USRE33427E - Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminum or magnesium and an anode for such a generator stabilized by this process - Google Patents

Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminum or magnesium and an anode for such a generator stabilized by this process Download PDF

Info

Publication number
USRE33427E
USRE33427E US07/143,501 US14350187A USRE33427E US RE33427 E USRE33427 E US RE33427E US 14350187 A US14350187 A US 14350187A US RE33427 E USRE33427 E US RE33427E
Authority
US
United States
Prior art keywords
sub
iadd
iaddend
anode
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/143,501
Inventor
Rene Vignaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Les Piles Wonder SA
Original Assignee
Les Piles Wonder SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Les Piles Wonder SA filed Critical Les Piles Wonder SA
Application granted granted Critical
Publication of USRE33427E publication Critical patent/USRE33427E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Definitions

  • the invention relates to primary electrochemical generators, or electric cells, comprising very reactive anodes made from zinc, aluminium or magnesium, more especially of the .[.maganese.]. .Iadd.manganese .Iaddend.dioxide/zinc, silver oxide/zinc, mercury oxide/zinc, air/zinc, silver chloride/magnesium and air/aluminium type, with an alkaline or saline electrolyte, such as an aqueous solution of potash or zinc chloride and ammonium chloride respectively, in which solution the anode is corrodable.
  • an alkaline or saline electrolyte such as an aqueous solution of potash or zinc chloride and ammonium chloride respectively, in which solution the anode is corrodable.
  • mercury has the property of increasing the hydrogen over-pressure of the metal in which it is incorporated (and this all the more so the higher its concentration therein) by inhibiting the reaction reducing the proton.
  • mercury, and more particularly its compounds are toxic. This involves strict safety measures in the indutrial manufacturing process and, moreover, the cells thrown away after use constitute a dangerous cause of pollution.
  • the applicant has now discovered that it was possible to stabilize a zinc, aluminium or magnesium reactive anode of a primary electrochemical generator, having an alkaline or saline electrolyte, by incorporating in the anode a very small amount (generally less than 1%) of a perfluorated organic compound of the ethoxylated polyfluoroalcohol type, the anode, when it is made from zinc, preferably having a small mercury content added thereto, of the order of 0.2% to 2%, particularly in the case of alkaline electrolyte cells.
  • a process for stabilizing a primary electrochemical generator comprising at least one reactive anode made from a metal taken from the group comprising zinc, aluminium and magnesium, characterized in that to said electrode there is added a percentage of 0.01% to 1%, by weight with respect to the metal, of at least one .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of the ethoxylated fluoro-alcohol type;
  • mercury is preferably added thereto but in a relatively small amount, less than 2% by weight with respect to the zinc, particularly when it is intended for an alkaline electrolyte generator.
  • n is between 4 and 20, preferably between 6 and 8;
  • p is between 1 and 10 and is preferably close to 2;
  • q is between 3 and 40, preferably between 10 and 12.
  • a single compound may be used corresponding to formula (1) or else a mixture of two or more compounds corresponding to this formula.
  • n, p and q have the same meaning as in formula (1).
  • An anode mixture is prepared for forming the negative electrode, or anode, of a cell by successively introducing into a mixture zinc powder amalgamated to 1%, a 40% potash solution, a gelling agent such as carboxymethylcellulose and the inhibitor of the invention, namely in the proportion of 500 ml of potash solution and 50 g of carboxymethylcellulose per kilo of amalgamated zinc.
  • a gelling agent such as carboxymethylcellulose and the inhibitor of the invention
  • the inhibitor may be distributed on the surface of the amalgamated zinc using a non aqueous solvent, .Iadd.(.Iaddend.such as ethyl alcohol or acetone) which is then evaporated, or by mixing the inhibitor with the potash solution.
  • a non aqueous solvent .Iadd.(.Iaddend.such as ethyl alcohol or acetone) which is then evaporated, or by mixing the inhibitor with the potash solution.
  • the anode mass thus obtained is tested in a 10 N potash solution at 45° C. and the corrosion rate is measured in ⁇ l/g/day (microliter of CTPN hydrogen per gram of zinc and per day). A rate higher than 10 ⁇ l/g/day is unacceptable in an electrochemical generator. It is in fact known that the corrosion rate (determined by the volume of hydrogen freed per gram of sample and per day, when this sample is immersed in the electrolyte in question is widely used for testing amalgamated samples and shows a very good correlation with the effective conservation of electrochemical generators. For accelerating the test, it is generally carried out at 45° C.
  • a non amalgamated zinc powder has a corrosion rate considerably higher than 10 ⁇ l/g/day (of the order of 2000 ⁇ l/g/day); amalgamated at 0.2% it has a corrosion rate of the order of 2000 ⁇ l/g/day, at 1% a corrosion rate of the order of 20 ⁇ l/g/day, so still greater than 10 ⁇ l/g/day; amalgamated at 5% gives a corrosion rate of about 1.5 ⁇ l/g/day, this latter being acceptable in most generators.
  • the inhibitor is formed by the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of formula:
  • This formula corresponds substantially to the product FORAFAC 1110 commercialized by the form Atochem.
  • the proportion of inhibitor used is 0.01% by weight with respect to the zinc.
  • the corrosion rate is measured and 0.7 ⁇ l/g/day was found.
  • Example 1 was repeated but with a zinc electrode amalgamated to 0.2% and non amalgamated zinc.
  • the table hereafter gives a comparison of corrosion rate measurements, without inhibitor, in accordance with the invention and with the inhibitor of formula (3) at 0.1%, with the zinc electrodes having different amalgamation rates and a non amalgamated zinc electrode.
  • Example 1 was repeated by replacing compound (3) by the following mixture:
  • the corrosion rate measured in accordance with the above defined method was 0.8 ⁇ l/g/day for a proportion of 0.1% of the above mixture (4).
  • Example 1 was repeated and using, in place of the compound (3), 0.01% of the non saturated .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound: ##STR1##
  • the corrosion rate measured in accordance with the above described method was 1.9 ⁇ l/g/day.
  • Example of industrial application in an alkaline generator with a zinc electrode Example of industrial application in an alkaline generator with a zinc electrode.
  • anode mass formed of zinc powder amalgamated to 5% an electrolyte formed by a 40% potash solution and a gelling agent (carboxymethylcellulose), the proportions being 300 ml of potash solution and 25 g of carboxymethylcellulose per kilo of amalgamated zinc;
  • a gelling agent carboxymethylcellulose
  • the other comprising, in the same electrolyte and the same gelling agent, an anode mass whose zinc powder is only amalgamated to 1%, but in which, during mixing with the electrolyte and the same gelling agent, the above mentioned FORAFAX 1110 was introduced in a proportion of 0.1% by weight with respect to the zinc.
  • the two series were stored for three months at 45° C. After this storage period, observation showed no sweating on the outside of the cells due to a possible overpressure. On dismantling the cells no expansions of the anode gel was discovered.
  • saline cells use an electrolyte formed from an aqueous solution of zinc chloride and ammonium chloride, in which the zinc electrode tends to corrode and form hydrogen, which results in causing leaks of electrolyte by perforating the zinc case, and losses of capacity during storage.
  • the zinc electrode of these cells is formed from metal foil, so less reactive than the divided powder of a alkaline generators. This zinc foil is only amalgamated on the surface, the weight of mercury per cell is consequently 1000 times smaller than that required for so called "alkaline" cells with alkaline electrolyte.
  • the inhibitor effect of the compound of the invention is shown by the corrosion test carried out at 45° C. in a saline solution comprising 25% by weight of Cl 2 Z n , 25% by weight of NH 4 Cl and the complement made up with water.
  • the ratio of the active surfaces and consequently of the corrosion rates between the powder and the foil is close to 5000.
  • U.S. Pat. No. 4,040,916 discloses a "method for forming a non-dendritic zinc layer which comprises providing a deposition solution containing a zinc compound and from 0.001 to 10 weight percent of a non-ionic surfactant additive which has the formula: ##STR2## where m is a number from 3 to 15, R is alkyl radical having from 1 to 10 carbon atoms, R' is a member of a group consisting of hydrogen and methyl radical, n is a number for the group from 0 to 30, and the surfactant additive has a molecular weight range of approximately 550-1500; positioning a pair of spaced apart electrodes within the deposition solution, applying an electric current to the electrodes, and depositing a non dendritic zinc layer on the negative electrode (claim 1), the additive and the function thereof are different in said U.S. patent and in the present patent application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A process is provided for stabilizing a primary electrochemical generator comprising at least one reactive anode made from a metal chosen from the group comprising zinc, aluminum and magnesium, characterized in that to said electrode is added a percentage of 0.01% to 1% by weight with respect to the metal, of at least one .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of the ethoxylated fluoroalcohol type. It also relates to an anode obtained by the above mentioned process and a primary electrochemical generator, with alkaline or saline electrolyte, comprising an anode of this type.

Description

The invention relates to primary electrochemical generators, or electric cells, comprising very reactive anodes made from zinc, aluminium or magnesium, more especially of the .[.maganese.]. .Iadd.manganese .Iaddend.dioxide/zinc, silver oxide/zinc, mercury oxide/zinc, air/zinc, silver chloride/magnesium and air/aluminium type, with an alkaline or saline electrolyte, such as an aqueous solution of potash or zinc chloride and ammonium chloride respectively, in which solution the anode is corrodable.
Although such cells allow high energies to be obtained, they present, because of the corrodability of their reactive anodes in the alkaline or saline electrolyte, a fairly reduced stability with loss of the capacity of the cell during storage resulting from partial solubilization of the anode in the electrolyte,
continuous and considerable release of hydrogen gas causing the ejection of electrolyte and swelling or even bursting of the cell,
the amplitude of these harmful phenomena being increased with a rise in temperature, for example in the case of storage in a hot country.
To overcome these drawbacks and stabilize a cell of the above mentioned type, having more especially an alkaline electrolyte, proposals have been made to stabilize it either by incorporating mercury in the anode (with formation of an amalgam) in the case of zinc, or by adding certain organic compounds.
It was first of all proposed to incorporate a certain percentage of mercury, for example from 5 to 15% by weight with respect to the active metal, in the case where this latter is formed from zinc, more especially for an alkaline electrolyte cell.
In fact, mercury has the property of increasing the hydrogen over-pressure of the metal in which it is incorporated (and this all the more so the higher its concentration therein) by inhibiting the reaction reducing the proton. Unfortunately mercury, and more particularly its compounds, are toxic. This involves strict safety measures in the indutrial manufacturing process and, moreover, the cells thrown away after use constitute a dangerous cause of pollution.
It is therefore desirable to avoid using mercury or at least in reducing the mercury content in cells for ecological reasons. Moreover, regulations tend to gradually limit this content.
But a mercury content with respect to zinc in the anode less than about 3% by weight does not provide sufficient stability for alkaline electrolyte cells.
It has further been proposed to add to a cell having a zinc, aluminium or magnesium anode, for stabilizing it, a certain number of organic compounds, such as oleic acid diethanolamine, monolaurylether, amines, quaternary ammonium compounds and some ethylene oxide polymers for replacing the mercury wholly or partially (e.g. U.S. Pat. No. 4,195,120 and French Pat. No. 2,156,662).
Such compounds unfortunately do not provide sufficient stability and are themselves often difficult to use or of reduced efficiency.
The applicant has now discovered that it was possible to stabilize a zinc, aluminium or magnesium reactive anode of a primary electrochemical generator, having an alkaline or saline electrolyte, by incorporating in the anode a very small amount (generally less than 1%) of a perfluorated organic compound of the ethoxylated polyfluoroalcohol type, the anode, when it is made from zinc, preferably having a small mercury content added thereto, of the order of 0.2% to 2%, particularly in the case of alkaline electrolyte cells.
Although it is exact that it has already been proposed to incorporate such compounds in electrochemical generators (published Japanese patent application No. 78/68.834 of the June 16th 1978 referenced in Chemical Abstracts volume 89, 1978, No. 149.502), this incorporation concerned exclusively secondary generators (accumulators) and had a different aim, namely that of increasing the life span of such secondary generators by improving the charge/discharge cycles by reducing the precipitation of the zinc of the anodes during charging.
The invention has then as object:
a process for stabilizing a primary electrochemical generator comprising at least one reactive anode made from a metal taken from the group comprising zinc, aluminium and magnesium, characterized in that to said electrode there is added a percentage of 0.01% to 1%, by weight with respect to the metal, of at least one .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of the ethoxylated fluoro-alcohol type;
a stabilized anode obtained by this process; and an electric cell comprising such an anode.
Preferably, when the anode is made from zinc, mercury is preferably added thereto but in a relatively small amount, less than 2% by weight with respect to the zinc, particularly when it is intended for an alkaline electrolyte generator.
The .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound advantageously has the formula:
C.sub.n F.sub.2n+1 --(CH.sub.2).sub.p --(CH.sub.2 CH.sub.2 O).sub.q --OH (1)
in which
n is between 4 and 20, preferably between 6 and 8;
p is between 1 and 10 and is preferably close to 2; and
q is between 3 and 40, preferably between 10 and 12.
A single compound may be used corresponding to formula (1) or else a mixture of two or more compounds corresponding to this formula.
It is also possible to use a non saturated .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of formula:
C.sub.n F.sub.2n-1 --(CH.sub.2).sub.p --(CH.sub.2 CH.sub.2 O).sub.q --OH (2)
in which n, p and q have the same meaning as in formula (1).
With the invention, corrosion of the metal of the anode is reduced and decrease in the capacity of the cell during storing, the release of hydrogen, electrolyte leaks and swelling of the cell are avoided, without the need of an addition of mercury or, at the least for a zinc electrode, with an addition of mercury in reduced proportions corresponding to the standards and ecological requirements.
The invention will in any case be well understood from the complement of description which follows which complement is of course given especially by way of indication.
A. Zinc electrode for so called "alkaline" cell with alkaline electrolyte.
An anode mixture is prepared for forming the negative electrode, or anode, of a cell by successively introducing into a mixture zinc powder amalgamated to 1%, a 40% potash solution, a gelling agent such as carboxymethylcellulose and the inhibitor of the invention, namely in the proportion of 500 ml of potash solution and 50 g of carboxymethylcellulose per kilo of amalgamated zinc.
The inhibitor may be distributed on the surface of the amalgamated zinc using a non aqueous solvent, .Iadd.(.Iaddend.such as ethyl alcohol or acetone) which is then evaporated, or by mixing the inhibitor with the potash solution.
The anode mass thus obtained is tested in a 10 N potash solution at 45° C. and the corrosion rate is measured in μl/g/day (microliter of CTPN hydrogen per gram of zinc and per day). A rate higher than 10 μl/g/day is unacceptable in an electrochemical generator. It is in fact known that the corrosion rate (determined by the volume of hydrogen freed per gram of sample and per day, when this sample is immersed in the electrolyte in question is widely used for testing amalgamated samples and shows a very good correlation with the effective conservation of electrochemical generators. For accelerating the test, it is generally carried out at 45° C.
By way of comparison, a non amalgamated zinc powder has a corrosion rate considerably higher than 10 μl/g/day (of the order of 2000 μl/g/day); amalgamated at 0.2% it has a corrosion rate of the order of 2000 μl/g/day, at 1% a corrosion rate of the order of 20 μl/g/day, so still greater than 10 μl/g/day; amalgamated at 5% gives a corrosion rate of about 1.5 μl/g/day, this latter being acceptable in most generators.
EXAMPLE 1
The inhibitor is formed by the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of formula:
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.q OH (3)
in which q is close to 12.
This formula corresponds substantially to the product FORAFAC 1110 commercialized by the form Atochem.
The proportion of inhibitor used is 0.01% by weight with respect to the zinc.
The corrosion rate is measured and 0.7 μl/g/day was found.
EXAMPLES 2 AND 3
Example 1 was repeated but with a zinc electrode amalgamated to 0.2% and non amalgamated zinc.
The table hereafter gives a comparison of corrosion rate measurements, without inhibitor, in accordance with the invention and with the inhibitor of formula (3) at 0.1%, with the zinc electrodes having different amalgamation rates and a non amalgamated zinc electrode.
______________________________________                                    
Amalgamation Rate                                                         
% by weight of Hg                                                         
               Corrosion rate                                             
                            ul/g/day                                      
with respect to the                                                       
               without inhibitor                                          
                            with inhibitor                                
zinc           of formula (3)                                             
                            of formula (3)                                
______________________________________                                    
5%             1.5          --                                            
1%             20           0.7                                           
0.2%           200          5                                             
0              2000         20                                            
______________________________________                                    
EXAMPLE 4
Example 1 was repeated by replacing compound (3) by the following mixture:
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH (4)
and
C.sub.10 F.sub.21 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH
with a mean molecular mass corresponding to the compound
C.sub.7 F.sub.15 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH
the corrosion rate measured in accordance with the above defined method was 0.8 μl/g/day for a proportion of 0.1% of the above mixture (4).
EXAMPLE 5
Example 1 was repeated and using, in place of the compound (3), 0.01% of the non saturated .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound: ##STR1##
The corrosion rate measured in accordance with the above described method was 1.9 μl/g/day.
Example of industrial application in an alkaline generator with a zinc electrode.
Primary generators, such as described in French Pat. No. 2 503 935 of the applicant, have been mounted in two series:
one comprising an anode mass formed of zinc powder amalgamated to 5%, an electrolyte formed by a 40% potash solution and a gelling agent (carboxymethylcellulose), the proportions being 300 ml of potash solution and 25 g of carboxymethylcellulose per kilo of amalgamated zinc;
the other comprising, in the same electrolyte and the same gelling agent, an anode mass whose zinc powder is only amalgamated to 1%, but in which, during mixing with the electrolyte and the same gelling agent, the above mentioned FORAFAX 1110 was introduced in a proportion of 0.1% by weight with respect to the zinc.
The two series were stored for three months at 45° C. After this storage period, observation showed no sweating on the outside of the cells due to a possible overpressure. On dismantling the cells no expansions of the anode gel was discovered.
Finally the elements of these two series, the modulus R20, discharged across 3.9 ohms under continuous operating conditions, present the same dispersion in the discharge duration 59 h±1h, that is to say that there is no loss of capacity of the cells of the second series with respect to those of the first. B. Zinc electrode for so called "saline" cells with saline electrolyte.
It is well known that cells of the manganese dioxide/zinc type, so called "saline cells", use an electrolyte formed from an aqueous solution of zinc chloride and ammonium chloride, in which the zinc electrode tends to corrode and form hydrogen, which results in causing leaks of electrolyte by perforating the zinc case, and losses of capacity during storage.
The zinc electrode of these cells is formed from metal foil, so less reactive than the divided powder of a alkaline generators. This zinc foil is only amalgamated on the surface, the weight of mercury per cell is consequently 1000 times smaller than that required for so called "alkaline" cells with alkaline electrolyte.
The inhibitor effect of the compound of the invention is shown by the corrosion test carried out at 45° C. in a saline solution comprising 25% by weight of Cl2 Zn, 25% by weight of NH4 Cl and the complement made up with water.
The use of powdered zinc test pieces has the advantage of giving a rapid and statistically more homogeneous response. In fact, the tongues cut out from cell case have great structural heterogeneity because of the extrusion lines of the tube, and consequently a great dispersion in the responses to the corrosion test.
The ratio of the active surfaces and consequently of the corrosion rates between the powder and the foil is close to 5000.
______________________________________                                    
The following corrosion rates were obtained:                              
______________________________________                                    
reference electrode without mercury and                                   
                         2000 μl/g/day                                 
without inhibitor according to the invention                              
electrode with 0.01% by weight of the above                               
                          340 μl/g/day                                 
compound (3)                                                              
electrode with 5% by weight of                                            
                          175 μl/g/day                                 
mercury                                                                   
______________________________________                                    
The inhibiting effect of the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound of the ethoxylated fluoroalcohol type is very clear, even in a saline environment.
As is evident and as it follows moreover already from what has gone before, the invention is in no wise limited to those of its modes of application and embodiments which have been more especially considered; it embraces, on the contrary, all variants thereof.
It should be noted that, if U.S. Pat. No. 4,040,916 discloses a "method for forming a non-dendritic zinc layer which comprises providing a deposition solution containing a zinc compound and from 0.001 to 10 weight percent of a non-ionic surfactant additive which has the formula: ##STR2## where m is a number from 3 to 15, R is alkyl radical having from 1 to 10 carbon atoms, R' is a member of a group consisting of hydrogen and methyl radical, n is a number for the group from 0 to 30, and the surfactant additive has a molecular weight range of approximately 550-1500; positioning a pair of spaced apart electrodes within the deposition solution, applying an electric current to the electrodes, and depositing a non dendritic zinc layer on the negative electrode (claim 1), the additive and the function thereof are different in said U.S. patent and in the present patent application.

Claims (15)

I claim:
1. Process for stabilizing a primary electrochemical generator comprising at least one reactive anode made from a metal taken from the group consisting of zinc, aluminium and magnesium, characterized in that there is added to said electrode a percentage of 0.01% to 1% by weight with respect to the metal of at least one .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound of the ethoxylated fluoroalcohol type.
2. The stabilization process according to claim 1, characterized in that the anode, being made from zinc, comprises mercury in an amount less than 2% by weight with respect to the zinc, .[.more especially when it is intended for an alkaline electrolyte generator.]..
3. The stabilization process according to claim 1 or 2, characterized in that the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound corresponds to the formula:
C.sub.n F.sub.2n+1 --(CH.sub.2).sub.p --(CH.sub.2 CH.sub.2 O).sub.q --OH (1)
in which:
n is between 4 and 20.[., preferably between 6 and 8.].;
p is between 1 and 10 g .[.and is preferably close to 2,.]..Iadd.; .Iaddend. and
q is between 3 and 40.[., preferably between 10 and 12.]..
4. The stabilization process according to claim 3, characterized in that the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound has the formula:
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.q OH (3)
in which q is close to 12.
5. The stabilization process according to claim 3, characterized in that a mixture of two or more compounds according to the formula (1) of claim 3, are used.
6. The stabilization process according to claim 5, characterized in that polyfluorated organic .Iadd.compound .Iaddend.is formed by the mixture of the two following compounds:
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH (4)
and
C.sub.10 F.sub.21 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH
with a mean molecular mass corresponding to the compound:
C.sub.6 F.sub.15 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH.
7. The stabilization process according to claim 1 or 2, characterized in that the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.organic compound corresponds to the formula:
C.sub.n F.sub.2n-1 --(CH.sub.2).Iadd..sub.p .Iaddend.--(CH.sub.2 CH.sub.2 O).sub.q --OH                                             (2)
in which:
n is between 4 and 20 .[., preferably 6 and 8.].;
p is between 1 and 10 .[.and is close to 2.].; .Iadd.and .Iaddend.
is between .[.and.]. 3 and 40 , preferably between .Badd.10 and 12.]..Baddend..
8. The stabilization process according to claim 7, characterized in that the .[.perfluorated.]. .Iadd.polyfluorated .Iaddend.compound corresponds to the formula: ##STR3## .[.
9. An anode for a primary electrochemical generator obtained by the process according to any one of the preceding claims..]. .[.10. A primary electrochemical generator with alkaline electrolyte, characterized in that it comprises an anode according to claim 9, particularly with the limitation according to claim 2..]. .[.11. A primary electrochemical generator with saline electrolyte, characterized in that it comprises an
anode according to claim 9. .]. .Iadd.12. The stabilization process according to claim 3, wherein n is between 6 and 8, p is close to 2 and q is between 10 and 12. .Iaddend. .Iadd.13. The stabilization process according to claim 3, wherein n is between 6 and 8 and q is between 10 and
12. .Iaddend. .Iadd.14. An anode for a primary electrochemical generator comprising a metal taken from the group consisting of zinc, aluminum and magnesium and a percentage from 0.01% to 1.0% of at least one polyfluorated organic compound of the ethoxylated fluoroalcohol type. .Iaddend. .Iadd.15. An anode for a primary electrochemical generator according to claim 14, wherein the metal is zinc and further comprising mercury in an amount less than 2% by weight with respect to zinc. .Iaddend. .Iadd.16. An anode for a primary electrochemical generator according to claim 14, wherein the polyfluorated compound has the formula:
C.sub.n F.sub.2n+1 --(CH.sub.2).sub.p --(CH.sub.2 CH.sub.2 O).sub.q --OH
in which:
n is between 4 and 20,
p is between 1 and 10, and
q is between 3 and 40. .Iadd.17. An anode for a primary electrochemical generator according to claim 16, wherein the polyfluorated organic compound has the formula:
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.q OH
in which q is close to 12. .Iaddend. .Iadd.18. An anode for a primary electrochemical generator according to claim 16, comprising two or more of the polyfluorated compounds. .Iaddend. .Iadd.19. An anode for a primary electrochemical generator according to claim 18, comprising
C.sub.6 F.sub.13 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH
and
C10 F21 C2 H4 (C2 H4 O)14 OH
in amounts such that the polyfluorated component has a mean molecular mass corresponding to the compound:
C.sub.7 F.sub.15 C.sub.2 H.sub.4 (C.sub.2 H.sub.4 O).sub.14 OH. .Iaddend.
.Iadd.20. An anode for a primary electrochemical generator according to claim 14 wherein the polyfluorated organic compound has the formula:
C.sub.n F.sub.2n-1 --(CH.sub.2).sub.p --(CH.sub.2 CH.sub.2 O).sub.q --OH
in which:
n is between 4 and 20,
p is between 1 and 10, and
q is between 3 and 40. .Iaddend. .Iadd.21. An anode for a primary electrochemical generator according to claim 20, wherein the polyfluorated compound has the formula: ##STR4##
.Iaddend. .Iadd.22. A primary electrochemical generator with alkaline electrolyte, characterized in that it comprises an anode according to claims 14 to 21. .Iaddend. .Iadd.23. A primary electrochemical generator with saline electrolyte, characterized in that it comprises an anode according to claims 14 to 21. .Iaddend.
US07/143,501 1984-07-04 1987-12-30 Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminum or magnesium and an anode for such a generator stabilized by this process Expired - Lifetime USRE33427E (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8410632 1984-07-04
FR8410632A FR2567328B1 (en) 1984-07-04 1984-07-04 METHOD FOR STABILIZING PRIMARY ELECTROCHEMICAL GENERATORS WITH REACTIVE ZINC, ALUMINUM OR MAGNESIUM ANODES AND ANODE FOR SUCH A GENERATOR STABILIZED BY THIS PROCESS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US06/749,929 Reissue US4606984A (en) 1984-07-04 1985-06-27 Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminium or magnesium and an anode for such a generator stabilized by this process

Publications (1)

Publication Number Publication Date
USRE33427E true USRE33427E (en) 1990-11-06

Family

ID=9305802

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/749,929 Ceased US4606984A (en) 1984-07-04 1985-06-27 Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminium or magnesium and an anode for such a generator stabilized by this process
US07/143,501 Expired - Lifetime USRE33427E (en) 1984-07-04 1987-12-30 Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminum or magnesium and an anode for such a generator stabilized by this process

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/749,929 Ceased US4606984A (en) 1984-07-04 1985-06-27 Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminium or magnesium and an anode for such a generator stabilized by this process

Country Status (10)

Country Link
US (2) US4606984A (en)
EP (1) EP0171311B1 (en)
JP (1) JPH07114126B2 (en)
AT (1) ATE38298T1 (en)
AU (1) AU580071B2 (en)
CA (1) CA1256158A (en)
DE (1) DE3565913D1 (en)
FR (1) FR2567328B1 (en)
MA (1) MA20470A1 (en)
OA (1) OA08156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128222A (en) * 1991-04-22 1992-07-07 Matsushita Electric Industrial Co., Ltd. Zinc-alkaline batteries
US5316632A (en) * 1991-07-24 1994-05-31 Dieter Remppel Method for improving efficiency of electro-chemical cells

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627632B1 (en) * 1988-02-24 1990-08-10 Cipel MERCURY FREE BATTERY WITH SALINE ELECTROLYTE
FR2634595B1 (en) * 1988-07-25 1995-07-28 Cipel ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND ZINC NEGATIVE ELECTRODE
FR2634594B1 (en) * 1988-07-25 1993-06-18 Cipel Wonder ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND ZINC NEGATIVE ELECTRODE
FR2634597B1 (en) * 1988-07-25 1995-07-21 Cipel ELECTROCHEMICAL GENERATOR WITH ALKALINE ELECTROLYTE AND ZINC NEGATIVE ELECTRODE
US5240793A (en) * 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
JPH0732015B2 (en) * 1989-04-07 1995-04-10 松下電器産業株式会社 Alkaline battery
US5168018A (en) * 1990-05-17 1992-12-01 Matsushita Electric Industrial Co., Ltd. Method of manufacturing zinc-alkaline batteries
CA2046148C (en) * 1990-08-14 1997-01-07 Dale R. Getz Alkaline cells that are substantially free of mercury
US5401590A (en) * 1992-12-07 1995-03-28 Duracell Inc. Additives for electrochemical cells having zinc anodes
US5378559A (en) * 1993-11-22 1995-01-03 Eveready Battery Company, Inc. Phosphate ester additive to alkaline cells to reduce gassing
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US20020042962A1 (en) * 2000-02-24 2002-04-18 Willman Kenneth William Cleaning sheets comprising a polymeric additive to improve particulate pick-up and minimize residue left on surfaces and cleaning implements for use with cleaning sheets
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell
CN101783422B (en) * 2009-01-16 2012-11-21 比亚迪股份有限公司 Additive and electrolyte containing the same and lithium-ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880122A (en) * 1956-06-13 1959-03-31 Rca Corp Primary cells
US3156587A (en) * 1962-12-10 1964-11-10 Du Pont Primary cells
US3847669A (en) * 1971-10-01 1974-11-12 Union Carbide Corp Reduced mercury containing zinc alkaline cells
US4040916A (en) * 1975-11-28 1977-08-09 General Electric Company Zinc plating bath and method of forming a non-dendritic zinc layer
US4195120A (en) * 1978-11-03 1980-03-25 P. R. Mallory & Co. Inc. Hydrogen evolution inhibitors for cells having zinc anodes
US4216045A (en) * 1977-05-18 1980-08-05 Sanyo Electric Co., Ltd. Process for preparation of electrode for alkaline battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789556A (en) * 1971-10-01 1973-03-29 Union Carbide Corp ZINC BATTERY ALKAIN ELEMENT
JPS5836833B2 (en) * 1976-11-29 1983-08-11 古河電気工業株式会社 Batteries with zinc as the negative electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2880122A (en) * 1956-06-13 1959-03-31 Rca Corp Primary cells
US3156587A (en) * 1962-12-10 1964-11-10 Du Pont Primary cells
US3847669A (en) * 1971-10-01 1974-11-12 Union Carbide Corp Reduced mercury containing zinc alkaline cells
US4040916A (en) * 1975-11-28 1977-08-09 General Electric Company Zinc plating bath and method of forming a non-dendritic zinc layer
US4216045A (en) * 1977-05-18 1980-08-05 Sanyo Electric Co., Ltd. Process for preparation of electrode for alkaline battery
US4195120A (en) * 1978-11-03 1980-03-25 P. R. Mallory & Co. Inc. Hydrogen evolution inhibitors for cells having zinc anodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
89 Chemical Abstracts 149502K (1978). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128222A (en) * 1991-04-22 1992-07-07 Matsushita Electric Industrial Co., Ltd. Zinc-alkaline batteries
US5316632A (en) * 1991-07-24 1994-05-31 Dieter Remppel Method for improving efficiency of electro-chemical cells

Also Published As

Publication number Publication date
JPS6127063A (en) 1986-02-06
CA1256158A (en) 1989-06-20
FR2567328A1 (en) 1986-01-10
US4606984A (en) 1986-08-19
JPH07114126B2 (en) 1995-12-06
OA08156A (en) 1987-03-31
EP0171311B1 (en) 1988-10-26
MA20470A1 (en) 1985-12-31
ATE38298T1 (en) 1988-11-15
AU580071B2 (en) 1988-12-22
AU4391785A (en) 1986-01-09
EP0171311A1 (en) 1986-02-12
FR2567328B1 (en) 1986-07-11
DE3565913D1 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
USRE33427E (en) Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminum or magnesium and an anode for such a generator stabilized by this process
US5128222A (en) Zinc-alkaline batteries
EP0172255A1 (en) Zinc Alkaline Battery
US4857424A (en) Zinc alkaline electrochemical cells with reduced mercury anodes
US4781999A (en) Method of stabilizing electrochemical primary cells having reactive anodes of zinc, aluminum, or magnesium; a stabilized anode obtained by said method; and a cell including such an anode
US3877993A (en) Dry cell with corrosion inhibitor
JPS61203564A (en) Alkaline battery
US3963520A (en) Primary cell corrosion inhibitor
JPH0371559A (en) Zinc alkaline battery
JP2754865B2 (en) Manufacturing method of zinc alkaline battery
JP2808822B2 (en) Manufacturing method of zinc alkaline battery
EP0945908A1 (en) Zinc alloy powder as anode material for use in alkaline manganese cells and process for producing the same
JPH0750612B2 (en) Zinc alkaline battery
CA1293019C (en) Process for stabilising primary electrochemical generators having reactive zinc anodes, with aluminum or magnesium; stabilised anode made according to saidprocess; and generator including said anode
JPS6180758A (en) Alkali battery
JPH05174826A (en) Zinc alkaline battery
JP2808823B2 (en) Manufacturing method of zinc alkaline battery
JPH0760685B2 (en) Zinc alkaline battery
JPS61240573A (en) Alkaline battery
JPH03167753A (en) Manganese dry battery
JPS63276871A (en) Zinc alkali cell
JPH03167757A (en) Manganese dry battery
JPS61153289A (en) Corrosion inhibitor for metal and alkali cell using it
JPH02306537A (en) Gel-form negative electrode for alkaline storage battery
JPH03167755A (en) Manganese dry battery

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12