USRE34500E - Process for the production of aromatic polyesters - Google Patents

Process for the production of aromatic polyesters Download PDF

Info

Publication number
USRE34500E
USRE34500E US07/959,024 US95902492A USRE34500E US RE34500 E USRE34500 E US RE34500E US 95902492 A US95902492 A US 95902492A US RE34500 E USRE34500 E US RE34500E
Authority
US
United States
Prior art keywords
emulsion
phase
reaction
polycondensation
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/959,024
Inventor
Peter Fialla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isovolta AG
Original Assignee
Isovolta Osterreichische Isolierstoffwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isovolta Osterreichische Isolierstoffwerke AG filed Critical Isovolta Osterreichische Isolierstoffwerke AG
Priority to US07/959,024 priority Critical patent/USRE34500E/en
Application granted granted Critical
Publication of USRE34500E publication Critical patent/USRE34500E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/79Interfacial processes, i.e. processes involving a reaction at the interface of two non-miscible liquids

Definitions

  • the invention relates to a process for the production of aromatic polyesters through polycondensation of mono- or multi-nuclear substituted or unsubstituted diphenols with halides of aromatic dicarboxylic acid according to the two-phase interface polycondensation process, where from the aqueous phase, consisting of a solution of the diphenols, alkaline hydroxide for the formation of the diphenolates and possibly a phase transfer catalyst in water or in a mixture of water and an organic solubilizer with the organo-liquid phase consisting of a solution of an acidic halide in an organic solvent, a fine reaction emulsion is produced, with the diphenolates having been converted to the organo-liquid phase entering into polycondensation reactions with the acid halides.
  • polyesters produced according to such batch process frequently have a molecular weight distribution with a relatively high oligomer component, which in many cases negatively effects, for example, the material properties of films produced from such polyesters.
  • the difficulty is encountered of stirring the emulsion sufficiently, the viscosity of which increases rapidly with progressing polymer formation as well as--due to the exothermicity of the process--to maintain the emulsion at the desired low reaction temperature through high cooling expenditures.
  • the results of such batch processes cannot readily be reproduced.
  • the invention is based on the task of indicating a process of the initially mentioned kind, which permits the production of aromatic polyesters in large quantities in a readily reproducible manner, which polyesters have only a small fraction of oligomers.
  • the task, on which the invention is based, is solved in the process according to the invention, which is characterized in that for a continuous process a fine pre-emulsion is prepared from the aqueous phase and an organic solvent, that the pre-emulsion and the organo-liquid phase are fed into the input of a dispersing unit in quantities, that the compounds participating in the polycondensation reaction are mixed at constant proportions in the dispersing unit for the formation of the reaction emulsion, and that the reaction emulsion, subsequently, passes sequentially through one or several dispersing units and/or static mixers.
  • the aqueous phase is the lesser component by volume in the volume of the reaction emulsion and possibly also the pre-emulsion, so that the organo-liquid phase respectively the organic solvent forms the continuous phase of the particular emulsion.
  • the used bi-nuclear diphenols are preferentially compounds having the formula ##STR1## in which Z is a single bond, ##STR2## a bi-functional aliphatic hydrocarbon residue or a bi-functional hydrocarbon residue containing at least one aromatic or cycloaliphatic ring, as well as alkylated or halogenated derivatives of such compounds.
  • the process according to the invention covers also the use of mixtures of different diphenolates as well as mixtures of different acid chlorides.
  • the reaction emulsion initially passes through one or several static mixers, subsequently through a dispersing unit, and, subsequently, again through one or several static mixers.
  • the process according to the invention is characterized in that dispersing units are used, which each has a rotor rotating at a circumferential speed of at least 5 m/s, preferentially, however, at least 10 m/s, provided with several recesses or perforations and which, in each instance, is separated by a small mixing chamber from an associated stator, possibly likewise provided with recesses or perforations.
  • aqueous phase To prepare the aqueous phase, first 92 g (2.3 Mol) NaOH and subsequently 350 g (1 Mol) 9,9-bis(4-hydroxyphenyl)-fluorene are dissolved in 3 l demineralized water and 1.5 l dioxan under the addition of heat. To this solution 23 g (0.1 Mol) benzyltriethylammonium-chloride dissolved in 100 ml demineralized water are added as phase transfer catalyst.
  • the organo-liquid phase consists of a solution of 101.6 g (0.5005 Mol) iso-phthaloylchloride and 101.6 g (0.5005 Mol) terephthaloylchloride in 1 l waterfree (absolute) 1,2-dichloroethane.
  • the drawing is a schematic representation of the arrangement used in the presence process example.
  • the aqueous phase and organo-liquid phase are each cooled to approximately 17° C. and placed in container 1 respectively 2.
  • 1,2-dichloroethane (DCE) is filled into container 3 in a quantity of 6 l.
  • DCE 1,2-dichloroethane
  • a heat exchanger 8 In the course of the process for the production of a pre-emulsion into the input 4 of a first dispersing unit 5 are fed: from container 3 through pump 6 the DCE in the amount of 0.2 l/min and from container 1 through pump 7, a heat exchanger 8, and a flow meter 9 the aqueous phase in an amount of 0.16 l/min.
  • a fine pre-emulsion is continuously produced with the DCE as continuous phase, which is removed at output 10 of dispersing unit 5.
  • the dispersing unit 5 is of type rotor-stator, which contains, for example, three series-connected mixing stages, in which each mixing stage has a rotor 11 provided with, for example, slit-shaped perforations, which--in the direction of flow--follows a small mixing chamber and a stator 12 also provided with perforations.
  • the circumferential speed of the rotors 11 located on a common driving shaft is approximately 17 m/s.
  • the organo-liquid phase consisting of the acid chlorid solution is fed in an amount of 0.04 l/min continuously and together with the pre-emulsion to the input 18 of a second dispersing unit 19, which is structured similar to the first dispersing unit 19, in which the acid chloride solution is mixed with the DCE of the pre-emulsion and the degree of fineness of the emulsion maintained respectively further increased.
  • the dispersing unit 19 the polycondensation starts suddenly, with the forming polymers staying in solution in the organo-liquid phase.
  • the two phases with the aid of the two heat exchangers 8 respectively 14 are maintained at a temperature of, for example, 17° C. and at this temperature supplied to the through-flow meters 9 and 15, which control--by way of the control circuits indicated by 16 and 17--the delivery of pump 7 respectively 13 in view of constant through-flow quantities.
  • the reaction emulsion removed from output 20 of the dispersing unit 19 present in the form of a fine emulsion with homogeneous organo-liquid phase is transported through a first static mixer 21, subsequently through a further dispersing unit 22 of the same kind as the two first dispersing units 5 respectively 19, and, lastly, through a second static mixer 23, whereupon the polycondensation reaction is completed.
  • the length of time the reaction emulsion stays in the reaction zone, i.e. from input 18 of the dispersing unit 19 to the output of the second static mixer 23 is approximately 4 minutes in the present example.
  • the emulsion, in which the formed polyester is dissolved in the organo-liquid phase, is then introduced into a vessel 25 provided with a stirrer 24, into which approximately 10 l of demineralized water had teen placed.
  • a vessel 25 provided with a stirrer 24, into which approximately 10 l of demineralized water had teen placed.
  • the two phases are separated by decanting and the alkaline aqueous phase discarded.
  • the remaining solution of polyester in DCE is subsequently washed chloride-free and the polyester is precipitated following introduction of acetone, centrifuged, and dried at 130° C.
  • the inherent viscosity measured at 30° C. in a solution of 0.5 g polyester in 100 ml solvent consisting of 60 percent by weight phenol and of 40 percent by weight 1,1,2,2-tetrachloroethane was 1.62 dl/g.
  • polyesters can be produced, which have primarily acid end groups or phenolic end groups depending on whether the acid chloride respectively the diphenolate are used in slight excess. Due to the hydrolysis of the acid chloride which competes with the polycondensation, which reduces the quantity of acid chloride available for the polycondensation reaction, to achieve a stoichiometric ratio of the used reagents decisive for the polycondensation reaction, at which--based on experience--a maximum of the inherent viscosity is obtained, preferentially a slight acid chloride excess is used (1.001 Mol acid chloride relative to 1 Mol diphenolate in the present example).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

In a continuous process for the manufacture of aromatic polyesters by polycondensation of mono- or multi-nuclear substituted or unsubstituted diphenols, with halides of aromatic dicarboxylic acids according to the two-phase interface polycondensation process, the first step is to produce continuously a fine pre-emulsion with an organic solvent and from the aqueous phase, consisting of a solution obtained from the diphenols, of an alkaline hydroxide in order to form the diphenates and possibly of a phase transfer catalyst in water or in a mixture of water and of an organic solubilizer. This pre-emulsion is fed in quantities to a dispersion unit jointly with the organo-liquid phase forming the acid chloride solution. The compounds involved in the polycondensation reaction are mixed in the dispersion unit in constant proportions in order to produce a reaction emulsion which then passes successively through one or several dispersion units and/or into static mixers, the polycondensation taking place and being completed during this period. The phases are then separated and the polyester formed is precipitated from the organic phase.

Description

The invention relates to a process for the production of aromatic polyesters through polycondensation of mono- or multi-nuclear substituted or unsubstituted diphenols with halides of aromatic dicarboxylic acid according to the two-phase interface polycondensation process, where from the aqueous phase, consisting of a solution of the diphenols, alkaline hydroxide for the formation of the diphenolates and possibly a phase transfer catalyst in water or in a mixture of water and an organic solubilizer with the organo-liquid phase consisting of a solution of an acidic halide in an organic solvent, a fine reaction emulsion is produced, with the diphenolates having been converted to the organo-liquid phase entering into polycondensation reactions with the acid halides.
Process of the above mentioned kind have been known for a long time, for example, also from U.S. Pat. No. 3,216,970. The polycondensation process here is carried out as batch process, where the aqueous and the organo-liquid phase are mixed in a reaction vessel while being vigorously stirred and the polyester forming in the polycondensation following the separation of the phases is finally precipitated from the organo-liquid phase.
The polyesters produced according to such batch process, however, frequently have a molecular weight distribution with a relatively high oligomer component, which in many cases negatively effects, for example, the material properties of films produced from such polyesters. In addition, when greater batches are used in these processes the difficulty is encountered of stirring the emulsion sufficiently, the viscosity of which increases rapidly with progressing polymer formation as well as--due to the exothermicity of the process--to maintain the emulsion at the desired low reaction temperature through high cooling expenditures. In addition, the results of such batch processes cannot readily be reproduced. The invention is based on the task of indicating a process of the initially mentioned kind, which permits the production of aromatic polyesters in large quantities in a readily reproducible manner, which polyesters have only a small fraction of oligomers.
The task, on which the invention is based, is solved in the process according to the invention, which is characterized in that for a continuous process a fine pre-emulsion is prepared from the aqueous phase and an organic solvent, that the pre-emulsion and the organo-liquid phase are fed into the input of a dispersing unit in quantities, that the compounds participating in the polycondensation reaction are mixed at constant proportions in the dispersing unit for the formation of the reaction emulsion, and that the reaction emulsion, subsequently, passes sequentially through one or several dispersing units and/or static mixers. Advantageously, the aqueous phase is the lesser component by volume in the volume of the reaction emulsion and possibly also the pre-emulsion, so that the organo-liquid phase respectively the organic solvent forms the continuous phase of the particular emulsion.
The used bi-nuclear diphenols are preferentially compounds having the formula ##STR1## in which Z is a single bond, ##STR2## a bi-functional aliphatic hydrocarbon residue or a bi-functional hydrocarbon residue containing at least one aromatic or cycloaliphatic ring, as well as alkylated or halogenated derivatives of such compounds.
The process according to the invention covers also the use of mixtures of different diphenolates as well as mixtures of different acid chlorides.
According to an advantageous form of the invention, the reaction emulsion initially passes through one or several static mixers, subsequently through a dispersing unit, and, subsequently, again through one or several static mixers.
According to a further advantageous form of the invention, the process according to the invention is characterized in that dispersing units are used, which each has a rotor rotating at a circumferential speed of at least 5 m/s, preferentially, however, at least 10 m/s, provided with several recesses or perforations and which, in each instance, is separated by a small mixing chamber from an associated stator, possibly likewise provided with recesses or perforations.
Below, the process according to the invention is explained in greater detail in conjunction with an example.
To prepare the aqueous phase, first 92 g (2.3 Mol) NaOH and subsequently 350 g (1 Mol) 9,9-bis(4-hydroxyphenyl)-fluorene are dissolved in 3 l demineralized water and 1.5 l dioxan under the addition of heat. To this solution 23 g (0.1 Mol) benzyltriethylammonium-chloride dissolved in 100 ml demineralized water are added as phase transfer catalyst.
The organo-liquid phase consists of a solution of 101.6 g (0.5005 Mol) iso-phthaloylchloride and 101.6 g (0.5005 Mol) terephthaloylchloride in 1 l waterfree (absolute) 1,2-dichloroethane.
The drawing is a schematic representation of the arrangement used in the presence process example.
The aqueous phase and organo-liquid phase are each cooled to approximately 17° C. and placed in container 1 respectively 2. 1,2-dichloroethane (DCE) is filled into container 3 in a quantity of 6 l. In the course of the process for the production of a pre-emulsion into the input 4 of a first dispersing unit 5 are fed: from container 3 through pump 6 the DCE in the amount of 0.2 l/min and from container 1 through pump 7, a heat exchanger 8, and a flow meter 9 the aqueous phase in an amount of 0.16 l/min. From the DCE and the aqueous phase in the passage through the dispersing unit 5 a fine pre-emulsion is continuously produced with the DCE as continuous phase, which is removed at output 10 of dispersing unit 5.
The dispersing unit 5 is of type rotor-stator, which contains, for example, three series-connected mixing stages, in which each mixing stage has a rotor 11 provided with, for example, slit-shaped perforations, which--in the direction of flow--follows a small mixing chamber and a stator 12 also provided with perforations. The circumferential speed of the rotors 11 located on a common driving shaft is approximately 17 m/s.
Concurrently with the continuous production of the pre-emulsion, from container 2 through pump 13, a heat exchanger 14 and a flow meter 15 the organo-liquid phase consisting of the acid chlorid solution is fed in an amount of 0.04 l/min continuously and together with the pre-emulsion to the input 18 of a second dispersing unit 19, which is structured similar to the first dispersing unit 19, in which the acid chloride solution is mixed with the DCE of the pre-emulsion and the degree of fineness of the emulsion maintained respectively further increased. In the dispersing unit 19 the polycondensation starts suddenly, with the forming polymers staying in solution in the organo-liquid phase.
For the process to function perfectly it is important that the diphenolate dissolved in the aqueous phase and the acid chloride supplied in the organo-liquid phase always enter into the reaction in precisely defined constant proportions. For that purposes, the two phases with the aid of the two heat exchangers 8 respectively 14 are maintained at a temperature of, for example, 17° C. and at this temperature supplied to the through-flow meters 9 and 15, which control--by way of the control circuits indicated by 16 and 17--the delivery of pump 7 respectively 13 in view of constant through-flow quantities.
The reaction emulsion removed from output 20 of the dispersing unit 19 present in the form of a fine emulsion with homogeneous organo-liquid phase is transported through a first static mixer 21, subsequently through a further dispersing unit 22 of the same kind as the two first dispersing units 5 respectively 19, and, lastly, through a second static mixer 23, whereupon the polycondensation reaction is completed. The length of time the reaction emulsion stays in the reaction zone, i.e. from input 18 of the dispersing unit 19 to the output of the second static mixer 23 is approximately 4 minutes in the present example.
The emulsion, in which the formed polyester is dissolved in the organo-liquid phase, is then introduced into a vessel 25 provided with a stirrer 24, into which approximately 10 l of demineralized water had teen placed. After the solution prepared in containers 1 and 2 has been used up and after completion of the polycondensation process, the two phases are separated by decanting and the alkaline aqueous phase discarded. The remaining solution of polyester in DCE is subsequently washed chloride-free and the polyester is precipitated following introduction of acetone, centrifuged, and dried at 130° C. The inherent viscosity measured at 30° C. in a solution of 0.5 g polyester in 100 ml solvent consisting of 60 percent by weight phenol and of 40 percent by weight 1,1,2,2-tetrachloroethane was 1.62 dl/g.
With the process according to the invention polyesters can be produced, which have primarily acid end groups or phenolic end groups depending on whether the acid chloride respectively the diphenolate are used in slight excess. Due to the hydrolysis of the acid chloride which competes with the polycondensation, which reduces the quantity of acid chloride available for the polycondensation reaction, to achieve a stoichiometric ratio of the used reagents decisive for the polycondensation reaction, at which--based on experience--a maximum of the inherent viscosity is obtained, preferentially a slight acid chloride excess is used (1.001 Mol acid chloride relative to 1 Mol diphenolate in the present example).

Claims (8)

I claim:
1. A continuous process for producing an aromatic polyester by polycondensing at least one mono- or multinuclear substituted .Iadd.or unsubstituted .Iaddend.diphenol as first reactant with at least one aromatic dicarboxylic acid halide as second reactant comprising:
preparing an aqueous phase by mixing the said at least one diphenol, an alkali metal hydroxide for the formation of diphenolates with or without a phase transfer catalyst, water or a mixture of water and an organic solubilizer;
preparing an organic liquid phase by mixing the said at least one aromatic dicarboxylic acid halide and an organic solvent to form a solution thereof;
continuously mixing the aqueous phase with an organic solvent to form a fine pre-emulsion;
preparing a reaction emulsion by continuously supplying organic liquid phase and pre-emulsion to an input of a dispersing unit whereby reactants in said phase and pre-emulsion are mixed in constant proportions;
passing and reacting the reaction emulsion through at least one dispersing unit.
2. The process of claim 1 comprising passing the reaction emulsion in addition to its passing through dispersing units, through a static mixer or through several static mixers.
3. The process of claim 2 wherein the reaction emulsion passes first through one or several static mixers subsequently through a dispersing unit and subsequently again through one or several static mixers.
4. The process of claim 1 wherein in the reaction emulsion the volume of the aqueous phase is smaller than the volume of the other phase of the reaction emulsion.
5. The process of claim 4 comprising passing the reaction emulsion in addition to its passing through dispersing units, through a static mixer or through several static mixers.
6. The process of claim 4 wherein in the fine pre-emulsion the volume of the aqueous phase is smaller than the volume of the organic solvent.
7. The process of claim 1 wherein the dispersing units have a rotor rotating at a circumferential speed of at least 5 meters per second which is provided with several recesses or perforations, and which, in each instance, is separated by a small mixing chamber from an associated stator also provided with recesses or perforations.
8. The process of claim 7 wherein said dispersing units have a rotor rotating at a circumferential speed of at least 10 meters per second.
US07/959,024 1986-10-21 1992-10-08 Process for the production of aromatic polyesters Expired - Lifetime USRE34500E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/959,024 USRE34500E (en) 1986-10-21 1992-10-08 Process for the production of aromatic polyesters

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT2796/86 1986-10-21
AT0279686A AT386217B (en) 1986-10-21 1986-10-21 METHOD FOR PRODUCING AROMATIC POLYESTER
US07/224,917 US4962180A (en) 1986-10-21 1987-10-21 Process for the production of aromatic polyesters
US07/959,024 USRE34500E (en) 1986-10-21 1992-10-08 Process for the production of aromatic polyesters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US07224917 Reissue 1987-10-21

Publications (1)

Publication Number Publication Date
USRE34500E true USRE34500E (en) 1994-01-04

Family

ID=3540439

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/224,917 Ceased US4962180A (en) 1986-10-02 1987-10-21 Process for the production of aromatic polyesters
US07/959,024 Expired - Lifetime USRE34500E (en) 1986-10-21 1992-10-08 Process for the production of aromatic polyesters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US07/224,917 Ceased US4962180A (en) 1986-10-02 1987-10-21 Process for the production of aromatic polyesters

Country Status (6)

Country Link
US (2) US4962180A (en)
EP (2) EP0542320A1 (en)
JP (1) JPH075720B2 (en)
AT (2) AT386217B (en)
DE (1) DE3787169D1 (en)
WO (1) WO1988003152A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392475B (en) * 1988-12-09 1991-04-10 Isovolta METHOD FOR POLYCONDENSING DIPHENOLS WITH HALOGENIDES OF DICARBONIC ACIDS
US5318938A (en) * 1989-05-05 1994-06-07 Minnesota Mining And Manufacturing Company Thermographic elements
US4967306A (en) * 1989-05-05 1990-10-30 Minnesota Mining And Manufacturing Company High purity aromatic polyesters
US5295040A (en) * 1989-05-05 1994-03-15 Minnesota Mining And Manufacturing Company High purity aromatic polyesters
JPH0391525A (en) * 1989-09-04 1991-04-17 Kanegafuchi Chem Ind Co Ltd Polyarylate and its production
CA2040100A1 (en) * 1990-04-10 1991-10-11 Haruo Tomita Thermoplastic resin composition
US5420235A (en) * 1993-01-21 1995-05-30 E. I. Du Pont De Nemours And Company Continuous poly (hydroxy acid) polymerization using a counter-current impeller mixing system
US7118920B2 (en) * 2002-10-22 2006-10-10 Battelle Memorial Institute Multiphasic microchannel reactions
WO2014115746A1 (en) * 2013-01-24 2014-07-31 三菱瓦斯化学株式会社 Method of manufacturing polyacrylate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401803A (en) * 1980-06-20 1983-08-30 Isovolta Osterreiche Isolierstoffwerk Aktiengesellschaft Process for the preparation of aromatic polyesters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597272A5 (en) * 1974-09-09 1978-03-31 Vnii Sintetischeskich Smol Aromatic polyester prepn.
AT374812B (en) * 1980-05-07 1984-06-12 Isovolta METHOD FOR PRODUCING AROMATIC POLYESTER
JPS57192431A (en) * 1981-05-07 1982-11-26 Isoboruta Esuteruraihitsushie Novel polyester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401803A (en) * 1980-06-20 1983-08-30 Isovolta Osterreiche Isolierstoffwerk Aktiengesellschaft Process for the preparation of aromatic polyesters

Also Published As

Publication number Publication date
ATE93530T1 (en) 1993-09-15
AT386217B (en) 1988-07-25
US4962180A (en) 1990-10-09
ATA279686A (en) 1987-12-15
EP0287602B1 (en) 1993-08-25
JPH075720B2 (en) 1995-01-25
JPH02500034A (en) 1990-01-11
DE3787169D1 (en) 1993-09-30
WO1988003152A1 (en) 1988-05-05
EP0287602A1 (en) 1988-10-26
EP0542320A1 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
USRE34500E (en) Process for the production of aromatic polyesters
US3697579A (en) Method of esterifying a polycarboxylic acid with a glycol
US4430493A (en) Process for the preparation of aromatic polyesters
JPH06211986A (en) Polymer and copolymer obtained by addition reaction of oligomer having dicarboxyl end group and bisoxazin or bisoxzoline and preparation thereof
KR20170110114A (en) A continuous method for producing polybutylene terephthalate using purified terephthalic acid and 1,4-butanediol
US4873060A (en) Process for the preparation of aromatic polyesters and apparatus for carrying out this process
US4066623A (en) Inverse interfacial polymerization for preparing certain halogenated aromatic polyesters
US4138544A (en) Preparation of polycondensate by one-step melt condensation in a vacuum
US4319017A (en) Semi or fully continuous process for polyester of bisphenol and dicarboxylic acid by transesterification polymerization and product thereof
JP2004517991A (en) Method for producing polyester based on 1,4-cyclohexanedimethanol and isophthalic acid
US5149769A (en) Process for the production of aromatic polyesters
US4618699A (en) Phthalic acid low molecular weight polyesters and process for preparing the same
US4465819A (en) Semi or fully continuous process for polyester of bisphenol and dicarboxylic acid by transesterification polymerization and product thereof
EP0035897B1 (en) Process for preparation of linear aromatic polyester by transesterification polymerization
US4412057A (en) Process for manufacturing aromatic polyesters
US4490519A (en) Semi or fully continuous process for polyester of bisphenol and dicarboxylic acid by transesterification polymerization and product thereof
EP0056149B1 (en) Process for manufacturing aromatic polyesters
JPH06256487A (en) Preparation of low-molecular-weight polyester
KR20190099462A (en) Process for producing thermoplastic polyester
CN108250417A (en) Process for preparing catalyst, catalyst prepared thereby and application of catalyst in preparing polyester
WO1979000071A1 (en) Solution polymerized halogenated polyesters
JP3116512B2 (en) Batch continuous polymerization of liquid crystalline polyester
US3401150A (en) Method of preparing condensation polyester resins
JPS6220525A (en) Production of elastic polyester
KR850001404B1 (en) Method of producing for polyethylene terephthalate-isophthalate copolymer

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed