FIG. 20 shows a more detailed view of the primary cyclone separator of the vacuum cleaner of FIGS. 16-19 .
  • FIG. 21 shows an alternative embodiment of the primary cyclone separator of FIG. 20 .
  • FIG. 22 shows a secondary cyclone separator suitable for use in the vacuum cleaner of FIG. 16 .
  • FIG. 23 illustrates a vacuum cleaner in accordance with another embodiment of the present application.
  • FIG. 24 shows an illustration of a high performance cyclone separator of the concept illustrated in FIG. 6 applied to replace a cleanable filter cloth in a central vacuum system in accordance with an embodiment of the present invention.
  • the vacuum cleaner of the present application allows for a reduction in motor size in that it preferably provides the dirt separation chamber on the output, or blowing, side of the suction fan, which allows the suction fan to impart more speed to the dirt laden air as it is provided to the separation chamber.
  • higher speed air is provided in the separation chamber without the need to use a larger motor.
  • the diameter of the separation chamber may also be reduced, which also aids in maintaining high velocity air flow therein and provides better separation while reducing overall vacuum size.
  • the design of the fan motor and fan can be separately optimized while maintaining proper motor cooling.
  • the vacuum cleaner of the present application is preferably buildable using existing highly developed domestic vacuum cleaner motors now in production.
  • the incoming flow to the fan impeller does not have to be compromised and the cyclonic separating chamber can be optimized separately without the need to compromise its design for motor or fan considerations, as is the case in the prior art discussed above.
  • the design of the present application minimizes the opportunities for flow passage blockage that is a problem in other cyclone dirt separation vacuum cleaners now on the market since all of the air flow elements are preferably close connected with minimum duct work and high velocity air. This reduces the opportunity for velocity and pressure drops as air flows through the cleaner.
  • FIG. 1 illustrates a conceptual perspective view of an upright type vacuum floor cleaner 1 in accordance with an embodiment of the present application.
  • the cleaner 1 includes a handle assembly 4 which can be pivotally mounted to the side of the vacuum cleaner housing assembly 5 which is partially carried by rear wheel assembly 7 and whose pick up head 9 rides in close proximity to a carpet or floor.
  • the head area 9 preferably includes small rollers (not shown) mounted under the housing 5 as well.
  • the vacuum cleaner suction fan and motor assembly 20 generates suction that is connected to the head area 9 of the vacuum cleaner 1 .
  • the suction lifts dirt and dust from the floor and into the vacuum 1 .
  • This dirt-laden air then passes through the motor driven fan 6 (See FIG. 4 ) and is accelerated by the high velocity of the fan rotor blades 8 .
  • the velocity of the blades 8 may be almost the speed of sound (1100 ft/sec) such that the air and dirt is thrown through the tangential input connecting duct 11 to the primary cyclone separator 22 .
  • the primary cyclone separator 22 preferably includes a relatively small diameter cyclone chamber 10 (preferably approximately 4 inches in diameter) where the dirt is moved against the outside walls by the very high centrifugal forces and passes the baffled plate 12 (See FIGS. 6 and 7 ) to be discharged tangentially from the chamber 10 through tangential dirt outlet 23 into a dirt collection bag or container 14 .
  • the dirt free air moves towards the center of the cyclone chamber 10 and exits through a central duct 16 where it can then be finally filtered by filter 18 , if desired, or run through a secondary cyclone separator 65 which preferably includes a group of small diameter cyclone chambers 60 which generate very high g-forces due to their smaller diameter.
  • the air velocity remain high and that the components of the cleaner 1 are closely coupled together to provide for minimum pressure drop between components and to maintain a very open flow design.
  • the secondary cyclone separator 65 is shown in more detail in FIGS. 8a and 8b , and is preferably embodied as a group of small diameter tangential entry chambers 60 on top of truncated cones 62 that taper to a decreased radius for increasing centrifugal force and including truncated opening 63 at the bottom thereof to provide for dirt discharge into a separate, very fine dirt collection chamber 64 .
  • This chamber 64 can also be separately cleaned less often than the larger dirt collection chamber 14 .
  • the dirt exit, or openings 63 of each of the small truncated cones 62 can have a reverse cone shape to spread the spinning dirt outwardly and allow more separation between the discarded dirt and the returning air circulation at this location. Air preferably enters the chambers 60 via the inlets 61
  • the primary, first, cyclone chamber 10 removes all of the larger dirt and a large part of the smaller dirt because of its high velocity, before the air is discharged into these small diameter chambers 60 through connecting duct openings which allow them to operate at maximum efficiency.
  • the primary cyclone chamber 10 effectively deals with the larger, more voluminous dirt by discharging it into a large collection container 14 which can be several times the capacity of the low efficiency cyclone first stage chamber of bagless vacuum cleaners now on the market since they have to capture the large dirt in the lower part of their cyclone chamber and provide sufficient space to accommodate dirt storage and cyclonic separation.
  • the dirt is discharged tangentially from the primary cyclone chamber into a separate container for dirt storage.
  • the size of the primary cyclone chamber is reduced and this provides improved efficiency.
  • Dirt storage can be increased as well, since a separate chamber is provided for the separated dirt, this chamber can be rather large which allows the chamber to be emptied less often.
  • the dirt collection chamber 14 is preferably removably attached to the cleaner 1 to allow it to be easily removed and emptied.
  • the secondary cyclone section 65 has high efficiency and includes a plurality of small diameter cyclone chambers 60 which are left to function in their optimum condition with comparatively clean air, i.e. air only including particles with a diameter of 50 microns.
  • the air can then be withdrawn centrally from each of the second stage high efficiency cyclones chambers 60 via the ducts 70 and exhausted, if desired, through exit duct 80 to HEPA filter 18 , if desired.
  • some, or most of this air may alternatively be returned to the vacuum pick up head 9 through the opening 13 to provide jet assisted suction at the pick up area ( FIG. 9 ).
  • the opening 13 is preferably positioned to discharge the returned air substantially parallel to the floor, creating an area of low pressure just above the floor due to the high velocity of the returned air. This area of low pressure (i.e. Bernoulli pressure) aids in suction at the pick up head 9 .
  • the return air is in turn sucked back into the vacuum 1 again where the cycle is repeated. In this manner, the air sucked into the cleaner 1 can be recycled to aid in further suction and separation.
  • the primary cyclone separation chamber 10 provided in the cleaner 1 of the present application preferably has a relatively small diameter (4 inches, for example) which is quite small when compared to that required when the dirt is being separated on the suction side of the vacuum fan, as in the prior art discussed above. This allows for a much more compact, lighter weight and lower manufacturing cost vacuum cleaner. Also, the configuration of the cleaner 1 ensures that the dirt is not captured at the bottom of the primary cyclone chamber, but is discharged tangentially into a bag or dirt compartment 14 separated from the cyclone chamber 10 .
  • the vacuum cleaner design of the present application also has many advantages over prior art vacuum cleaners that use disposable porous bags which must be purchased separately and require frequent replacement. These bag-type vacuums lose effectiveness as the filter bags becoming full and fine particles become trapped by the filter bag to degrade its permeability and cause a loss of suction. While vacuum cleaners using cyclonic separation chambers are known in the art and avoid the problems of replaceable bag cleaners discussed above, these cyclone separation vacuum cleaners are very large, since they must accommodate the larger separation chambers necessary to provide separation and dirt storage.
  • One of the important features of the vacuum cleaner described herein is to provide for open air flow and to separate the dirt from the air by intense centrifugal force cyclone action such that filtration is only a final back-up if necessary at all.
  • the vacuum cleaner 1 of the present application preferably includes a pick up head 9 with a power driven carpet brush 3 (See FIG. 4 ).
  • the suction fan and motor assembly 20 preferably includes an electric motor and impeller, impeller inlet and fan 6 with a tangential discharge outlet that is aligned with the tangential inlet 11 of the primary cyclone separation chamber 10 which has cylindrical walls.
  • the dirt collection chamber 14 may be embodied as a simple non-porous bag or a separate chamber and is connected to a tangential outlet 23 of the chamber 10 .
  • a back up filter 18 may be provided as well, if desired.
  • a secondary cyclone separator 65 may also be provided in the discharge flow path of the primary separator chamber 10 . This secondary separator 65 is preferably optimized to remove fine particles from the air.
  • FIG. 2 which is a top view looking down on the vacuum housing assembly 5 of the cleaner 1 of FIG. 1 , the air flow path from the dirt pick up head 9 through the suction fan and motor assembly 20 and into the primary cyclone dirt separator chamber 10 can be seen.
  • FIG. 3 shows a front view of the cleaner 1 of FIG. 1 .
  • FIG. 4 shows a cross sectional side view of the upright floor sweeper cleaner 1 of FIG. 1 showing the direct tangential close coupled connection between the suction motor and fan rotor assembly 20 and the tangential inlet 11 to the cyclone separator chamber 10 along with the brush 3 (add to FIG. 4 ).
  • the brush 3 may be driven by a belt connected to the fan 6 or motor shaft (not shown).
  • FIG. 5 shows a schematic type top view of the vacuum shown in FIG. 4 .
  • FIG. 6 shows a perspective schematic type view of the primary cyclone chamber 10 for use with the vacuum cleaner of FIG. 1 .
  • FIG. 6 illustrates the exit duct 16 which allows cleaned air to exit the chamber 10 .
  • FIG. 7 shows a schematic type front view of the primary cyclone separator chamber 10 with tangential inlet 11 and dirt outlet 23 and with the central air exit passage 16 with inlet 24 .
  • the baffle plate 12 separates the tangential dirt discharge area proximate the outlet 23 from the recirculation area of the chamber 10 .
  • FIG. 12 illustrates an alternative embodiment of the primary cyclone separation section 22 in which the center central air exit duct 16 include an inlet 24 , as illustrated in FIG. 7 covered by a perforated cylinder including a plurality of small diameter holes 25 (i.e. 0.076-0.2 inches) rather than being fully open.
  • the holes 25 provide noise isolation and prevent any large dirt or fluff from carpet being discharged from the chamber 10 during any periods of pressure fluctuation, i.e. momentary pressure fluctuations when the vacuum moves from a carpet to a bar floor.
  • the dirt-laden air enters tangential inlet 11 as shown by the airflow lines 11 a.
  • the dirt is moved to the outer walls of the chamber 10 by the centrifugal force resulting from the high velocity of the inlet dirty air and the relatively small diameter of the chamber 10 .
  • the dirt particles move down the chamber 10 and pass the baffle plate 12 to be discharged from the chamber 10 at high velocity out of tangential outlet 23 .
  • the outlet 23 is preferably connected to the collection chamber 14 , or to a bag to collect the dirt.
  • the lighter air that accompanies the dirt into the chamber 14 is recirculated back as is illustrated by the line 23 c of FIG. 12 and into the chamber, or swirl area 27 downstream of the baffle 12 and recirculated in this area.
  • the air flow exits the cyclone separator chamber through the holes 25 in the duct 16 . This exit air is very clean due to the high centrifugal force in the chamber 10 , which separates particles form the airflow. Only the clean air near the center of the chamber 10 is allowed to exit.
  • FIG. 13 shows a side view of the primary cyclone separator chamber 10 with an additional perforated liner duct, or insert, 17 inserted into the duct 16 to provide sound (noise) dampening.
  • the duct 17 is designed to provide a Helmholtz resonator effect due to its hole sizes and cavity spacing behind the liner walls to reduce the noise emitted from the cleaner 1 , for example.
  • FIG. 10a shows a conceptual perspective view of a canister type or shop vacuum cleaner 100 in accordance with another embodiment of the present application.
  • the cleaner 100 preferably includes a top cover and frame 102 on which the basic vacuum cleaner elements may be mounted, including, suction fan motor and fan assembly 120 , centrifugal separator 122 , and final filter 108 .
  • a vacuum hose (not shown) may be attached to the suction fan inlet 110 .
  • FIG. 11a illustrates cleaner 100 of FIG. 10a without the dirt collecting housing 114 such that the mounting of the basic components 120 , 122 , 118 / 108 can be seen as well as the tangential inlet 111 to the centrifugal separator 122 and the suction fan tangential discharge port 116 as well as the tangential dirt discharge port 23 of the centrifugal separator 122 .
  • the suction fan inlet 110 is shown connected to the inside top area of 120 of the primary dirt collection chamber 114 a where the inlet 110 b to the vacuum cleaner 100 b is moved to enter the primary dirt collection chamber 114 a.
  • This positioning allows nails or other large items of debris commonly cleaned using a shop vacuum to be collected before the air passes through the fan.
  • the vacuum 100 b is used to pick up water, for example, the majority of the water will be trapped in the main container 114 a before complete separation is achieved by the primary cyclone separation chamber.
  • the collector chamber preferably includes low pressure side 114 a and a fan discharge pressure side 114 b that collects dirt or water separated from the suction air and discharged from the separator 122 out tangential discharge outlet 123 into the chamber 114 b.
  • FIG. 10b represents a much improved shop vacuum (or wet pick-up shop vacuum) which typically only clean air with a washable sponge or cloth filter such that the discharged air is often very dusty. Similarly, when liquid is picked up, the discharge air tends to be very wet since the filter is saturated by water still in the air that is passing through the discharge opening.
  • FIG. 11b shows the under side of the vacuum top assembly of FIG. 10b with the container 114 removes.
  • the motor and suction fan inlet 110 is now relocated inside the vacuum cover 120 to provide suction by inlet 110 directly into the container portion 114 a.
  • FIG. 14a illustrates an alternate configuration of the vacuum cleaner 100 of FIG. 10a with a non-porous plastic or paper bag 86 attached to the cyclone chamber's tangential discharge 123 .
  • the throw away bag 86 is preferably held in place with a roll spring 85 which can be rolled over the bag opening to clamp it to the tangential dirt discharge duct.
  • FIG. 14b shows the vacuum cleaner 100 with the dirt bag 86 removed and the retention spring 85 rolled back to expose slot 87 which is preferably formed on the outlet 123 to accommodate the spring 85 to keep the bag 86 in place.
  • the shop vacuum cleaner of FIGS. 10b and 11b may also utilize a bag as well to collect discharge dirt, if desired.
  • the bag may be positioned in, or in place of the chamber 114 b, if desired
  • FIG. 15 is a partial sectional view of the HEPA type very small particle filter 18 that is shown on the upright floor sweeper vacuum cleaner 1 of FIG. 1 , or on the alternative embodiment of FIG. 22 , discussed below.
  • the filter 18 preferably receives air discharged from the secondary cyclone separator 65 in FIG. 1 , or to the air discharge duct of the primary or secondary separator sections of the embodiment of FIG. 22 .
  • the filter 18 provides for final air filtration if desired.
  • the filter 18 preferably includes a housing 84 and an inlet 82 into which the cleaner air from the primary and secondary cyclone separation sections 22 , 65 pass for final filtering.
  • FIG. 16 illustrates a compact, light weight cyclone (centrifugal) dirt separator, bagless re-circulated air and sound suppressed vacuum cleaner 200 in accordance with an embodiment of the present application.
  • the vacuum cleaner 200 preferably includes a suction fan drive motor 220 , fan 206 , a large dirt centrifugal separator section 222 connected to the suction fan inlet 217 and a large collection chamber 214 , where all of these components are mounted in the floor housing 201 . See also FIG. 17
  • a handle 205 is preferably pivotally attached to the housing 201 .
  • a secondary cyclone separator section 260 is preferably mounted on the handle 205 , which is at least partially hollow to allow air to flow from housing 201 to the separator 264 .
  • a second removable dirt collector 265 is provided with the secondary separator 264 which is for very fine dirt and need only be cleaned periodically.
  • a HEPA filter 284 may also be provide to provide additional final filtering, if desired, as shown in FIG. 22 .
  • FIG. 17 shows an internal perspective view of the housing 201 with a bottom cover removed such that the major components are visible.
  • the primary cyclone separator section 222 is mounted adjacent to the suction fan motor and housing 220 .
  • the fan 206 rotates to create suction and pull dirt and air from the pick up head area 209 through the tangential inlet 211 and into the cyclone chamber 219 of the separator 222 .
  • the dirt rotates in the chamber 210 at high velocity and moves to the inner surface of the outer walls of the chamber and past the baffle 212 into the discharge area 227 from which it is discharged through tangential outlet 223 into the removable large dirt collector or bag 214 shown in FIG. 16 .
  • a belt 218 is preferably connected to a shaft of the motor or fan and is used to rotate brush 215 in the pick up head area 209 to help lift dirt off the floor.
  • An exit duct 216 is positioned in the chamber 219 to allow the cleaned air to exit the chamber through the holes 225 formed in a wall therein.
  • the duct 216 is connected to the fan inlet at 217 .
  • Element 227 refers to the dirt swirl section, or collection section, of the chamber 219 which is downstream of the baffle 212 and includes the tangential dirt discharge outlet 223 for the dirt to be blown into the removable large dirt container 214 .
  • Another advantage of discharging the dirt from the cyclone chamber is that the large dirt collection chamber or bag can take any desired shape to maximize dirt volume storage efficiency.
  • the suction fan 206 air is discharged into the hollow handle mounting 204 with some or most of it being provided to the collection duct 270 for connection to a jet assist slot 271 (See FIG. 18 ) in the bottom cover 205 .
  • Jet assisted suction is discussed above with reference to the vacuum cleaner 1 of FIGS. 1-9 , for example.
  • the high velocity air produces a low-pressure area just above the carpet or floor due to the Bernoulli effect.
  • FIG. 18 shows a bottom view of the vacuum cleaner 200 of FIG. 17 with the bottom cover replaced.
  • a recirculation air jet assist slot 271 around the suction pick-up opening 209 is shown with the rotating floor brush 215 .
  • FIG. 19 illustrates a cross sectional view of the housing 201 illustrating how a portion of the cleaned air from the chamber 10 can be redirected to the jet assist slot 271 of the head area 209 while other air is directed up the hollow handle portion 204 to the secondary separator 265 .
  • FIG. 20 is a schematic view of the centrifugal dirt separator section 222 and suction fan 206 .
  • the exit air duct 216 of the chamber 210 is connected to the inlet of the fan 206 .
  • FIG. 20 also illustrates the relationship of the tangential inlet 211 of the chamber 210 and the tangential dirt outlet 223 as well as the openings 225 that are preferably formed to provide an inlet for the exit duct 216 to allow the cleaned air to escape chamber 222 .
  • the suction fan 206 is shown attached to the centrifugal separator exit duct 216 so as to provide noise isolation from the intake of the vacuum cleaner 200 near the suction head area 209
  • FIG. 21 is an improvement on the features illustrated in FIG. 20 .
  • a second insert 280 provided in the air exit duct 216 to provide Helmholtz dampening of sound. This absorbs the high velocity fan blade and high velocity air noise from coming back out the inlet 211 .
  • FIG. 22 illustrates the secondary cyclone separator 260 mounted on the handle 205 of the cleaner 200 .
  • the separator 264 is optimized for separating very small particles from the cleaned air provided from the primary separator 222 .
  • the separator chamber 264 thus includes a plurality of small diameter chambers 290 similar to the chambers 60 described above with reference to FIGS. 8a and 8b .
  • the chambers include small tangential inlets and tapered walls but are arrange around the handle 204 . Slots are provided in the handle 205 to correspond to these inlet slots.
  • the cup 265 is provided for dirt collection and is preferably removable. In one embodiment a disposable bag may be placed into the cup 265 to collect dirt.
  • FIG. 23 illustrates an alternative embodiment of a vacuum cleaner 300 where the primary cyclone separator 322 is mounted on hollow handle 308 and the larger dirt and much of the very small dirt is deposited into a non-porous bag or container 314 .
  • the container 314 may be made larger in this embodiment since it is not part of the floor assembly.
  • Secondary cyclone separation is provided in the separator 360 , which may also include a HEPA filter, if desired.
  • the first and second separators 322 , 360 are similar to those described above with reference to vacuum 200 .
  • FIG. 24 shows the application of the disclosed cyclone separator illustrated in FIGS. 6 and 12 , for example, in place of the cleanable filter 403 commonly used in central vacuum systems.
  • dirt is sucked into a removable container 414 as shown in FIG. 24 , so it can be discarded.
  • the air is typically filtered by a cloth bag or other cleanable filter (see element 403 , for example) which is dusty to clean and reduces performance of the system as it gets clogged with dirt and dust.
  • the central vacuum 410 has element 401 which represents a suction fan drive motor, and element 402 representing the suction fan while the cyclone separator is identified as element 413 which can be used to replace the filter 403 in the housing of a central vacuum cleaner 400 .
  • the inlet port 406 from the central home vacuum is connected to the house vacuum piping which is connected to the tangential inlet of the separator 413 .
  • a center air discharge duct similar to duct 16 of FIG. 6 is preferably connected to the suction fan inlet 402 to allow the suction fan to draw air at high velocity through the tangential inlet of the cyclone centrifugal separator 413 .
  • the separated dirt is discharged out tangential discharge 416 and drops into the container 414 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)

Abstract

A cyclonic separation device in accordance with an embodiment of the present application preferably includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the first cyclone chamber including, a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the first cyclone chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and on an opposite side of the baffle plate from the tangential inlet and a center exit duct mounted in the center of the cyclone chamber having an inlet opening positioned upstream from the baffle plate such the centrifuged fluid without particles flows into the center exit duct and out of the cyclone chamber.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a continuation of U.S. nonprovisional application Ser. No. 12/074,438 filed Mar. 8, 2008 entitled CENTRIFUGAL DIRT SEPARATION CONFIGURATIONS FOR HOUSEHOLD-TYPE AND SHOP-TYPE VACUUM CLEANERS which claims benefit of and priority to U.S. Provisional Patent Application Ser. No. 60/892,723 filed Mar. 2, 2007 entitled CENTRIFUGAL DIRT SEPARATION CONFIGURATIONS FOR HOUSEHOLD-TYPE AND SHOP-TYPE VACUUM CLEANERS, the entire contents of which are hereby incorporated by reference herein.
BACKGROUND
1. Field of the Disclosure
The present application relates to an apparatus for separating dirt or dust particles from an air flow by cyclonic means. The application relates particularly, but not exclusively, to a cyclonic dust separation apparatus for use in a vacuum cleaner.
2. Related Art
Cyclone dust separation devices typically include a frustoconical (truncated cone) cyclone having a tangential air inlet at the one end having a large diameter and a cone opening leading to a dirt or dust collection area at the other end which has a smaller diameter.
There are numerous patents describing a variety of bagless vacuum cleaners now on the market by manufacturers such as Dyson, Hoover, Bissell; i.e. U.S. Pat. Nos. 5,858,038; 5,062,870; 5,090,976; 5,145,499; 6,261,330 and 5,853, 440; English Patent Pub. No. GB727137; and French Patent Pub. No. FR1077243.
U.S. Pat. No. 6,261,330 discloses a device including a fan for causing fluid to flow through the cyclone separator, the cyclone separator having an inlet and an interior wall having a frusto-conical portion tapering away from the inlet, wherein the fan is positioned in the inlet to the cyclone separator chamber on the same axis thereof, such that fluid passing through the fan is accelerated towards the interior wall, and thereby, given sufficient tangential velocity to cause cyclonic separation of particles from the fluid flow within the cyclonic separator chamber. The fan motor is located on the centerline of the cyclone separator chamber, and thus, adds to the size of the cyclone separator chamber.
In U.S. Pat. No. 6,261,330, the inlet port arrangement and the concentric exit port connectors to the cyclone separator are not optimum. The cyclone chamber depends on gravity to keep the dirt in the bottom of the collection chamber, thus requiring the suggested alternate configuration in which the motor is connected to the fan by a long shaft that extends through the cyclone chamber to the fan at the top of the chamber. This position is not ideal for providing suction to lift dirt from the floor. The patent contends that this is an advantageous design because it lowers the center of gravity of the device as a whole when compared to the embodiment shown with the motor at the top of the vertical cyclone separation chamber.
Since many standard vacuum cleaner motors now run at very high RPM's (22,000 RPM, for example) they provide good airflow and vacuum performance with reduced weight. Having a long shaft through the cyclone separator chamber, however, as suggested by the referenced patent, would not be ideal since shaft critical speed vibration problems are likely to result, thus preventing any weight reduction options to improve the desirability of the vacuum cleaner for the public use.
All of the cyclonic separator type vacuum cleaners now on the market have their cyclone separator chamber on the suction side of the fan so that they are driven by the air flow that is being sucked through them. This has the advantage of only clean air being pulled through the fan impeller, but provides much less velocity and energy than would be available by placing the cyclone separation chamber on the discharge side of the vacuum fan.
Accordingly, it would be desirable to provide a cyclonic dust separation device, preferably suitable for use in a home vacuum cleaner that avoids the problems discussed above.
SUMMARY
It is an object of the present invention to provide an apparatus for separating particles from a fluid flow having a cyclone separator which is efficient, compact, lightweight, and easy to service and maintain.
A cyclonic separation device in accordance with an embodiment of the present application preferably includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the first cyclone chamber including, a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the first cyclone chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and on an opposite side of the baffle plate from the tangential inlet and a center exit duct mounted in the center of the cyclone chamber having an inlet opening positioned upstream from the baffle plate such the centrifuged fluid without particles flows into the center exit duct and out of the cyclone chamber.
The cyclonic separation device of the present application may be used in a variety of applications, including, but limited to use in centrifugal separation type vacuum cleaners.
A vacuum cleaner in accordance with an embodiment of the present invention preferably includes a handle and a floor housing to which the handle is pivotally connected. The floor housing preferably includes a suction fan motor, a suction fan driven by the motor and including a plurality of fan blades driven at a high velocity by the suction fan motor to suck a fluid from a first side of the fan to the second side of the fan, a pick up head positioned adjacent to a floor and in fluid communication with the suction fan and a cyclonic separator device. The cyclonic separator device includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the first cyclone chamber including a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the first cyclone chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and on an opposite side of the baffle plate from the tangential inlet; and a center exit duct mounted in the center of the first cyclone chamber having an inlet opening positioned upstream from the baffle plate such the centrifuged fluid without particles flows into the center exit duct and out of the first cyclone chamber, wherein the pick up head and suction fan are connected in fluid communication with the first cyclone chamber such that fluid flows from the pick up head through the tangential inlet into the first cyclone chamber and rotates therein at high velocity such that particles in the fluid are forced out to the inner surface of an outer wall of the first cyclone chamber and beyond the baffle plate to be discharged through the dirt discharge outlet.
A vacuum cleaner in accordance with another embodiment of the present invention preferably includes a handle and a floor housing to which the handle is pivotally attached, The floor housing preferably includes a suction fan motor, a suction fan, driven by the motor, a first cyclone separator connected to an inlet of the suction fan. The first cyclone separator preferably includes a first cyclone chamber having a cylindrical shape with a predetermined diameter, the cyclone chamber including a tangential inlet positioned on a first longitudinal end of the first cyclone chamber, a baffle plate positioned in the chamber a predetermined distance from the tangential inlet, a tangential dirt outlet positioned on a second end of the cyclone chamber, opposite the inlet and downstream of the baffle plate, a center exit duct mounted in the center of the cyclone chamber having an inlet opening positioned downstream from the baffle and in fluid communication with the suction fan inlet such that rotation of the suction fan draws fluid into the first cyclone chamber to rotate at high velocity forcing particles in the fluid past the baffle plate and out of the tangential dirt outlet and a removable dirt collector in fluid communication with the tangential dirt outlet and structured to store the particles discharged from the tangential dirt outlet.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings
BRIEF DESCRIPTION OF THE DRAWING(S)
FIG. 1 illustrates an upright floor sweeper vacuum cleaner in accordance with an embodiment of the present application
FIG. 2 shows a top view of the vacuum cleaner described for FIG. 1.
FIG. 3 shows a front view of the conceptual configuration of FIG. 1.
FIG. 4 shows a cross sectional side view of the upright floor sweeper of FIG. 1.
FIG. 5 shows a schematic type top view of the vacuum shown in FIG. 4.
FIG. 6 shows a perspective schematic type view of a basic pressure driven cyclone separator for use with the vacuum cleaner of FIG. 1.
FIG. 7 shows a schematic type side view of a basic pressure driven compact cyclone separator for use with the vacuum cleaner of FIG. 1.
FIG. 8a shows a partial cross sectional perspective flow drawing of a bank of small diameter cyclone separators for a secondary separator for use with the vacuum cleaner of FIG. 1.
FIG. 8b is a top view schematic of FIG. 8a.
FIG. 9 shows a cross section of a floor sweeper upright type vacuum including the secondary separator of FIG. 8.
FIG. 10a illustrates an alternative embodiment of a vacuum cleaner in accordance with the present invention.
FIG. 10b illustrates another alternative embodiment of a vacuum cleaner in accordance with the present invention.
FIG. 11a shows the vacuum cleaner of FIG. 10a with a bottom dirt collector removed.
FIG. 11b shows the vacuum cleaner of FIG. 10b with a bottom dirt collector removed.
FIG. 12 shows an alternative embodiment of a primary cyclone separator of the vacuum cleaner of FIG. 1.
FIG. 13 shows a side view of an embodiment of a primary cyclone separator for the vacuum cleaner of FIG. 1.
FIG. 14a shows an alternate configuration of the vacuum cleaner of FIG. 10.
FIG. 14b shows the vacuum cleaner of FIG. 14a with the dirt bag removed and the retention spring rolled back.
FIG. 15 is an exemplary illustration of a HEPA type very small particle filter for use with the vacuum cleaner of the present application.
FIG. 16 illustrates another exemplary embodiment of a vacuum cleaner in accordance with the present application.
FIG. 17 shows a bottom view of the vacuum cleaner of FIG. 16 without a bottom cover.
FIG. 18 shows an external view of the bottom of the vacuum cleaner of FIG. 17 with the bottom cover in place.
FIG. 19 shows cross sectional side view of the vacuum cleaner of FIGS. 16-18.
FIG. 20 shows a more detailed view of the primary cyclone separator of the vacuum cleaner of FIGS. 16-19.
FIG. 21 shows an alternative embodiment of the primary cyclone separator of FIG. 20.
FIG. 22 shows a secondary cyclone separator suitable for use in the vacuum cleaner of FIG. 16.
FIG. 23 illustrates a vacuum cleaner in accordance with another embodiment of the present application.
FIG. 24 shows an illustration of a high performance cyclone separator of the concept illustrated in FIG. 6 applied to replace a cleanable filter cloth in a central vacuum system in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS
The theory of cyclone dirt or dust separation suggests that efficiency can be increased by increasing the tangential velocity of the air in the separation chamber. This would typically suggest providing a more powerful motor to create a higher rate of fluid flow. However, there are limits to the size and weight of motors that the market will tolerate for domestic vacuum chambers, since the size and weight of these chambers naturally influences the size and weight of the resulting domestic home vacuum cleaner as a whole. Increased complexity and size also add to the cost of the vacuum cleaner, which is also an important consideration in the competitive home vacuum cleaner market.
Thus, reducing the size of the motor required to provide a simple high efficiency domestic home vacuum cleaner or shop vacuum cleaner is very desirable. Smaller, lighter weight, more energy efficient vacuum cleaners provide significant advantages in such a competitive market. The vacuum cleaner of the present application allows for a reduction in motor size in that it preferably provides the dirt separation chamber on the output, or blowing, side of the suction fan, which allows the suction fan to impart more speed to the dirt laden air as it is provided to the separation chamber. Thus, higher speed air is provided in the separation chamber without the need to use a larger motor. In addition, the diameter of the separation chamber may also be reduced, which also aids in maintaining high velocity air flow therein and provides better separation while reducing overall vacuum size. These features are described in further detail below.
In the vacuum cleaner 1 (See FIG. 1), for example, of the present application, the design of the fan motor and fan can be separately optimized while maintaining proper motor cooling. Further, the vacuum cleaner of the present application is preferably buildable using existing highly developed domestic vacuum cleaner motors now in production. In addition, the incoming flow to the fan impeller does not have to be compromised and the cyclonic separating chamber can be optimized separately without the need to compromise its design for motor or fan considerations, as is the case in the prior art discussed above.
The design of the present application minimizes the opportunities for flow passage blockage that is a problem in other cyclone dirt separation vacuum cleaners now on the market since all of the air flow elements are preferably close connected with minimum duct work and high velocity air. This reduces the opportunity for velocity and pressure drops as air flows through the cleaner.
FIG. 1 illustrates a conceptual perspective view of an upright type vacuum floor cleaner 1 in accordance with an embodiment of the present application. The cleaner 1 includes a handle assembly 4 which can be pivotally mounted to the side of the vacuum cleaner housing assembly 5 which is partially carried by rear wheel assembly 7 and whose pick up head 9 rides in close proximity to a carpet or floor. The head area 9 preferably includes small rollers (not shown) mounted under the housing 5 as well.
The vacuum cleaner suction fan and motor assembly 20 generates suction that is connected to the head area 9 of the vacuum cleaner 1. The suction lifts dirt and dust from the floor and into the vacuum 1. This dirt-laden air then passes through the motor driven fan 6 (See FIG. 4) and is accelerated by the high velocity of the fan rotor blades 8. In a preferred embodiment, the velocity of the blades 8 may be almost the speed of sound (1100 ft/sec) such that the air and dirt is thrown through the tangential input connecting duct 11 to the primary cyclone separator 22. The primary cyclone separator 22 preferably includes a relatively small diameter cyclone chamber 10 (preferably approximately 4 inches in diameter) where the dirt is moved against the outside walls by the very high centrifugal forces and passes the baffled plate 12 (See FIGS. 6 and 7) to be discharged tangentially from the chamber 10 through tangential dirt outlet 23 into a dirt collection bag or container 14.
The dirt free air, however, moves towards the center of the cyclone chamber 10 and exits through a central duct 16 where it can then be finally filtered by filter 18, if desired, or run through a secondary cyclone separator 65 which preferably includes a group of small diameter cyclone chambers 60 which generate very high g-forces due to their smaller diameter.
It is preferred that the air velocity remain high and that the components of the cleaner 1 are closely coupled together to provide for minimum pressure drop between components and to maintain a very open flow design.
The secondary cyclone separator 65 is shown in more detail in FIGS. 8a and 8b, and is preferably embodied as a group of small diameter tangential entry chambers 60 on top of truncated cones 62 that taper to a decreased radius for increasing centrifugal force and including truncated opening 63 at the bottom thereof to provide for dirt discharge into a separate, very fine dirt collection chamber 64. This chamber 64 can also be separately cleaned less often than the larger dirt collection chamber 14. The dirt exit, or openings 63 of each of the small truncated cones 62 can have a reverse cone shape to spread the spinning dirt outwardly and allow more separation between the discarded dirt and the returning air circulation at this location. Air preferably enters the chambers 60 via the inlets 61
The primary, first, cyclone chamber 10 removes all of the larger dirt and a large part of the smaller dirt because of its high velocity, before the air is discharged into these small diameter chambers 60 through connecting duct openings which allow them to operate at maximum efficiency. Thus, the primary cyclone chamber 10 effectively deals with the larger, more voluminous dirt by discharging it into a large collection container 14 which can be several times the capacity of the low efficiency cyclone first stage chamber of bagless vacuum cleaners now on the market since they have to capture the large dirt in the lower part of their cyclone chamber and provide sufficient space to accommodate dirt storage and cyclonic separation. In contrast, in the cleaner 1, for example, of the present application, the dirt is discharged tangentially from the primary cyclone chamber into a separate container for dirt storage. Thus, the size of the primary cyclone chamber is reduced and this provides improved efficiency. Dirt storage can be increased as well, since a separate chamber is provided for the separated dirt, this chamber can be rather large which allows the chamber to be emptied less often. It is noted that the dirt collection chamber 14 is preferably removably attached to the cleaner 1 to allow it to be easily removed and emptied.
The secondary cyclone section 65 has high efficiency and includes a plurality of small diameter cyclone chambers 60 which are left to function in their optimum condition with comparatively clean air, i.e. air only including particles with a diameter of 50 microns.
The air can then be withdrawn centrally from each of the second stage high efficiency cyclones chambers 60 via the ducts 70 and exhausted, if desired, through exit duct 80 to HEPA filter 18, if desired. However some, or most of this air may alternatively be returned to the vacuum pick up head 9 through the opening 13 to provide jet assisted suction at the pick up area (FIG. 9). The opening 13 is preferably positioned to discharge the returned air substantially parallel to the floor, creating an area of low pressure just above the floor due to the high velocity of the returned air. This area of low pressure (i.e. Bernoulli pressure) aids in suction at the pick up head 9. The return air is in turn sucked back into the vacuum 1 again where the cycle is repeated. In this manner, the air sucked into the cleaner 1 can be recycled to aid in further suction and separation.
