USRE30107E - Thermographic recording process - Google Patents

Thermographic recording process Download PDF

Info

Publication number
USRE30107E
USRE30107E US05/925,962 US92596278A USRE30107E US RE30107 E USRE30107 E US RE30107E US 92596278 A US92596278 A US 92596278A US RE30107 E USRE30107 E US RE30107E
Authority
US
United States
Prior art keywords
group
recording process
process according
silver
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/925,962
Inventor
Urbain L. Laridon
Albert L. Poot
Jozef F. Willems
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB191973A external-priority patent/GB1439584A/en
Priority claimed from GB1616673A external-priority patent/GB1467005A/en
Priority claimed from US05/457,547 external-priority patent/US3996397A/en
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to US05/925,962 priority Critical patent/USRE30107E/en
Application granted granted Critical
Publication of USRE30107E publication Critical patent/USRE30107E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/24Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • This invention is concerned with heat-sensitive materials suited for the recording and/or reproduction of information and to recording processes wherein such materials are used.
  • Heat-sensitive copy-sheets capable of undergoing a colour change by the thermally initiated reduction of a compound with an organic reducing compound are known, e.g., from the United Kingdom Patents No. 318,203 filed Aug. 16, 1929 by Marconi's Wireless Telephone Co. and No. 866,076 filed June 28, 1957 by Minesota Mining and Manufacturing, from the German Patent No. 888,043 filed June 29, 1943 by Agfa AG and from the U.S. Pat. Nos. 2,129,242 of Samuel E. Sheppard and Waldemar Vanselow issued Sept. 6, 1938, 2,504,593 of Andre Schoen issued Apr. 18, 1950, 2,663,654 of Carl S. Miller and Bryce L. Clark issued Dec. 22, 1953 and 2,663,657 of Carl S. Miller and Bryce L. Clark issued Dec. 22, 1953.
  • a heat-sensitive copy-sheet containing said compounds is suited for the thermographic copying of originals containing infrared-absorbing image markings.
  • the infra-red absorbing image portions of the original are selectively heated and by heat transfer cause the development in the heat-sensitive sheet of a visible image corresponding with the image markings of the original.
  • thermographic recording materials A problem to be solved in connection with thermographic recording materials resides in the difficulty to produce recording layers that are sufficiently stable in storage and still produce images having a sufficient optical density on a neutral image background.
  • thermographic process in which an organic reducing compound by means of heat effects an information-wise reduction of a reaction partner in order to form a visible image.
  • thermographic recording materials having a good storage stability and that produce images of high optical density on a neutral image background.
  • the present invention relates to a heat-sensitive recording material comprising an organic reducing agent or mixture of reducing agents and (a) reaction partner(s) that with the aid of heat can form (a) coloured substance in an oxidation-reduction reaction with said reducing agent or mixture of reducing agents.
  • the heat-sensitive recording material comprises the organic reducing agent in a recording element being a supported or self-supporting layer that contains in intimate admixture said reducing agent(s) and said reaction partner(s) distributed non-differentially through its composition.
  • the heat-sensitive recording material comprises on a same support the organic reducing agent(s) and said reaction partner(s) kept apart in adjacent coatings from which they can reach each other during information-wise heating.
  • the organic reducing agent in said recording material corresponds to one of the following general formulae (I) and (II): ##STR4## wherein: R 1 represents hydrogen or an aliphatic group including a cycloaliphatic group and such groups in substituted form, e.g. an alkyl group containing from 1 to 4 carbon atoms, and
  • R 2 represents an aliphatic or cycloaliphatic oxy group, e.g. an alkoxy group containing up to 18 carbon atoms, an aryloxy group e.g. a phenyloxy group, an amino group, a substituted amino group e.g. a ##STR5## group in which R 3 and R 4 (same or different) represent hydrogen, an aliphatic, cycloaliphatic or aromatic group including said groups in substituted form e.g. an alkyl group, an alkenyl group, an allyl group, an aryl group e.g. a phenyl group or substituted phenyl group that carries substituents e.g.
  • R 3 and R 4 together represent the necessary atoms to close a heterocyclic nitrogen containing nucleus, e.g. a piperidine morpholine or pyrrolidine nucleus; ##STR6## wherein: R 5 represents an aliphatic, cycloaliphatic, aromatic or heterocyclic group preferably a phenyl group including said groups in substituted form.
  • 1-chlorocarbonyl-piperidine was prepared by introducing 1 mole of phosgene into 500 ml of toluene at 5° C. Thereupon 1 mole of piperidine and 1 mole of pyridine were added dropwise to the phosgene solution at a temperature of 20° C. The precipitate of pyridine hydrochoride was sucked off, the toluene was removed by evaporation and the 1-chlorocarbonyl-piperidine was distilled under vacuum. Boiling point: 118° C. at 15 mm Hg. 1 mole of hydroxylamine hydrochloride was mixed with 500 ml of methanol whilst stirring.
  • the preparation of compound 16 proceeded as follows: 1 mole of hydroxylamine hydrochloride were dissolved in 1 liter of methanol and 0.5 mole of triethylamine added to the obtained solution. Thereto 1 mole of 1-chlorocarbonyl-pyrrolidine and 1.5 mole of triethylamine dissolved in 20 ml of methylene chloride were added dropwise while keeping the reaction temperature at 15° C. Thereupon 2 moles of sodium hydroxide were added and the formed sodium chloride sucked off. The filtrate was concentrated by evaporation and the residue recrystallized from benzene.
  • the compound 18 (melting point: 130° C.), which is representative for the compounds according to the general formula (II), can be prepared in different ways by reaction of the corresponding acid chloride or carboxylic acid ester with hydroxylamine or by oxidation of the corresponding aldoxime (see e.g. Beilstein IX, 9, 301, and Erganzungsband 1, IX, 128 or Erganzungsband 2, IX, 213).
  • the organic reducing compound is used preferably in a supported layer or self-supporting sheet in intimate admixture with a reaction partner that on heating produces a visible colour change by reduction.
  • Suitable reaction partners are described e.g. in the United Kingdom Patent No. 866,076 as mentioned above and the U.S. Pat. No. 3,108,896 of Richard Owen issued Oct. 29, 1963.
  • noble metal compounds are preferred that through an oxidation reduction reaction are capable of setting free a metal.
  • Preferred noble metal compounds are silver compounds, which under the conditions encountered in thermographic copying, i.e. preferably in a temperature range of 60° to 200° C., are poorly light-sensitive, e.g. the silver salts of aliphatic carboxylic acids with a thioether group such as described, e.g., in the United Kingdom Patent No. 1,111,492 filed Aug. 13, 1965 by Agfa-Gevaert AG or silver salts of long chained aliphatic (at least C 13 ) carboxylic acids such as silver behenate, silver palmitate, silver stearate and others.
  • the recording element in which the visible image is formed may contain further additives e.g. toning agents and auxiliary reducing or developing agents.
  • phthalazinone and its derivatives As toning agents suited in the production of black or neutral grey noble metal images such as silver images, phthalazinone and its derivatives (see U.S. Pat. Nos. 3,074,809 of Richard Owen issued Jan. 22, 1963 and 3,446,648 of Wesley R. Workman issued May 27, 1969 and German Pat. Application P 2,220,618 filed Apr. 27, 1972 by Agfa-Gevaert AG and/or phthalimide compounds may be used.
  • the phthalimides preferably correspond to the following general formula: ##STR18## in which: R represents a saturated or unsaturated aliphatic group or an alkoxy group, preferably having from 1 to 6 carbon atoms, a cycloalkyl group or cycloalkoxy group, e.g. cyclopentyl or cyclohexyl.
  • each of R 1 , R 2 , R 3 and R 4 represent hydrogen, alkyl e.g. C 1 -C 20 alkyl, preferably C 1 -C 4 alkyl, cycloalkyl, especially cyclopentyl or cyclohexyl, alkoxy, preferably C 1 -C 2 alkoxy, alkylthio preferably C 1 -C 2 alkylthio, hydroxy, dialkylamino in which the alkyl groups preferably are C 1 -C 2 alkyl groups or halogen, preferably chlorine or bromine and wherein R 1 and R 2 or R 2 and R 3 or R 3 and R 4 may represent the necessary atoms to close a condensed aromatic ring, preferably a benzene ring.
  • alkyl e.g. C 1 -C 20 alkyl, preferably C 1 -C 4 alkyl, cycloalkyl, especially cyclopentyl or cyclohexyl, alkoxy,
  • auxiliary reducing agents sterically hindered phenols that on heating become reactive partners in the reduction reaction, e.g. 2,6-ditert.butyl p-cresol and/or 2,6-dicyclohexyl-p-cresol, and certain bisphenols e.g. those of the U.S. Pat. No. 3,547,648 of Burt K. Sagawa issued Dec. 15, 1970, may be used.
  • the reactants are preferably applied to a thin flexible carrier or backing such as paper, e.g. glassine paper or baryta-coated paper, or transparent film, e.g. consisting of a cellulose ester or polyethylene terephthalate, in admixture with a film-forming polymeric or resinous binder.
  • a thin flexible carrier or backing such as paper, e.g. glassine paper or baryta-coated paper, or transparent film, e.g. consisting of a cellulose ester or polyethylene terephthalate, in admixture with a film-forming polymeric or resinous binder.
  • the binder can yield a self-supporting sheet or tape when it has a sufficient mechanical strength.
  • the reactants may be supported in a fibrous web in the absence of a binder.
  • Pigments e.g. zinc oxide or titanium dioxide
  • fillers e.g. waxes, dyes and various other additives may be included for obtaining special effects aimed at.
  • the reducible compound such as the noble metal salt and the reducing agent are preferably intermixed prior to coating, but may be applied in separate but contiguous layers from which the reducing agent can diffuse to the noble metal salt during the heating of the recording material.
  • binding agent for the reducing compound and the compound thermally reducible therewith all kinds of natural, modified natural or synthetic resins may be used, e.g. proteins such as gelatin, cellulose derivatives, e.g. a cellulose ether such as ethylcellulose, cellulose esters, carboxymethylcellulose, alginic acid and derivatives, starch ethers, galactomannan, polyvinyl alcohol, poly-N-vinylpyrrolidone, polymers derived from ⁇ , ⁇ -ethylenically unsaturated compounds, e.g.
  • proteins such as gelatin
  • cellulose derivatives e.g. a cellulose ether such as ethylcellulose, cellulose esters, carboxymethylcellulose, alginic acid and derivatives, starch ethers, galactomannan, polyvinyl alcohol, poly-N-vinylpyrrolidone, polymers derived from ⁇ , ⁇ -ethylenically unsaturated compounds, e.g.
  • vinylhomo- and copolymers such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, partially saponified polyvinyl acetate, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters or polyethylene.
  • Heat-sensitive recording materials of the present invention may be used in any process in which heat is applied information-wise to or generated in the recording material, e.g. by means of hot bodies for example a hot stylus or by means of heat-producing radiation, e.g. infrared radiation.
  • Heat-sensitive sheet-like recording materials of the present invention are particularly suited for the thermographic copying of originals containing infrared-absorbing image markings.
  • the infrared-absorbing image portions of the original are heated selectively and by heat transfer cause the formation in the contacting heat-sensitive sheet of a visible colour change resulting from the reaction of the organic reducing agent with the reaction partner of the "oxidation-reduction colour reaction", e.g. a noble metal salt.
  • the recording material is heated information-wise or image-wise by radiation absorbed in the recording material.
  • the copying material in heat-conductive relationship with the oxidation-reduction partner(s) contains a certain amount of a substance or substances that are capable of converting absorbed electromagnetic radiation energy into heat. Suitable substances for that purpose are, e.g., heavy metal particles and finely divided carbon.
  • Heat-sensitive recording materials of the present invention containing said noble metal salts are suitable for making direct, high-contrast, clear-detail, black permanent copies of typewritten, printed and other graphic subject matter.
  • the recording materials are stable at room and normal storage temperatures, and may be stored in daylight without visible change either before or after heat-copying when no light-sensitive silver halide is present in their composition.
  • thermographic recording materials may be applied in so-called “front-printing” as well as in “back printing”.
  • front printing the radiant energy, e.g. from an infrared radiation source, is directed through a heat-sensitive copying paper to a printed original. Radiant energy is absorbed selectively in the printed areas of the original and released therefrom in the form of heat energy, causing a visible change in the areas of the recording material corresponding with the heated areas of the original.
  • the recording materials of the present Examples obtain a colouration already at a temperature of 80° C. and are particulaly suited for recording techniques in which the information-wise heating of the recording material proceeds with a hot stylus.
  • a dispersion was obtained by ball-milling the following ingredients for 16 h:
  • the coating of the final mixture was carried out on a polyethylene terephthalate support of 0.1 mm at a wet coating thickness of 75 ⁇ m.
  • thermographic material was put into contact with a paper carrying a text printed with carbon ink and contact-exposed with infrared radiation in a THERMOFAX copying apparatus, Model 47-3M (a thermographic copying apparatus of Minnesota Mining & Manufacturing Company, St. Paul, Minn., U.S.A.). A black copy on a neutral image background was obtained.
  • THERMOFAX copying apparatus Model 47-3M (a thermographic copying apparatus of Minnesota Mining & Manufacturing Company, St. Paul, Minn., U.S.A.).
  • thermographic material the after-chlorinated polyvinyl chloride with one of the following binding agents:
  • copolyester of iso- and terephthalic acid and 1,2-ethanediol iso- and terephthalic acid and 1,2-ethanediol.
  • a second binder layer consisting of ethylcellulose applied at a wet coating thickness of 50 ⁇ m from a solution of 5 g of ethylcellulose in 100 ml of ethanol, a much more optically clear image background was obtained after drying.
  • Example 1 was repeated with compound 18 of the Table in an amount of 0.05 g. A good result was obtained.
  • 3 ml of the dispersion obtained in example 1 were mixed with a solution of 0.02 g of phthalazinone in 3 ml of butanone and coated at a wet coating thickness of 50 ⁇ m onto a polyethylene terephthalate support having a thickness of 0.1 mm. After drying that coating at 60° C. for 5 min. another coating was applied thereto at a wet coating thickness of 50 ⁇ m from a 5% solution of ethylcellulose in ethanol, which solution contained also 0.5 g of reducing compound 9 of the Table.
  • polyvinyl butyral applied from a mixture of methanol and ethylene glycol monomethyl ether (9:1 by volume).
  • a second layer was applied to the dried layer in a covering ratio of 70 g per sq.m from a 2.5% by weight solution of ethylcellulose in a mixture of 90 ml of ethanol and 10 ml of acetic acid.
  • the obtained transparent heat-sensitive recording material was exposed reflectographically in a common thermographic exposure apparatus with an infrared radiation source. During the exposure the layer containing compound 14 was held in direct contact with the infrared-absorbing black image markings of a printed text paper original.
  • the area of the recording material corresponding with the image-markings of the original turned black.
  • the obtained copy was particularly suited for use as a transparency in an overhead projector.
  • a second layer was applied to the dried layer from a 2.5% by weight solution of ethylcellulose in ethanol in a covering ratio of 80 g per sq.m.
  • thermosensitive recording material After drying that second layer at 50° C. a transparent thermosensitive recording material was obtained.
  • the recording material was exposed reflectographically in a common thermographic exposure apparatus with infrared light source. During the exposure said protective coating was held in direct contact with the infra-red absorbing image markings of an original representing a printed text on paper.
  • the area of the recording material corresponding with the image-markings of the original turned black.
  • the obtained copy was particularly suited for use as a transparency in an overhead projector.
  • a second layer was applied from a 3% solution in ethanol of ethylcellulose at a covering rate of 50 g per sq.m. After drying a more transparent material was obtained.
  • the recording material was held in contact with an information-wise modulated modulation-wise vibrating point of a stylus which was heated to a temperature of 220° C. and operating at a writing speed of 124 cm per min.

Abstract

A recording process, wherein an organic reducing compound being present in a supported or self-supporting layer and corresponding to one of the following general formulae (I) and (II): ##STR1## wherein: R1 represents hydrogen, an aliphatic group of a cycloaliphatic group, and
R2 represents an aliphatic oxy group, a cycloaliphatic oxy group, an aryloxy group, an amino group of the formula ##STR2## in which R3 and R4 (same or different) represent hydrogen, an aliphatic, a cycloaliphatic or an aromatic group or R3 and R4 represent together the necessary atoms to close a heterocyclic nitrogen containing nucleus; ##STR3## wherein R5 represents an aliphatic, cycloaliphatic, aromatic or heterocyclic group, is caused to effect in said layer under the influence of information-wise heating an information-wise reduction of a reducible reaction partner.

Description

This invention is concerned with heat-sensitive materials suited for the recording and/or reproduction of information and to recording processes wherein such materials are used.
Heat-sensitive copy-sheets capable of undergoing a colour change by the thermally initiated reduction of a compound with an organic reducing compound are known, e.g., from the United Kingdom Patents No. 318,203 filed Aug. 16, 1929 by Marconi's Wireless Telegraph Co. and No. 866,076 filed June 28, 1957 by Minesota Mining and Manufacturing, from the German Patent No. 888,043 filed June 29, 1943 by Agfa AG and from the U.S. Pat. Nos. 2,129,242 of Samuel E. Sheppard and Waldemar Vanselow issued Sept. 6, 1938, 2,504,593 of Andre Schoen issued Apr. 18, 1950, 2,663,654 of Carl S. Miller and Bryce L. Clark issued Dec. 22, 1953 and 2,663,657 of Carl S. Miller and Bryce L. Clark issued Dec. 22, 1953.
A heat-sensitive copy-sheet containing said compounds is suited for the thermographic copying of originals containing infrared-absorbing image markings. When the original is exposed to infrared radiation in heat-conductive contact with such copy-sheet, the infra-red absorbing image portions of the original are selectively heated and by heat transfer cause the development in the heat-sensitive sheet of a visible image corresponding with the image markings of the original.
A problem to be solved in connection with thermographic recording materials resides in the difficulty to produce recording layers that are sufficiently stable in storage and still produce images having a sufficient optical density on a neutral image background.
It is an object of the present invention to provide a thermographic process in which an organic reducing compound by means of heat effects an information-wise reduction of a reaction partner in order to form a visible image.
It is another object of the present invention to provide thermographic recording materials having a good storage stability and that produce images of high optical density on a neutral image background.
More particularly the present invention relates to a heat-sensitive recording material comprising an organic reducing agent or mixture of reducing agents and (a) reaction partner(s) that with the aid of heat can form (a) coloured substance in an oxidation-reduction reaction with said reducing agent or mixture of reducing agents.
According to one embodiment the heat-sensitive recording material comprises the organic reducing agent in a recording element being a supported or self-supporting layer that contains in intimate admixture said reducing agent(s) and said reaction partner(s) distributed non-differentially through its composition.
According to another embodiment the heat-sensitive recording material comprises on a same support the organic reducing agent(s) and said reaction partner(s) kept apart in adjacent coatings from which they can reach each other during information-wise heating.
The organic reducing agent in said recording material corresponds to one of the following general formulae (I) and (II): ##STR4## wherein: R1 represents hydrogen or an aliphatic group including a cycloaliphatic group and such groups in substituted form, e.g. an alkyl group containing from 1 to 4 carbon atoms, and
R2 represents an aliphatic or cycloaliphatic oxy group, e.g. an alkoxy group containing up to 18 carbon atoms, an aryloxy group e.g. a phenyloxy group, an amino group, a substituted amino group e.g. a ##STR5## group in which R3 and R4 (same or different) represent hydrogen, an aliphatic, cycloaliphatic or aromatic group including said groups in substituted form e.g. an alkyl group, an alkenyl group, an allyl group, an aryl group e.g. a phenyl group or substituted phenyl group that carries substituents e.g. halogen such as fluorine, chlorine or bromine or alkyl containing e.g. up to 3 carbon atoms, alkoxy containing e.g. up to 3 carbon atoms or a nitrile group; or R3 and R4 together represent the necessary atoms to close a heterocyclic nitrogen containing nucleus, e.g. a piperidine morpholine or pyrrolidine nucleus; ##STR6## wherein: R5 represents an aliphatic, cycloaliphatic, aromatic or heterocyclic group preferably a phenyl group including said groups in substituted form.
Specific examples of reducing compounds according to one of said general formulae and that are particularly suitable for use in a thermally initiated reduction reaction are listed in the following table.
              Table                                                       
______________________________________                                    
                                Melting                                   
No of the                       point                                     
compound                                                                  
        Structural formula      °C.                                
______________________________________                                    
1       H.sub.5 C.sub.2 OCONHOH liquid                                    
                                at 20                                     
         ##STR7##               & 111                                     
3       H.sub.2 NCONHOH         1477                                      
4       H.sub.5 C.sub.2NHCONHOH & --                                      
5                                                                         
         ##STR8##               & 92                                      
6       H.sub.23 C.sub.11NHCONHOH                                         
                                 75                                       
7       H.sub.37 C.sub.18NHCONHOH                                         
                                121                                       
8       H.sub.2 CCHCH.sub.2NHCONHOH                                       
                                113                                       
9                                                                         
         ##STR9##                79                                       
10                                                                        
         ##STR10##              154                                       
11                                                                        
         ##STR11##              184                                       
12                                                                        
         ##STR12##              127                                       
13                                                                        
         ##STR13##               95                                       
14                                                                        
         ##STR14##              120                                       
15                                                                        
         ##STR15##              150                                       
16                                                                        
         ##STR16##              180                                       
17      CH.sub.3 (CH.sub.2).sub.3NHCONHOH                                 
                                130                                       
18                                                                        
         ##STR17##              130                                       
______________________________________                                    
the preparation of the compounds having the general formula (I) is known e.g. from the published German Patent Applications No. 1,127,344 filed Feb. 18, 1960 and No. 1,129,151 filed Aug. 17, 1960 both by Badische Anilin- & Soda-Fabrik.
For illustrative purposes a preparation of the preferred compound 14 is given here in detail.
The preparation of compound 14 called 1-hydroxyaminocarbonyl-piperidine proceeded as follows:
1-chlorocarbonyl-piperidine was prepared by introducing 1 mole of phosgene into 500 ml of toluene at 5° C. Thereupon 1 mole of piperidine and 1 mole of pyridine were added dropwise to the phosgene solution at a temperature of 20° C. The precipitate of pyridine hydrochoride was sucked off, the toluene was removed by evaporation and the 1-chlorocarbonyl-piperidine was distilled under vacuum. Boiling point: 118° C. at 15 mm Hg. 1 mole of hydroxylamine hydrochloride was mixed with 500 ml of methanol whilst stirring. To the obtained mixture 0.3 mole of triethylamine were added at 10°-15° C. Thereupon a mixture of 1.7 mole of triethylamine and 1 mole of 1-chlorocarbonyl piperidine in 250 ml of methylene chloride were added dropwise at 10°-15° C. The stirring of the reaction mixture was continued for 1 hour and subsequently 2 moles of solid sodium hydroxide were added. The sodium chloride precipitate formed was sucked off and the filtrate was concentrated by evaporation the solvent. The concentrate was added to 1 liter of toluene at 100° C. The liquid was filtered, cooled down, and the crystalline 1-hydroxy-aminocarbonylpiperidine was separated and dried. Melting point: 120° C. N-hydroxyaminocarbonyl morpholine (compound 15) having a melting point of 150° C. was prepared analogously.
The preparation of compound 16 proceeded as follows: 1 mole of hydroxylamine hydrochloride were dissolved in 1 liter of methanol and 0.5 mole of triethylamine added to the obtained solution. Thereto 1 mole of 1-chlorocarbonyl-pyrrolidine and 1.5 mole of triethylamine dissolved in 20 ml of methylene chloride were added dropwise while keeping the reaction temperature at 15° C. Thereupon 2 moles of sodium hydroxide were added and the formed sodium chloride sucked off. The filtrate was concentrated by evaporation and the residue recrystallized from benzene.
Melting point of compound 16: 180° C.
The compound 18 (melting point: 130° C.), which is representative for the compounds according to the general formula (II), can be prepared in different ways by reaction of the corresponding acid chloride or carboxylic acid ester with hydroxylamine or by oxidation of the corresponding aldoxime (see e.g. Beilstein IX, 9, 301, and Erganzungsband 1, IX, 128 or Erganzungsband 2, IX, 213).
The organic reducing compound is used preferably in a supported layer or self-supporting sheet in intimate admixture with a reaction partner that on heating produces a visible colour change by reduction. Suitable reaction partners are described e.g. in the United Kingdom Patent No. 866,076 as mentioned above and the U.S. Pat. No. 3,108,896 of Richard Owen issued Oct. 29, 1963. As reaction partners noble metal compounds are preferred that through an oxidation reduction reaction are capable of setting free a metal.
Preferred noble metal compounds are silver compounds, which under the conditions encountered in thermographic copying, i.e. preferably in a temperature range of 60° to 200° C., are poorly light-sensitive, e.g. the silver salts of aliphatic carboxylic acids with a thioether group such as described, e.g., in the United Kingdom Patent No. 1,111,492 filed Aug. 13, 1965 by Agfa-Gevaert AG or silver salts of long chained aliphatic (at least C13) carboxylic acids such as silver behenate, silver palmitate, silver stearate and others.
The effectiveness of the reduction obtained with the organic reducing agents of one of the above general formulae varies with the amount thereof. Useful results are obtained already with 0.25 mole of reducing agent per 1 mole of noble metal compound.
In addition to said image-forming reaction partners the recording element in which the visible image is formed may contain further additives e.g. toning agents and auxiliary reducing or developing agents.
As toning agents suited in the production of black or neutral grey noble metal images such as silver images, phthalazinone and its derivatives (see U.S. Pat. Nos. 3,074,809 of Richard Owen issued Jan. 22, 1963 and 3,446,648 of Wesley R. Workman issued May 27, 1969 and German Pat. Application P 2,220,618 filed Apr. 27, 1972 by Agfa-Gevaert AG and/or phthalimide compounds may be used.
The phthalimides preferably correspond to the following general formula: ##STR18## in which: R represents a saturated or unsaturated aliphatic group or an alkoxy group, preferably having from 1 to 6 carbon atoms, a cycloalkyl group or cycloalkoxy group, e.g. cyclopentyl or cyclohexyl.
These compounds can be prepared according to processs known to those skilled in the art as described e.g. in Beilstein, Vol. 27, pp. 458 and 512, Vol. 27, 2, Erg. page 382, Vol. 21, p. 607, Vol. 2, Erg. pages 444 and 445, in Chemical Abstracts, Vol. 54, p. 8710 a-c (1960) and in the published German Patent Application No. 1,091,976 filed Oct. 2, 1958 by Farbenfabriken Bayer.
Other particularly suitable toning agents that may be used alone or in conjunction with said phthalazinones or phthalimide derivatives are described in the German Patent Applications Nos. P 2,261,739 filed Dec. 16, 1972 and P 2,328,145 filed June 2, 1973 both by Agfa-Gevaert AG and correspond to the following general formula: ##STR19## wherein: X represents oxygen or a ##STR20## group wherein R6 represents an alkyl group e.g. a C1 -C20 alkyl group, preferably a --CH3 or ethyl group,
each of R1, R2, R3 and R4 (same or different) represent hydrogen, alkyl e.g. C1 -C20 alkyl, preferably C1 -C4 alkyl, cycloalkyl, especially cyclopentyl or cyclohexyl, alkoxy, preferably C1 -C2 alkoxy, alkylthio preferably C1 -C2 alkylthio, hydroxy, dialkylamino in which the alkyl groups preferably are C1 -C2 alkyl groups or halogen, preferably chlorine or bromine and wherein R1 and R2 or R2 and R3 or R3 and R4 may represent the necessary atoms to close a condensed aromatic ring, preferably a benzene ring.
As auxiliary reducing agents sterically hindered phenols that on heating become reactive partners in the reduction reaction, e.g. 2,6-ditert.butyl p-cresol and/or 2,6-dicyclohexyl-p-cresol, and certain bisphenols e.g. those of the U.S. Pat. No. 3,547,648 of Burt K. Sagawa issued Dec. 15, 1970, may be used.
In the recording materials of the present invention the reactants are preferably applied to a thin flexible carrier or backing such as paper, e.g. glassine paper or baryta-coated paper, or transparent film, e.g. consisting of a cellulose ester or polyethylene terephthalate, in admixture with a film-forming polymeric or resinous binder. The binder can yield a self-supporting sheet or tape when it has a sufficient mechanical strength.
The reactants may be supported in a fibrous web in the absence of a binder. Pigments, e.g. zinc oxide or titanium dioxide, fillers, meltable substances, e.g. waxes, dyes and various other additives may be included for obtaining special effects aimed at.
The reducible compound such as the noble metal salt and the reducing agent are preferably intermixed prior to coating, but may be applied in separate but contiguous layers from which the reducing agent can diffuse to the noble metal salt during the heating of the recording material.
As binding agent for the reducing compound and the compound thermally reducible therewith all kinds of natural, modified natural or synthetic resins may be used, e.g. proteins such as gelatin, cellulose derivatives, e.g. a cellulose ether such as ethylcellulose, cellulose esters, carboxymethylcellulose, alginic acid and derivatives, starch ethers, galactomannan, polyvinyl alcohol, poly-N-vinylpyrrolidone, polymers derived from α,β-ethylenically unsaturated compounds, e.g. vinylhomo- and copolymers such as polyvinyl chloride, copolymers of vinyl chloride and vinyl acetate, partially saponified polyvinyl acetate, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters or polyethylene.
Heat-sensitive recording materials of the present invention may be used in any process in which heat is applied information-wise to or generated in the recording material, e.g. by means of hot bodies for example a hot stylus or by means of heat-producing radiation, e.g. infrared radiation.
Heat-sensitive sheet-like recording materials of the present invention are particularly suited for the thermographic copying of originals containing infrared-absorbing image markings. When the original in contact with the present recording material is exposed to infrared radiation, the infrared-absorbing image portions of the original are heated selectively and by heat transfer cause the formation in the contacting heat-sensitive sheet of a visible colour change resulting from the reaction of the organic reducing agent with the reaction partner of the "oxidation-reduction colour reaction", e.g. a noble metal salt.
According to another exposure technique the recording material is heated information-wise or image-wise by radiation absorbed in the recording material. In order to improve the absorption of information-wise modulated radiation, which may be light and/or infrared radiation, the copying material in heat-conductive relationship with the oxidation-reduction partner(s) contains a certain amount of a substance or substances that are capable of converting absorbed electromagnetic radiation energy into heat. Suitable substances for that purpose are, e.g., heavy metal particles and finely divided carbon. For more details about such exposure technique and the use of these substances reference is made to the U.S. Pat. No. 3,476,937 of Marcel Nicolas Vrancken issued Nov. 4, 1969 and the United Kingdom Patent No. 1,160,221 filed May 17, 1965 by Gevaert Photo-Producten N.V.
Heat-sensitive recording materials of the present invention containing said noble metal salts are suitable for making direct, high-contrast, clear-detail, black permanent copies of typewritten, printed and other graphic subject matter. The recording materials are stable at room and normal storage temperatures, and may be stored in daylight without visible change either before or after heat-copying when no light-sensitive silver halide is present in their composition.
The thermographic recording materials may be applied in so-called "front-printing" as well as in "back printing". In front printing the radiant energy, e.g. from an infrared radiation source, is directed through a heat-sensitive copying paper to a printed original. Radiant energy is absorbed selectively in the printed areas of the original and released therefrom in the form of heat energy, causing a visible change in the areas of the recording material corresponding with the heated areas of the original.
In the "back printing" technique the radiant energy, e.g. from an infrared radiation source, is projected through the rear side of the printed surface of the printed original and the resulting release of heat energy causes a visible change in the heat-sensitive layer contacting the printed surface. Just as in the front printing method the visible change is produced in correspondence with the heated areas of the original. "Front printing" and "back printing" have been illustrated in the United Kingdom Patent 866,076 as mentioned above.
The following examples illustrate the present invention. The percentages and ratios are by weight unless otherwise indicated.
The recording materials of the present Examples obtain a colouration already at a temperature of 80° C. and are particulaly suited for recording techniques in which the information-wise heating of the recording material proceeds with a hot stylus.
EXAMPLE 1
A dispersion was obtained by ball-milling the following ingredients for 16 h:
______________________________________                                    
butanone                50       ml.                                      
after-chlorinated polyvinyl chloride                                      
                        5        g                                        
silver behenate         2.5      g                                        
______________________________________                                    
Before coating a solution containing the following ingredients was added to 3 ml of the ball-milled composition:
______________________________________                                    
butanone                  3 ml                                            
compound 10 of Table                                                      
(melting point: 154° C.)                                           
                          0.02 g                                          
 ##STR21##                0.01 g                                          
______________________________________                                    
The coating of the final mixture was carried out on a polyethylene terephthalate support of 0.1 mm at a wet coating thickness of 75 μm.
The coated layer was dried at 60° C. for 5 min. The heat-sensitive layer of the obtained thermographic material was put into contact with a paper carrying a text printed with carbon ink and contact-exposed with infrared radiation in a THERMOFAX copying apparatus, Model 47-3M (a thermographic copying apparatus of Minnesota Mining & Manufacturing Company, St. Paul, Minn., U.S.A.). A black copy on a neutral image background was obtained.
Same results were obtained by replacing in said thermographic material the after-chlorinated polyvinyl chloride with one of the following binding agents:
copolymer of vinyl chloride and vinyl acetate
copolymer of vinylidene chloride and acrylonitrile
copolyester of iso- and terephthalic acid and 1,2-ethanediol.
By coating on the recording layer of the present example 1 a second binder layer consisting of ethylcellulose applied at a wet coating thickness of 50 μm from a solution of 5 g of ethylcellulose in 100 ml of ethanol, a much more optically clear image background was obtained after drying.
Same results were obtained by replacing silver behenate by silver stearate.
EXAMPLE 2
Example 1 was repeated with compound 18 of the Table in an amount of 0.05 g. A good result was obtained.
EXAMPLE 3
3 ml of the dispersion obtained in example 1 were mixed with a solution of 0.02 g of phthalazinone in 3 ml of butanone and coated at a wet coating thickness of 50 μ m onto a polyethylene terephthalate support having a thickness of 0.1 mm. After drying that coating at 60° C. for 5 min. another coating was applied thereto at a wet coating thickness of 50 μm from a 5% solution of ethylcellulose in ethanol, which solution contained also 0.5 g of reducing compound 9 of the Table.
After drying and thermographical exposure of the recording material as described in example 1, a dense black copy of the original was obtained.
In said example 4 the ethylcellulose was replaced by the following binding agents applied from the following solvents;
after-chlorinated polyvinyl chloride applied from butanone
polyvinyl acetate applied from methanol
cellulose nitrate applied from methanol
polyvinyl butyral applied from a mixture of methanol and ethylene glycol monomethyl ether (9:1 by volume).
Equally good results were obtained.
EXAMPLE 4
In a ball-mill 50 g of silver behenate and 0.5 g of 3-nitro-phthalic acid were dispersed in 1000 ml of a 10% by weight solution of a copolymer of vinyl acetate and vinyl chloride (monomer ratio being 15/85 by weight) in butanone.
After 15 h of ball-milling a dispersion B was obtained.
To a polyester resin support of 0.10 mm the following coating composition was applied in a covering ratio of 80 g per sq.m.
______________________________________                                    
Dispersion B             30 ml                                            
10% by weight solution in butanone                                        
of said copolymer of vinyl acetate                                        
and vinyl chloride       15 ml                                            
5% by weight solution of phthala-                                         
zinone as toning agent in butanone                                        
                         5 ml                                             
5% by weight solution of compound 14                                      
in butanone              10 ml                                            
______________________________________                                    
After drying at 50° C., a second layer was applied to the dried layer in a covering ratio of 70 g per sq.m from a 2.5% by weight solution of ethylcellulose in a mixture of 90 ml of ethanol and 10 ml of acetic acid.
After drying at 50° C. the obtained transparent heat-sensitive recording material was exposed reflectographically in a common thermographic exposure apparatus with an infrared radiation source. During the exposure the layer containing compound 14 was held in direct contact with the infrared-absorbing black image markings of a printed text paper original.
The area of the recording material corresponding with the image-markings of the original turned black. The obtained copy was particularly suited for use as a transparency in an overhead projector.
EXAMPLE 5
In a ball-mill 50 g of silver behenate and 0.5 g of 3-nitro-phthalic acid as stabilizing agent were dispersed in 1000 ml of a 10% solution in butanone of after-chlorinated polyvinyl chloride.
After 15 h of ball-milling a dispersion A was obtained. Onto a polyester resin support of 0.10 mm the following coating composition was applied at covering rate of 80 g per. sq.m.
To a polyethylene terephthalate support of 0.075 mm the following coating composition was applied in a covering ratio of 70 g per sq.m.:
______________________________________                                    
dispersion A           70 ml                                              
butanone               60 ml                                              
5% solution of phthalazinone in                                           
butanone               10 ml -5% solution of compound 18 in               
butanone               20 ml                                              
______________________________________                                    
After drying at 50° C. a second layer was applied to the dried layer from a 2.5% by weight solution of ethylcellulose in ethanol in a covering ratio of 80 g per sq.m.
After drying that second layer at 50° C. a transparent thermosensitive recording material was obtained.
The recording material was exposed reflectographically in a common thermographic exposure apparatus with infrared light source. During the exposure said protective coating was held in direct contact with the infra-red absorbing image markings of an original representing a printed text on paper.
The area of the recording material corresponding with the image-markings of the original turned black. The obtained copy was particularly suited for use as a transparency in an overhead projector.
EXAMPLE 6
Onto a polyethylene terephthalate support of 0.075 mm the following coating composition was applied at a covering rate of 70 g per sq.m.
______________________________________                                    
dispersion A (see example 5)                                              
                         70 ml                                            
butanone                 60 ml                                            
5% solution of butanone of                                                
phthalaznone             10 ml                                            
5% solution in butanone of                                                
compound 10              20 ml                                            
______________________________________                                    
After drying at 50° C. the obtained recording material is image-wise exposed as described in Example 5.
A black image on a transparent base suited for projection with an overhead projector was obtained.
Analogous results were obtained by replacing the phthalazinone as toning agent by one of the following compounds having one of the following structural formulae: ##STR22## described in the German Patent Applications Nos. P 2,261,739 and P 2,328,145 as mentioned above.
According to the particular embodiment after the drying at 50° C. onto the dried layer a second layer was applied from a 3% solution in ethanol of ethylcellulose at a covering rate of 50 g per sq.m. After drying a more transparent material was obtained.
EXAMPLE 7
In a ball-mill the following ingredients were mixed for 8 h:
______________________________________                                    
ethyl cellulose   5          g                                            
silver behenate   1.25       g                                            
3-nitrophthalic acid                                                      
                  0.025      g                                            
methyl ethyl ketone                                                       
                  50         ml                                           
______________________________________                                    
To the obtained dispersion a solution containing 2 g of compound 17 (melting point 130° C.) and 0.4 g of phthalazinone in 50 ml of methyl ethyl ketone were added. The resulting mixture was coated on a paper base such as glassine paper at a covering rate of 150 g per sq.m.
After drying the recording material was held in contact with an information-wise modulated modulation-wise vibrating point of a stylus which was heated to a temperature of 220° C. and operating at a writing speed of 124 cm per min.
On the recording paper a dense black line track was obtained.

Claims (11)

We claim:
1. A recording process, which comprises exposing to a heat pattern a support carrying an organic reducing compound corresponding to one of the following general formulae: ##STR23## wherein: R1 represents hydrogen, an aliphatic group containing up to about four carbon atoms; and R2 represents an alkoxy group containing up to 18 carbon atoms, an aryloxy group, an amino group of the formula ##STR24## in which R3 and R4 (same or different) represent hydrogen, an aliphatic group or an aromatic group, or R3 and R4 represent together the necessary atoms to close a 5- or 6-membered heterocyclic nitrogen containing nucleus; and ##STR25## wherein: .[.R5 represents an aliphatic group containing up to 18 carbon atoms, an aromatic group or a 5- or 6-membered heterocyclic group;.]. .Iadd.R5 is an aromatic group,.Iaddend.and a reducible noble metal salt of an aliphatic carboxylic acid, said organic reducing compound being present in an effective amount to reduce said noble metal salt and said heat pattern having a temperature of at least about 60° C. and sufficient to initiate said reduction.
2. A recording process according to claim 1, wherein R2 is the group ##STR26## and R3 and R4 represent together the necessary atoms to close a piperidine nucleus.
3. A recording process according to claim 1, wherein R2 is the group ##STR27## and R3 represents hydrogen and R4 an alkyl group.
4. A recording process according to claim 1, wherein the reaction partner is a noble metal salt which upon reduction yields free metal.
5. A recording process according to claim 1, wherein the reaction partner is a silver salt, which in the temperature range of 50° to 200° C. is generally non-light-sensitive.
6. A recording process according to claim 5, wherein the silver compound is a silver salt of an aliphatic carboxylic acid containing a thioether group.
7. A recording process according to claim 5, wherein the silver compound is a silver salt of an aliphatic carboxylic acid containing at least 13 carbon atoms.
8. A recording process according to claim 7, wherein the silver salt is silver behenate or silver stearate.
9. A recording process according to claim 4, wherein the organic reducing agent is used in an amount of at least 0.25 mole per mole of noble metal salt.
10. A recording process according to claim 1, wherein the organic reducing compound and noble metal salt are present in a sheet material and are heated information-wise in a temperature range of 60° to 200° C.
11. The process of claim 1, wherein said noble metal salt undergoes a visible color change when reduced.
US05/925,962 1973-01-13 1978-07-18 Thermographic recording process Expired - Lifetime USRE30107E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/925,962 USRE30107E (en) 1973-01-13 1978-07-18 Thermographic recording process

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB191973A GB1439584A (en) 1972-09-05 1973-01-13 Preparation of benzopyran derivatives
GB1616673A GB1467005A (en) 1973-04-04 1973-04-04 Thermographic process and material
GB16166/73 1973-04-04
GB29073/73 1973-06-19
US05/457,547 US3996397A (en) 1973-04-04 1974-04-03 Thermographic recording process
US05/925,962 USRE30107E (en) 1973-01-13 1978-07-18 Thermographic recording process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05/457,547 Reissue US3996397A (en) 1973-01-13 1974-04-03 Thermographic recording process

Publications (1)

Publication Number Publication Date
USRE30107E true USRE30107E (en) 1979-10-02

Family

ID=27447188

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/925,962 Expired - Lifetime USRE30107E (en) 1973-01-13 1978-07-18 Thermographic recording process

Country Status (1)

Country Link
US (1) USRE30107E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751006A1 (en) 1995-06-27 1997-01-02 Agfa-Gevaert N.V. New method for the formation of a heat mode image
US5948600A (en) 1993-09-13 1999-09-07 Agfa-Gevaert N.V. Method and material for the formation of a heat mode image

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129242A (en) * 1935-05-25 1938-09-06 Eastman Kodak Co Heat sensitive compositions
US2663657A (en) * 1952-05-15 1953-12-22 Minnesota Mining & Mfg Heat-sensitive copying paper
DE1127344B (en) 1960-02-18 1962-04-12 Basf Ag Process for the preparation of N-aryl-N'-hydroxyureas
DE1129151B (en) 1960-08-17 1962-05-10 Basf Ag Process for the production of substituted ureas
US3108896A (en) * 1959-10-26 1963-10-29 Minnesota Mining & Mfg Heat-sensitive copying-paper
US3819382A (en) * 1970-06-26 1974-06-25 Agfa Gevaert Ag Light-sensitive material having developers embedded therein
US3839041A (en) * 1970-06-03 1974-10-01 Eastman Kodak Co Stabilizer precursors in photothermographic elements and compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129242A (en) * 1935-05-25 1938-09-06 Eastman Kodak Co Heat sensitive compositions
US2663657A (en) * 1952-05-15 1953-12-22 Minnesota Mining & Mfg Heat-sensitive copying paper
US3108896A (en) * 1959-10-26 1963-10-29 Minnesota Mining & Mfg Heat-sensitive copying-paper
DE1127344B (en) 1960-02-18 1962-04-12 Basf Ag Process for the preparation of N-aryl-N'-hydroxyureas
DE1129151B (en) 1960-08-17 1962-05-10 Basf Ag Process for the production of substituted ureas
US3839041A (en) * 1970-06-03 1974-10-01 Eastman Kodak Co Stabilizer precursors in photothermographic elements and compositions
US3819382A (en) * 1970-06-26 1974-06-25 Agfa Gevaert Ag Light-sensitive material having developers embedded therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948600A (en) 1993-09-13 1999-09-07 Agfa-Gevaert N.V. Method and material for the formation of a heat mode image
EP0751006A1 (en) 1995-06-27 1997-01-02 Agfa-Gevaert N.V. New method for the formation of a heat mode image

Similar Documents

Publication Publication Date Title
US4082901A (en) Thermographic material
US3996397A (en) Thermographic recording process
US3764329A (en) Heat activated dry silver
US3957288A (en) Thermographic recording material
US2967785A (en) Thermographic copying material
US3928686A (en) Heat-sensitive recording materials
US4013473A (en) Recording materials and image receiving materials for producing copies in a dry way
JP3633617B2 (en) Direct thermal imaging material
US3918973A (en) Process and materials for the information-wise production of amino compounds
EP0692733A2 (en) Direct thermal recording process
US5863859A (en) Heat-sensitive material suited for use in direct thermal recording
EP0671283A1 (en) Thermal transfer imaging process
US4011352A (en) Thermographic process of producing an image
US3689302A (en) Thermographically color-developable composition
US4171980A (en) Photosensitive compositions and recording materials and processes utilizing same
USRE30107E (en) Thermographic recording process
US5411929A (en) Thermally-processable image recording materials including substituted purine compounds
US5582953A (en) Direct thermal recording process
US3293061A (en) Primary amine modified secondary or tertiary amine-polyketo reaction product in a heat developable copy sheet
US4510236A (en) Thermally generated toning agent system for photothermographic imaging compositions
US3157526A (en) Thermo-sensitive copy sheet and method of making
EP0599369B1 (en) Thermosensitive recording material
US3887808A (en) Thermoimaging process utilizing a photochromic material containing a spiropyran, a polyhalogenated hydrocarbon, a thiol compound and a polyvinylcarbazole
US3473945A (en) Coated thermosensitive copying sheet
EP0683428A1 (en) Thermal transfer imaging system based on the heat transfer of a reducing agent for reducing a silver source to metallic silver