The primary cyclone separation chamber 10 provided in the cleaner 1 of the present application preferably has a relatively small diameter (4 inches, for example) which is quite small when compared to that required when the dirt is being separated on the suction side of the vacuum fan, as in the prior art discussed above. This allows for a much more compact, lighter weight and lower manufacturing cost vacuum cleaner. Also, the configuration of the cleaner 1 ensures that the dirt is not captured at the bottom of the primary cyclone chamber, but is discharged tangentially into a bag or dirt compartment 14 separated from the cyclone chamber 10. This, as previously stated, also allows for a reduction of the size of the cyclone separation chamber and more versatility to allow the cyclone dirt separation chamber to be used in a variety of vacuum cleaners configurations including shop vacuums or canister type vacuums, as well as carpet sweeper uprights such as that illustrated in FIG. 1.
The vacuum cleaner design of the present application also has many advantages over prior art vacuum cleaners that use disposable porous bags which must be purchased separately and require frequent replacement. These bag-type vacuums lose effectiveness as the filter bags becoming full and fine particles become trapped by the filter bag to degrade its permeability and cause a loss of suction. While vacuum cleaners using cyclonic separation chambers are known in the art and avoid the problems of replaceable bag cleaners discussed above, these cyclone separation vacuum cleaners are very large, since they must accommodate the larger separation chambers necessary to provide separation and dirt storage.
One of the important features of the vacuum cleaner described herein is to provide for open air flow and to separate the dirt from the air by intense centrifugal force cyclone action such that filtration is only a final back-up if necessary at all.
In a preferred embodiment, the vacuum cleaner 1 of the present application preferably includes a pick up head 9 with a power driven carpet brush 3 (See FIG. 4). The suction fan and motor assembly 20 preferably includes an electric motor and impeller, impeller inlet and fan 6 with a tangential discharge outlet that is aligned with the tangential inlet 11 of the primary cyclone separation chamber 10 which has cylindrical walls. The dirt collection chamber 14 may be embodied as a simple non-porous bag or a separate chamber and is connected to a tangential outlet 23 of the chamber 10. A back up filter 18 may be provided as well, if desired. A secondary cyclone separator 65 may also be provided in the discharge flow path of the primary separator chamber 10. This secondary separator 65 is preferably optimized to remove fine particles from the air.
Referring to FIG. 2 which is a top view looking down on the vacuum housing assembly 5 of the cleaner 1 of FIG. 1, the air flow path from the dirt pick up head 9 through the suction fan and motor assembly 20 and into the primary cyclone dirt separator chamber 10 can be seen.
FIG. 3 shows a front view of the cleaner 1 of FIG. 1. FIG. 4 shows a cross sectional side view of the upright floor sweeper cleaner 1 of FIG. 1 showing the direct tangential close coupled connection between the suction motor and fan rotor assembly 20 and the tangential inlet 11 to the cyclone separator chamber 10 along with the brush 3 (add to FIG. 4). The brush 3 may be driven by a belt connected to the fan 6 or motor shaft (not shown). FIG. 5 shows a schematic type top view of the vacuum shown in FIG. 4. FIG. 6 shows a perspective schematic type view of the primary cyclone chamber 10 for use with the vacuum cleaner of FIG. 1. In particular, FIG. 6 illustrates the exit duct 16 which allows cleaned air to exit the chamber 10. It is noted that the separation chamber 10 of FIG. 6, for example may be used in a variety of applications including various vacuum cleaner configurations with the same benefits. FIG. 7 shows a schematic type front view of the primary cyclone separator chamber 10 with tangential inlet 11 and dirt outlet 23 and with the central air exit passage 16 with inlet 24. The baffle plate 12 separates the tangential dirt discharge area proximate the outlet 23 from the recirculation area of the chamber 10.
FIG. 12 illustrates an alternative embodiment of the primary cyclone separation section 22 in which the center central air exit duct 16 include an inlet 24, as illustrated in FIG. 7 covered by a perforated cylinder including a plurality of small diameter holes 25 (i.e. 0.076-0.2 inches) rather than being fully open. The holes 25 provide noise isolation and prevent any large dirt or fluff from carpet being discharged from the chamber 10 during any periods of pressure fluctuation, i.e. momentary pressure fluctuations when the vacuum moves from a carpet to a bar floor.
In operation, the dirt-laden air enters tangential inlet 11 as shown by the airflow lines 11a. The dirt is moved to the outer walls of the chamber 10 by the centrifugal force resulting from the high velocity of the inlet dirty air and the relatively small diameter of the chamber 10. The centrifugal dirt separation force may be determined based on the following equation:
F=w/gv2/r
where “F” represent the centrifugal force, “w” represents the weight flow, g is a gravitational constant, “v” is the velocity of the air and “r” is the inside radius of the chamber 10. The dirt particles move down the chamber 10 and pass the baffle plate 12 to be discharged from the chamber 10 at high velocity out of tangential outlet 23. The outlet 23 is preferably connected to the collection chamber 14, or to a bag to collect the dirt. The lighter air that accompanies the dirt into the chamber 14 is recirculated back as is illustrated by the line 23c of FIG. 12 and into the chamber, or swirl area 27 downstream of the baffle 12 and recirculated in this area. The air flow exits the cyclone separator chamber through the holes 25 in the duct 16. This exit air is very clean due to the high centrifugal force in the chamber 10, which separates particles form the airflow. Only the clean air near the center of the chamber 10 is allowed to exit.
FIG. 13 shows a side view of the primary cyclone separator chamber 10 with an additional perforated liner duct, or insert, 17 inserted into the duct 16 to provide sound (noise) dampening. The duct 17 is designed to provide a Helmholtz resonator effect due to its hole sizes and cavity spacing behind the liner walls to reduce the noise emitted from the cleaner 1, for example.
FIG. 10a shows a conceptual perspective view of a canister type or shop vacuum cleaner 100 in accordance with another embodiment of the present application. The cleaner 100 preferably includes a top cover and frame 102 on which the basic vacuum cleaner elements may be mounted, including, suction fan motor and fan assembly 120, centrifugal separator 122, and final filter 108. A vacuum hose (not shown) may be attached to the suction fan inlet 110. Further, there is preferably a carrying handle 125 provided along with a lower dirt collecting housing 114.
FIG. 11a illustrates cleaner 100 of FIG. 10a without the dirt collecting housing 114 such that the mounting of the basic components 120, 122, 118/108 can be seen as well as the tangential inlet 111 to the centrifugal separator 122 and the suction fan tangential discharge port 116 as well as the tangential dirt discharge port 23 of the centrifugal separator 122.
In FIG. 10b, the suction fan inlet 110 is shown connected to the inside top area of 120 of the primary dirt collection chamber 114a where the inlet 110b to the vacuum cleaner 100b is moved to enter the primary dirt collection chamber 114a. This positioning allows nails or other large items of debris commonly cleaned using a shop vacuum to be collected before the air passes through the fan. In addition, if the vacuum 100b is used to pick up water, for example, the majority of the water will be trapped in the main container 114a before complete separation is achieved by the primary cyclone separation chamber. Thus, the collector chamber preferably includes low pressure side 114a and a fan discharge pressure side 114b that collects dirt or water separated from the suction air and discharged from the separator 122 out tangential discharge outlet 123 into the chamber 114b.
The design of FIG. 10b represents a much improved shop vacuum (or wet pick-up shop vacuum) which typically only clean air with a washable sponge or cloth filter such that the discharged air is often very dusty. Similarly, when liquid is picked up, the discharge air tends to be very wet since the filter is saturated by water still in the air that is passing through the discharge opening.
FIG. 11b shows the under side of the vacuum top assembly of FIG. 10b with the container 114 removes. The motor and suction fan inlet 110 is now relocated inside the vacuum cover 120 to provide suction by inlet 110 directly into the container portion 114a.
FIG. 14a illustrates an alternate configuration of the vacuum cleaner 100 of FIG. 10a with a non-porous plastic or paper bag 86 attached to the cyclone chamber's tangential discharge 123. The throw away bag 86 is preferably held in place with a roll spring 85 which can be rolled over the bag opening to clamp it to the tangential dirt discharge duct. FIG. 14b shows the vacuum cleaner 100 with the dirt bag 86 removed and the retention spring 85 rolled back to expose slot 87 which is preferably formed on the outlet 123 to accommodate the spring 85 to keep the bag 86 in place. The shop vacuum cleaner of FIGS. 10b and 11b may also utilize a bag as well to collect discharge dirt, if desired. The bag may be positioned in, or in place of the chamber 114b, if desired
FIG. 15 is a partial sectional view of the HEPA type very small particle filter 18 that is shown on the upright floor sweeper vacuum cleaner 1 of FIG. 1, or on the alternative embodiment of FIG. 22, discussed below. The filter 18 preferably receives air discharged from the secondary cyclone separator 65 in FIG. 1, or to the air discharge duct of the primary or secondary separator sections of the embodiment of FIG. 22. The filter 18 provides for final air filtration if desired. The filter 18 preferably includes a housing 84 and an inlet 82 into which the cleaner air from the primary and secondary cyclone separation sections 22, 65 pass for final filtering.
FIG. 16 illustrates a compact, light weight cyclone (centrifugal) dirt separator, bagless re-circulated air and sound suppressed vacuum cleaner 200 in accordance with an embodiment of the present application. The vacuum cleaner 200 preferably includes a suction fan drive motor 220, fan 206, a large dirt centrifugal separator section 222 connected to the suction fan inlet 217 and a large collection chamber 214, where all of these components are mounted in the floor housing 201. See also FIG. 17
A handle 205 is preferably pivotally attached to the housing 201. A secondary cyclone separator section 260 is preferably mounted on the handle 205, which is at least partially hollow to allow air to flow from housing 201 to the separator 264. A second removable dirt collector 265 is provided with the secondary separator 264 which is for very fine dirt and need only be cleaned periodically. In addition, a HEPA filter 284 may also be provide to provide additional final filtering, if desired, as shown in FIG. 22.
FIG. 17 shows an internal perspective view of the housing 201 with a bottom cover removed such that the major components are visible. As illustrated, the primary cyclone separator section 222 is mounted adjacent to the suction fan motor and housing 220. The fan 206 rotates to create suction and pull dirt and air from the pick up head area 209 through the tangential inlet 211 and into the cyclone chamber 219 of the separator 222. The dirt rotates in the chamber 210 at high velocity and moves to the inner surface of the outer walls of the chamber and past the baffle 212 into the discharge area 227 from which it is discharged through tangential outlet 223 into the removable large dirt collector or bag 214 shown in FIG. 16. A belt 218 is preferably connected to a shaft of the motor or fan and is used to rotate brush 215 in the pick up head area 209 to help lift dirt off the floor. An exit duct 216 is positioned in the chamber 219 to allow the cleaned air to exit the chamber through the holes 225 formed in a wall therein. The duct 216 is connected to the fan inlet at 217. Element 227 refers to the dirt swirl section, or collection section, of the chamber 219 which is downstream of the baffle 212 and includes the tangential dirt discharge outlet 223 for the dirt to be blown into the removable large dirt container 214. Another advantage of discharging the dirt from the cyclone chamber is that the large dirt collection chamber or bag can take any desired shape to maximize dirt volume storage efficiency.
The suction fan 206 air is discharged into the hollow handle mounting 204 with some or most of it being provided to the collection duct 270 for connection to a jet assist slot 271 (See FIG. 18) in the bottom cover 205. Jet assisted suction is discussed above with reference to the vacuum cleaner 1 of FIGS. 1-9, for example. Generally, the high velocity air produces a low-pressure area just above the carpet or floor due to the Bernoulli effect.
FIG. 18 shows a bottom view of the vacuum cleaner 200 of FIG. 17 with the bottom cover replaced. In addition, a recirculation air jet assist slot 271 around the suction pick-up opening 209 is shown with the rotating floor brush 215.
FIG. 19 illustrates a cross sectional view of the housing 201 illustrating how a portion of the cleaned air from the chamber 10 can be redirected to the jet assist slot 271 of the head area 209 while other air is directed up the hollow handle portion 204 to the secondary separator 265.
FIG. 20 is a schematic view of the centrifugal dirt separator section 222 and suction fan 206. As illustrated, the exit air duct 216 of the chamber 210 is connected to the inlet of the fan 206. FIG. 20 also illustrates the relationship of the tangential inlet 211 of the chamber 210 and the tangential dirt outlet 223 as well as the openings 225 that are preferably formed to provide an inlet for the exit duct 216 to allow the cleaned air to escape chamber 222. The suction fan 206 is shown attached to the centrifugal separator exit duct 216 so as to provide noise isolation from the intake of the vacuum cleaner 200 near the suction head area 209
FIG. 21 is an improvement on the features illustrated in FIG. 20. In this embodiment, a second insert 280 provided in the air exit duct 216 to provide Helmholtz dampening of sound. This absorbs the high velocity fan blade and high velocity air noise from coming back out the inlet 211.
FIG. 22 illustrates the secondary cyclone separator 260 mounted on the handle 205 of the cleaner 200. The separator 264 is optimized for separating very small particles from the cleaned air provided from the primary separator 222. The separator chamber 264 thus includes a plurality of small diameter chambers 290 similar to the chambers 60 described above with reference to FIGS. 8a and 8b. The chambers include small tangential inlets and tapered walls but are arrange around the handle 204. Slots are provided in the handle 205 to correspond to these inlet slots. The cup 265 is provided for dirt collection and is preferably removable. In one embodiment a disposable bag may be placed into the cup 265 to collect dirt.
FIG. 23 illustrates an alternative embodiment of a vacuum cleaner 300 where the primary cyclone separator 322 is mounted on hollow handle 308 and the larger dirt and much of the very small dirt is deposited into a non-porous bag or container 314. The container 314 may be made larger in this embodiment since it is not part of the floor assembly. Secondary cyclone separation is provided in the separator 360, which may also include a HEPA filter, if desired. The first and second separators 322, 360 however are similar to those described above with reference to vacuum 200.
FIG. 24 shows the application of the disclosed cyclone separator illustrated in FIGS. 6 and 12, for example, in place of the cleanable filter 403 commonly used in central vacuum systems. Generally, in conventional systems such as system 400 dirt is sucked into a removable container 414 as shown in FIG. 24, so it can be discarded. However, the air is typically filtered by a cloth bag or other cleanable filter (see element 403, for example) which is dusty to clean and reduces performance of the system as it gets clogged with dirt and dust.
In accordance with the present application, the central vacuum 410 has element 401 which represents a suction fan drive motor, and element 402 representing the suction fan while the cyclone separator is identified as element 413 which can be used to replace the filter 403 in the housing of a central vacuum cleaner 400. The inlet port 406 from the central home vacuum is connected to the house vacuum piping which is connected to the tangential inlet of the separator 413. A center air discharge duct similar to duct 16 of FIG. 6 is preferably connected to the suction fan inlet 402 to allow the suction fan to draw air at high velocity through the tangential inlet of the cyclone centrifugal separator 413. The separated dirt is discharged out tangential discharge 416 and drops into the container 414.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.

Claims (21)

What is claimed is:
1. A vacuum cleaner, comprising:
a handle; and
a floor housing to which the handle is pivotally connected, wherein
the floor housing further comprises:
a suction fan motor;
a suction fan driven by the suction fan motor and including a plurality of fan blades driven at a high velocity by the suction fan motor to suck a fluid from a first side of the fan to a second side of the fan;
a pick up head positioned adjacent to a floor and in fluid communication with the suction fan; and
a cyclonic separator device comprising:
a cyclone chamber having a cylindrical shape with a predetermined diameter, the cyclone chamber further comprising:
a tangential inlet duct positioned on a first longitudinal end of the cyclone chamber;
an opening formed in an outer wall of the cyclone chamber at a second end of the cyclone chamber, opposite the inlet through which particles exit the cyclone chamber; and
a center exit duct mounted substantially in the center of the cyclone chamber having an inlet opening positioned such the centrifuged fluid without particles flows into the center exit duct and out of the cyclone chamber, wherein
the pick up head and suction fan are connected in fluid communication with the cyclone chamber such that fluid flows from the pick up head through the tangential inlet into the cyclone chamber and rotates therein at high velocity such that particles in the fluid are forced out to the inner surface of the outer wall of the cyclone chamber and are discharged through the opening.
2. The vacuum cleaner of claim 1, wherein the inlet of the center exit duct includes a sleeve including a plurality of perforations formed therein, such that the perforations prevent particles from entering the inlet.
3. The vacuum cleaner of claim 1, further comprising a jet assist duct connected between the center exit duct and the pick up head and a jet assist nozzle positioned on the pick up head and connected to the jet assist duct to provide a stream of high velocity air in a direction parallel to the floor to be cleaned to aid in sucking particles off the floor and into the pick up head.
4. The vacuum cleaner of claim 3 further comprising a collection chamber in fluid communication with the opening and structured to store separated particles from the fluid.
5. The vacuum cleaner of claim 1, wherein the handle is pivotally connected to the floor housing.
6. A vacuum cleaner comprising:
a handle:
a floor housing to which the handle is connected;
the floor housing further comprises:
a suction fan including a plurality of fan blades driven at a high velocity to suck a fluid from a first side of the fan to a second side of the fan;
a pick up head positioned adjacent to a floor and in fluid communication with the suction fan; and
a cyclonic separator device positioned upstream of the suction fan and in fluid communication therewith,
the pick up head and suction fan are connected in fluid communication with the cyclonic separator device such that fluid flows from the pick up head into the cyclonic separator device where it rotates therein at high velocity such that particles in the fluid are forced outwardly to an inner surface of the cyclonic separator device and out a particle exit duct formed therein.
7. The vacuum cleaner of claim 6, wherein the cyclonic separator device further comprises:
an outer cylindrical wall including a tangential inlet duct positioned on a first longitudinal end thereof and in fluid communication with the pick up head and a tangential particle exit duct positioned on a second longitudinal end thereof, opposite the first longitudinal end;
an inner cylindrical wall positioned inside of and coaxially with the outer cylindrical wall, the inner cylindrical wall including:
an annular baffle element extending outward from the outer surface thereof and positioned on a second end thereof between the tangential inlet duct and tangential particle outlet duct; and
at least one opening formed in the inner cylindrical wall proximate to the annular baffle and between the tangential inlet duct and annular baffle through which fluid passes to exit the cyclonic separator device.
8. The vacuum cleaner of claim 7, wherein the tangential particle exit duct is positioned between the annular baffle and an end wall of the cyclonic separator device.
9. The vacuum cleaner of claim 7, further comprising a particle collection element in fluid communication with the tangential particle exit duct to collect particles.
10. The vacuum cleaner of claim 9, wherein the particle collection element is a nonporous bag.
11. The vacuum cleaner of claim 7 wherein the inner cylindrical wall defines a central exit tube in fluid communication with the suction fan through which fluid exits the cyclonic separator device.
12. The vacuum cleaner of claim 7, wherein the annular baffle is axially spaced from the tangential inlet duct such that the annular baffle directs fluid into the at least one opening formed in the inner cylindrical wall.
13. The vacuum cleaner of claim 6, further comprising a second cyclonic separation device in fluid communication with the suction fan and positioned downstream thereof.
14. The vacuum cleaner of claim 13, wherein a lower portion of the handle is hollow and provides fluid communication between the suction fan and the second cyclonic separation device.
15. The vacuum cleaner of claim 13, wherein the second cyclonic separation device comprises a plurality of small diameter conical chambers positioned around the handle and extending substantially perpendicular to a direction of fluid flow, each small diameter conical chamber further comprising a small tangential inlet structured to allow a portion of the fluid to enter each of the small cyclonic chambers, such that the fluid rotates within the small diameter conical chambers to separate out any addition fine particles in the fluid.
16. The vacuum cleaner of claim 15, wherein each of the small diameter conical chambers further comprises an outlet port structured to disperse the fine particles separated from the liquid.
17. The vacuum cleaner of claim 16, further comprising a second particle collection chamber in fluid communication with the outlet port of each of the small diameter conical chambers and structured to collect dispersed fine particles from the fluid that is discharged from the outlet port.
18. The vacuum cleaner of claim 15, wherein each of the small diameter conical chambers includes a duct structured to allow fluid to exit out of the second cyclonic separation device.
19. The vacuum cleaner of claim 18 further comprising a filter positioned between the exits of the second cyclonic separator device and operable to provide additional filtering to remove any additional particles from the fluid leaving the second cyclonic separating device.
20. The vacuum cleaner of claim 6, further comprising a jet assist duct connected between the cyclonic separation device and the pick up head and a jet assist nozzle positioned on the pick up head and connected to the jet assist duct to provide a stream of high velocity air in a direction parallel to the floor to be cleaned to aid in sucking particles off the floor and add momentum to help carry dirt particles into the pick up head.
21. A vacuum cleaner comprising:
a hollow handle;
a floor housing to which the handle is attached, the floor housing further comprising:
a suction fan motor;
a suction fan, driven by the suction fan motor;
a first cyclone separator connected to an inlet of the suction fan; wherein
the first cyclone separator including:
a cyclone chamber having a cylindrical shape with a predetermined diameter, the cyclone chamber further comprising:
a tangential inlet positioned on a first longitudinal end of the cyclone chamber;
a baffle plate positioned in the cyclone chamber a predetermined distance from the tangential inlet;
a tangential dirt outlet duct positioned on a second end of the cyclone chamber, opposite the inlet and downstream of the baffle plate, through which dirt particles exit the cyclone chamber; and
a center exit duct mounted substantially in a center of the cyclone chamber having an inlet opening positioned downstream from the baffle and in fluid communication with the suction fan inlet such that rotation of the suction fan draws fluid into the cyclone chamber to rotate at high velocity forcing dirt particles in the fluid past the baffle plate and out of the tangential dirt outlet duct;
a removable dirt collector in fluid communication with the tangential dirt outlet duct and structured to store the particles discharged from the tangential dirt outlet duct; and
a secondary cyclone separator mounted on the hollow handle in fluid communication with the center exit duct and operable to separate any remaining dirt particles from the fluid provided from the center exit duct.
US15/147,518 2007-03-02 2016-05-05 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners Expired - Fee Related USRE48094E1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/147,518 USRE48094E1 (en) 2007-03-02 2016-05-05 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US15/842,289 USRE48116E1 (en) 2007-03-02 2017-12-14 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US89272307P 2007-03-02 2007-03-02
US12/074,438 US7996957B2 (en) 2007-03-02 2008-03-03 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US13/209,867 US9119511B2 (en) 2007-03-02 2011-08-15 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US15/147,518 USRE48094E1 (en) 2007-03-02 2016-05-05 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/209,867 Reissue US9119511B2 (en) 2007-03-02 2011-08-15 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/209,867 Division US9119511B2 (en) 2007-03-02 2011-08-15 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Publications (1)

Publication Number Publication Date
USRE48094E1 true USRE48094E1 (en) 2020-07-14

Family

ID=39732057

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/074,438 Active 2029-12-04 US7996957B2 (en) 2007-03-02 2008-03-03 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US15/147,518 Expired - Fee Related USRE48094E1 (en) 2007-03-02 2016-05-05 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US15/842,289 Expired - Fee Related USRE48116E1 (en) 2007-03-02 2017-12-14 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/074,438 Active 2029-12-04 US7996957B2 (en) 2007-03-02 2008-03-03 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/842,289 Expired - Fee Related USRE48116E1 (en) 2007-03-02 2017-12-14 Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Country Status (2)

Country Link
US (3) US7996957B2 (en)
WO (1) WO2008109081A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119511B2 (en) 2007-03-02 2015-09-01 Carl L. C. Kah, Jr. Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
WO2008109081A1 (en) 2007-03-02 2008-09-12 Kah Carl L C Jr Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US7979957B2 (en) * 2008-11-04 2011-07-19 Meyer Gretchen A Apparatus for collecting lightweight packing particulates
WO2010102400A1 (en) * 2009-03-11 2010-09-16 G.B.D. Corp. Inlet for a vacuum cleaner
US9675220B2 (en) * 2011-06-10 2017-06-13 Carl L. C. Kah, Jr. Wet/dry, non-porous bag/bagless vacuum assembly with steam and variable speed settable vacuum motor control with no loss of suction
EP2750574B1 (en) 2011-12-19 2017-02-22 Koninklijke Philips N.V. Cyclone vacuum cleaner and cyclone separation device
WO2014011980A1 (en) 2012-07-12 2014-01-16 Trane International Inc. Methods and apparatuses to moderate an airflow
US10631697B2 (en) 2014-02-14 2020-04-28 Techtronic Industries Co. Ltd. Separator configuration
DE102014105756A1 (en) * 2014-04-24 2015-10-29 Miele & Cie. Kg Floor care device with an exhaust air return
US10117551B2 (en) 2014-10-22 2018-11-06 Techtronic Industries Co. Ltd. Handheld vacuum cleaner
CN110123203A (en) 2014-10-22 2019-08-16 创科实业有限公司 Vacuum cleaner with cyclone separator
CN107205603B (en) 2014-10-22 2020-10-13 创科实业有限公司 Vacuum cleaner with cyclone separator
US9901229B2 (en) 2014-12-17 2018-02-27 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9717383B2 (en) 2014-12-17 2017-08-01 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US10357136B2 (en) 2014-12-17 2019-07-23 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9883781B2 (en) 2014-12-17 2018-02-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US11202544B2 (en) 2014-12-17 2021-12-21 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775481B2 (en) 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9668630B2 (en) 2014-12-17 2017-06-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9545180B2 (en) 2014-12-17 2017-01-17 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9295363B1 (en) 2014-12-17 2016-03-29 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775479B2 (en) 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9668624B2 (en) 2014-12-17 2017-06-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775480B2 (en) 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9795264B2 (en) 2014-12-17 2017-10-24 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US10022027B2 (en) 2014-12-17 2018-07-17 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
CA2973369C (en) 2015-01-26 2020-06-30 Hayward Industries, Inc. Swimming pool cleaner with hydrocyclonic particle separator and/or six-roller drive system
US9885196B2 (en) 2015-01-26 2018-02-06 Hayward Industries, Inc. Pool cleaner power coupling
KR101684796B1 (en) 2015-08-18 2016-12-08 엘지전자 주식회사 Suction unit
EP3365040A4 (en) 2015-10-19 2019-06-12 CONMED Corporation Liquid-gas separator
CN108463151B (en) 2015-11-10 2021-07-23 创科实业有限公司 Hand-held vacuum cleaner
US9885194B1 (en) 2017-05-11 2018-02-06 Hayward Industries, Inc. Pool cleaner impeller subassembly
US9896858B1 (en) 2017-05-11 2018-02-20 Hayward Industries, Inc. Hydrocyclonic pool cleaner
US10156083B2 (en) 2017-05-11 2018-12-18 Hayward Industries, Inc. Pool cleaner power coupling
US10646885B2 (en) * 2017-06-28 2020-05-12 Eteros Technologies Inc. Centrifugal gas separator
US11219906B2 (en) 2019-01-23 2022-01-11 Omachron Intellectual Property Inc. Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same
US11980334B2 (en) 2017-09-15 2024-05-14 Omachron Intellectual Property Inc. Surface cleaning apparatus
EP3488751B1 (en) * 2017-11-22 2023-06-07 Guido Valentini Vacuum cleaner
CN209404633U (en) * 2018-06-01 2019-09-20 天佑电器(苏州)有限公司 Ground brush assemblies and dust catcher comprising it
US11213832B2 (en) * 2019-01-23 2022-01-04 Omachron Intellectual Property Inc. Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same
US11129510B2 (en) * 2019-01-23 2021-09-28 Omachron Intellectual Property Inc. Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same
US11135602B2 (en) * 2019-01-23 2021-10-05 Omachron Intellectual Property Inc. Surface cleaning apparatus, cyclonic air treatment member and surface cleaning apparatus including the same
CN111265147A (en) * 2020-03-27 2020-06-12 爱源(厦门)电子有限公司 Multi-cone cyclone separator and dust collecting device comprising same
CN114191922A (en) * 2021-12-17 2022-03-18 天长市兴宇交通装备科技有限公司 CNC machining center deoiling fog purifier

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261330B1 (en) 1996-11-29 2001-07-17 Notetry Limited Apparatus for separating particles from a fluid flow
US20020029436A1 (en) * 2000-01-14 2002-03-14 White Consolidated Industries, Inc. Upright vacuum cleaner with cyclonic air path
US6398834B2 (en) 2000-07-26 2002-06-04 Samsung Kwangju Electronics Co., Ltd. Cyclone type dust collecting apparatus for a vacuum cleaner
US6470597B1 (en) 1998-07-01 2002-10-29 Institute Of Paper Science And Technology, Inc. Process and apparatus for removing water from materials using oscillatory flow-reversing gaseous media
US6640385B2 (en) 2001-01-10 2003-11-04 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
US6662403B2 (en) 2000-11-06 2003-12-16 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
US6679930B1 (en) * 1999-04-23 2004-01-20 Lg Electronics Inc. Device for reducing pressure loss of cyclone dust collector
US6746500B1 (en) 2000-02-17 2004-06-08 Lg Electronics Inc. Cyclone dust collector
US20040177472A1 (en) 2003-03-10 2004-09-16 Lg Electronics Inc. Dust collecting unit of vacuum cleaner
US6840972B1 (en) 2000-02-19 2005-01-11 Lg Electronics Inc. Multi cyclone vacuum cleaner
US20050198771A1 (en) * 2004-03-11 2005-09-15 Lg Electronics Inc. Vacuum cleaner
US20060037479A1 (en) 2004-08-23 2006-02-23 Samsung Gwangju Electronics Co., Ltd. Cyclone separating apparatus and a vacuum cleaner having the same
US20060042038A1 (en) * 2004-08-26 2006-03-02 Adrian Christopher Arnold Compact cyclonic separation device
US20060137304A1 (en) * 2004-12-29 2006-06-29 Lg Electronics, Inc. Dust collection assembly of vacuum cleaner
US20060150588A1 (en) * 2002-12-03 2006-07-13 Ivarsson Bengt Ivar A Cyclonic separators for suction cleaners
US20060230718A1 (en) * 2005-03-29 2006-10-19 Samsung Gwangju Electronics Co., Ltd. Dust-separating apparatus for vacuum cleaner
US20070119129A1 (en) * 2005-10-28 2007-05-31 Samsung Gwangju Electronics Co., Ltd. Dust collecting apparatus of vacuum cleaner
US20070143953A1 (en) * 2005-12-10 2007-06-28 Hwang Man T Vacuum cleaner
US20070157419A1 (en) * 2006-01-09 2007-07-12 The Scott Fetzer Company Vacuum cleaner with air powered tool
US20070289267A1 (en) * 2006-06-16 2007-12-20 Royal Appliance Mfg. Co. Separately opening dust containers
US20080196745A1 (en) * 2006-12-12 2008-08-21 G.B.D. Corp. Surface cleaning apparatus with liner bag
US20080209667A1 (en) * 2001-05-03 2008-09-04 Allen Donavan J Air Recirculating Surface Cleaning Device
US20080209669A1 (en) 2007-03-02 2008-09-04 Kah Carl L C Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3238557A (en) * 1963-11-12 1966-03-08 Berry W Foster Vortex pickup device
US6158082A (en) * 1998-03-10 2000-12-12 The Toro Company Portable blower with blower tube noise reduction
US6782585B1 (en) * 1999-01-08 2004-08-31 Fantom Technologies Inc. Upright vacuum cleaner with cyclonic air flow
FR2808988B1 (en) * 2000-05-16 2002-07-19 Seb Sa WASTE COLLECTOR FOR VACUUM CLEANER
GB0220277D0 (en) * 2002-08-31 2002-10-09 North John H Improvements in and relating to particle separation apparatus
US7520997B2 (en) * 2004-09-04 2009-04-21 Antoun Gregory S Separation devices, systems and methods for separation of particulates from liquid
US9717383B2 (en) * 2014-12-17 2017-08-01 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775479B2 (en) * 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9668624B2 (en) * 2014-12-17 2017-06-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775480B2 (en) * 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9545180B2 (en) * 2014-12-17 2017-01-17 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9775481B2 (en) * 2014-12-17 2017-10-03 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9795264B2 (en) * 2014-12-17 2017-10-24 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9883781B2 (en) * 2014-12-17 2018-02-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus
US9668630B2 (en) * 2014-12-17 2017-06-06 Omachron Intellectual Property Inc. All in the head surface cleaning apparatus

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261330B1 (en) 1996-11-29 2001-07-17 Notetry Limited Apparatus for separating particles from a fluid flow
US6470597B1 (en) 1998-07-01 2002-10-29 Institute Of Paper Science And Technology, Inc. Process and apparatus for removing water from materials using oscillatory flow-reversing gaseous media
US6679930B1 (en) * 1999-04-23 2004-01-20 Lg Electronics Inc. Device for reducing pressure loss of cyclone dust collector
US20020029436A1 (en) * 2000-01-14 2002-03-14 White Consolidated Industries, Inc. Upright vacuum cleaner with cyclonic air path
US6746500B1 (en) 2000-02-17 2004-06-08 Lg Electronics Inc. Cyclone dust collector
US6840972B1 (en) 2000-02-19 2005-01-11 Lg Electronics Inc. Multi cyclone vacuum cleaner
US6398834B2 (en) 2000-07-26 2002-06-04 Samsung Kwangju Electronics Co., Ltd. Cyclone type dust collecting apparatus for a vacuum cleaner
US6662403B2 (en) 2000-11-06 2003-12-16 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
US6640385B2 (en) 2001-01-10 2003-11-04 Samsung Kwangju Electronics Co., Ltd. Cyclone dust collecting apparatus for a vacuum cleaner
US20080209667A1 (en) * 2001-05-03 2008-09-04 Allen Donavan J Air Recirculating Surface Cleaning Device
US20060150588A1 (en) * 2002-12-03 2006-07-13 Ivarsson Bengt Ivar A Cyclonic separators for suction cleaners
US20040177472A1 (en) 2003-03-10 2004-09-16 Lg Electronics Inc. Dust collecting unit of vacuum cleaner
US20050198771A1 (en) * 2004-03-11 2005-09-15 Lg Electronics Inc. Vacuum cleaner
US20060037479A1 (en) 2004-08-23 2006-02-23 Samsung Gwangju Electronics Co., Ltd. Cyclone separating apparatus and a vacuum cleaner having the same
US20060042038A1 (en) * 2004-08-26 2006-03-02 Adrian Christopher Arnold Compact cyclonic separation device
US20060137304A1 (en) * 2004-12-29 2006-06-29 Lg Electronics, Inc. Dust collection assembly of vacuum cleaner
US20060230718A1 (en) * 2005-03-29 2006-10-19 Samsung Gwangju Electronics Co., Ltd. Dust-separating apparatus for vacuum cleaner
US20070119129A1 (en) * 2005-10-28 2007-05-31 Samsung Gwangju Electronics Co., Ltd. Dust collecting apparatus of vacuum cleaner
US20070143953A1 (en) * 2005-12-10 2007-06-28 Hwang Man T Vacuum cleaner
US20070157419A1 (en) * 2006-01-09 2007-07-12 The Scott Fetzer Company Vacuum cleaner with air powered tool
US20070289267A1 (en) * 2006-06-16 2007-12-20 Royal Appliance Mfg. Co. Separately opening dust containers
US20080196745A1 (en) * 2006-12-12 2008-08-21 G.B.D. Corp. Surface cleaning apparatus with liner bag
US20080209669A1 (en) 2007-03-02 2008-09-04 Kah Carl L C Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US7996957B2 (en) * 2007-03-02 2011-08-16 Kah Jr Carl L C Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report, dated Jun. 11, 2012.

Also Published As

Publication number Publication date
WO2008109081A1 (en) 2008-09-12
USRE48116E1 (en) 2020-07-28
US7996957B2 (en) 2011-08-16
US20080209669A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
USRE48116E1 (en) Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US9119511B2 (en) Centrifugal dirt separation configurations for household-type and shop-type vacuum cleaners
US9681787B2 (en) Dual stage cyclone vacuum cleaner
US7354468B2 (en) Compact cyclonic separation device
US8209815B2 (en) Dual stage cyclonic dust collector
US7565853B2 (en) Compact cyclonic separation device
CA1182613A (en) Vacuum cleaning appliance having a plurality of cyclone separators of different efficiencies
JP4425020B2 (en) Cyclone separation device and vacuum cleaner provided with the same
US8726461B2 (en) Dual stage cyclonic vacuum cleaner
US7329295B2 (en) Light weight bagless vacuum cleaner
US20100242221A1 (en) Separating apparatus
US20080289140A1 (en) Cyclonic Separating Apparatus
WO2007149254A2 (en) Separately opening dust containers of a domestic cyclonic suction cleaner
PL190193B1 (en) Vacuum cleaner with tangential separation of solid particles
KR20080019232A (en) Dirt and dust cyclonic separating apparatus
WO2006026414A2 (en) Cyclonic separation device for a vacuum cleaner
GB2406067A (en) Cyclonic separating apparatus
RU2484756C2 (en) Dust receptacle and vacuum cleaner
WO2009073888A1 (en) Dual stage cyclonic dust collector
KR102013613B1 (en) Vacuum cleaner
KR100782181B1 (en) A dust collector for vacuum cleaner
GB2367484A (en) Vacuum cleaner with two-stage separation
CN101999867A (en) Cyclone separator of dust collector
JP2004215760A (en) Vacuum cleaner
CN215959591U (en) Vacuum cleaner with a vacuum cleaner head

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY