USRE27284E - Threaded drill rod element - Google Patents

Threaded drill rod element Download PDF

Info

Publication number
USRE27284E
USRE27284E US2815770A USRE27284E US RE27284 E USRE27284 E US RE27284E US 2815770 A US2815770 A US 2815770A US RE27284 E USRE27284 E US RE27284E
Authority
US
United States
Prior art keywords
thread
rod
threads
sleeve
flank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santrade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27284E publication Critical patent/USRE27284E/en
Assigned to SANTRADE LTD., A CORP. OF SWITZERLAND reassignment SANTRADE LTD., A CORP. OF SWITZERLAND ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/005Cylindrical shanks of tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded
    • E21B17/0426Threaded with a threaded cylindrical portion, e.g. for percussion rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/138Screw threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/003Details relating to chucks with radially movable locking elements
    • B25D2217/0034Details of shank profiles

Definitions

  • a drill rod coupling comprising a threaded rod and a matching threaded sleeve, the rod threads having at least two starts and flank angles adjacent the crests of at least 45 which gradually increase toward the base, which latter has a concave shape with a radius greater than the depth of the thread, the flanks of the thread being symmetrical and the crests being bevelled, and spaced from the bottoms of the sleeve threads.
  • the present invention relates to drill rods composed of at least two elements which are coupled together by means of threads on the elements, as for instance extension rods having externally threaded ends coupled to internally threaded coupling sleeves.
  • the invention presents a solution to this problem, which gradually has grown with the technical development, and consists in a special shape of the threads which lessens the torque necessary for separating the threads While at the same time the drill rod elements are sufiiciently held together and are held aligned with each other during the drilling.
  • FIG. 1 is a drill rod thread according to the invention
  • FIG. 2 an enlarged longitudinal section of two coupled threaded elements and FIG. 3 a torque diagram for diiferent types of threads.
  • FIG. 1 shows one end of an extension rod 10, which has an external thread 11 for connection to a sleeve shaped rod element, as a separate coupling sleeve or a sleeve integral with the adjoining extension rod.
  • a part 12 of the thread forming the flanks of the thread is con- "ice cavely rounded While the crest 13 is straight in longitudinal section.
  • the flank portion 12 has a longitudinal section as illustrated in FIGS. 1 and 2 which is symmetrical in relation to a line 14 perpendicular to the drill axis 15 and situated at equal distances from the nearest crests.
  • the flanks are thus also symmetrical with regard to a normal to the axis 15 through the crest of the thread and run from the crest towards the bottom at equal angles with the axis.
  • the torque necessary for separation of the threads in relation to the torque by which the threads have been connected depends essentially on two factors, the pitch of the thread and the flank angle.
  • the necessary separating torque becomes greater the greater is the flank angle and smaller the greater is the pitch.
  • the flank angle is illustrated in FIG. 1, the angle v being the flank angle and the angles u and w being the inclination of the flanks in relation to the normal 14. In the present case the angles u and w are substantially equal.
  • the inclination of the thread surface varies, the surface being parallel with the axis or tangent to planes parallel to the axis at the crests and bottoms and at a maximum inclination therebetween.
  • the crests of the threads are beveled and have a straight longitudinal section whereby the contact between the matching thread surfaces adjacent the crests of the rod thread is established only at portions of the thread having an angle of inclination to the axis which is substantially different from 0.
  • the thread according to the invention is made with two or possibly more starts thus providing a greater thread pitch. It is of course necessary to observe that the pitch is not so great that the thread unwinds itself, for instance when a vertical drill rod is extracted from a drill hole.
  • FIG. 2 a portion 20 of a coupling sleeve with an internal thread and a portion 21 of an extension rod with an external thread.
  • the rod thread has a straight longitudinal section at the crest 22 and there is a space 23 between the crest 22 of this thread and the bottom 26 of the matching thread of the sleeve.
  • the sleeve thread in the same way has a straight longitudinal section at its top 24 thus leaving a space 25.
  • the crests 22 and 24 preferably have straight longitudinal sections but may be somewhat curved so long as spaces 23 and 25 are maintained.
  • the threads are in contact with each other along the major parts of the inclined flank portions.
  • the bottom of the sleeve thread has a straight longitudinal section 26 which gives the advantage that the thinnest and weakest part of the sleeve is thicker than if the bottom of the thread were rounded. It is also easier to manufacture the sleeve by pressing if the thread has this shape.
  • the shaded area 27 marks the gain of thickness.
  • the bottom portion 26 is connected to the flanks of the thread by curved portions 28.
  • the main part of the flank of the sleeve thread comprises a convexly curved portion 29.
  • the curved portions 28 and 29 are connected by a shorter straight portion 30.
  • the portion 30 may be absent, the point of connection between portions 28 and 29 forming an inflection point in the longitudinal contour.
  • the radius r of the rounded portions 28 is suitably relatively small, so that the increase 27 of the thickness is as great as possible.
  • the radius r of portions 28 is usually smaller than the radius R of the curved part 2921 of the thread flanks. Because of this the rounded portions 28 are not suitable for contact with the attached thread, and therefore the space 23 is made sufiiciently great to avoid this contact. In the illustrated case the space 23 is therefore greater in radial direction than the space 25.
  • the radii R and r can suitably be constant, which means that the section of the flank is a circular are, but also other types of curvature can be used.
  • the bottom of the rod thread is rounded, but there can be straight portions like the portion 26 of the sleeve thread.
  • the radius R should be relatively great and at least as great as or greater, preferably substantially greater than the depth E of the rod thread.
  • the reason for this is that the rod thread must have a smooth curvature, the flanks meeting at the bottom without sharp corners, in order that the fatigue strength of the rod thread shall be as high as possible.
  • the concave portion 29 may extend to the crest 22, or there may be as above stated a short straight portion 30, which in the rod thread lies adjacent the crest.
  • the angle between the crest 22 and the flank should be relatively pronounced or sharp in order to avoid as much as possible portions which form a small angle to the axial direction, causing wedging and binding. It is true that such portions are present at the bottoms of the rod threads, but this is necessary in order to increase the fatigue strength of the rod thread.
  • a suitable value of the angle u is 45-70", preferably 50-60.
  • the angles u and w should be at least approximately equal, the longitudinal section of the thread being symmetrical with regard to the line 14 in FIG. 1 and consequently also with regard to the crests of the thread.
  • the angles u and w are then assumed to be measured at the point of the flank where they have their minimum value, i.e. where in the inclination of the flank with regard to the axis is greatest. This occurs in the rod thread adjacent the crest and in the sleeve thread at the straight portion 30 between the curved portions 28 and 29, or, if there is no straight portion 30, the inflection point between the curved portions 29a and 30a.
  • the advantage of the said symmetry of the angles is that the quantity of metal in axial direction in the threads is suitably distributed with regard to the axial wear.
  • the surfaces 29a and 30a on the rod thread in FIG. 2 will be worn down and move to the positions 29b, 30b, before the total surface of the flank begins to diminish.
  • the flank can thus be moved along the shaded portion 31 without diminishing the contact surface, the portion 31 representing the worn away material.
  • the sleeve thread will be worn in the same way, and the quantity of material in both threads should be adjusted in such a way that an optimal life is obtained for the joint.
  • the symmetrical form of the thread gives approximately equal depth of wear in axial direction for the sleeve thread and the rod thread.
  • the material in the rod thread is somewhat more wear resistant, which often is advantageous, because the life of the sleeve is limited by other factors and is shorter than the life of the rod, and furthermore the rodis more expensive to manufacture than the sleeve.
  • the length B of the rod thread crests measured in the axial direction should be at the most 0.4, preferably at the most 0.3, and at least 0.05, preferably at least 0.1 of the distance between the centers of two adjacent crests which, as the thread is a multi-start thread, belong to different windings of the thread.
  • the length A of the pos- .4 sibly flattened tops of the sleeve threads may as illustrated, be somewhat smaller than the length B.
  • the pitch of the thread is greater than usual, because there are at least two starts. For threads of a large diameter the number of starts can be three or more.
  • the pitch should be at least about 0.35 of the pitch diameter of the thread. Usually it should not exceed about 0.75 of the pitch diameter in order to avoid that the thread unwinds itself.
  • the lead angle should preferably not be outside the range 5-14", the preferred range being 7ll.
  • FIG. 3 a compari son is made between diflerent types of threads.
  • the disconnecting torque is marked along the vertical axis 41 and the connecting torque along the horizontal axis 42.
  • the torques are expressed in kilogrammeters.
  • the curve 43 represents a usual rounded thread.
  • the curve 44 represents a rounded thread with a crest that is straight in longitudinal section and has an unsymmetrical longitudinal section.
  • the curve 45 represents a thread according to the invention. Curves 43 and 44 show that in earlier known threads the disconnection torque increases approximately in the same proportion as the connection torque.
  • the disconnection torque rapidly reaches a maximum value and remains constant at this value independently of the increase of the connection torque. Said value is substantially smaller than for the earlier known types of threads but it is not so small that the threaded joint can unwind by itself.
  • This special form of thread provides thus a value of the disconnection torque which is not too great and not too small and remains substantially constant. This result is obtained by a suitable combination of the different factors involved including the smooth section line, the pitch and the relatively small flank angle.
  • a thread connection can be mentioned a rod thread on a rod with about 1 /2" outer diameter and a connected sleeve thread in a coupling sleeve.
  • the pitch is (22.6 mm.) and there are two entrances.
  • the height E of the thread is 1.7 mm.
  • the space F between the crest and the bottom of the sleeve thread is 0.35 mm.
  • the space 25 between the crest 24 and the bottom 25 of the connected thread is 6:01 mm.
  • the height of the thread D l.95 mm.
  • the length of the coupling sleeve is about mm.
  • Drill rod coupling for percussion drilling comprising a threaded rod and a matching threaded sleeve and being of the type suitable for connecting rods for percussion drilling, said threads having a relatively high pitch v and a generally wave-shaped profile.
  • the threads being adapted to respond to a low disconnection torque and to provide a high fatigue strength and having the following features in combination:
  • flank angle of the rod thread between the flank and a normal to the drill rod axis has a minimum in the vicinity of the crest of the rod thread, where it is [4570] 5060
  • flank angle of the rod thread increases gradually from said minimum towards the bottom of the thread, a substantial portion of the flank comprising the base portion thus having a concave shape and the radius of which is at least as great as the depth of the thread
  • Drill rod coupling as defined in claim 1 in which the beveled tops of the rod threads are joined to the adjacent flanks by a relatively pronounced angle.
  • Drill rod coupling as defined in claim 1 in which the tops of the sleeve threads are beveled and have a substantially rectilinear profile parallel to the drill axis.
  • Drill rod coupling as defined in claim 1 in which the bottoms of the sleeve threads are beveled and have a substantially rectilinear profile parallel to the drill axis.
  • Drill rod coupling as defined in claim 1 in which the beveled crests of the rod threads have an extension measured in the axial direction which is ODS-0.4 of the distance between the centers of adjacent crests.
  • Drill rod coupling as defined in claim 1 in which the sleeve is integral with one of the coupled rods.
  • Drill rod coupling as defined in claim 1 in which the radius of the concave portion of the rod thread flank is substantially greater than the depth of the thread.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

A DRILL ROD COUPLING COMPRISING A THREADED ROD AND A MATCHING THREADED SLEEVE, THE ROD THREADS HAVING AT LEAST TWO STARTS AND FLANK ANGLES ADJACENT THE CRESTS OF AT LEAST 45* WHICH GRADUALLY INCREASE TOWARD THE BASE, WHICH LATTER HAS A CONCAVE SHAPE WITH A RADIUS GREATER THAN THE DEPTH OF THE THREAD, THE FLANKS OF THE THREAD BEING SYMMETRICAL AND THE CRESTS BEING BEVELLED, AND SPACED FROM THE BOTTOMS OF THE SLEEVE THREADS.

Description

Feb. 15, 1972 l J. HJALSTEN ETAL Re.-27,284
THREADED DRILL R01) ELEMENT Original Filed May 18, 1 965 3 Sheets-Sheet Fig.1
V I I w I l I 10 Feb. 15, 1972 HJALSTEN E'TAL Re. 27,284
THREADED DRILL ROD ELEMENT Original Filed May 18, 1965 3 Sheets-Sheet I Feb 15, 1972 v A,!HJALSTEN ETAL I Re. 21,284 I THREADED DRILL ROD ELEMENT Original Filed May 18. 1965 3 Sheets-Sheet 5 United States Patent Int. Cl. F16b 31/06 U.S. (:1. 287-117 9 Claims Matter enclosed in heavy brackets I: appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A drill rod coupling comprising a threaded rod and a matching threaded sleeve, the rod threads having at least two starts and flank angles adjacent the crests of at least 45 which gradually increase toward the base, which latter has a concave shape with a radius greater than the depth of the thread, the flanks of the thread being symmetrical and the crests being bevelled, and spaced from the bottoms of the sleeve threads.
This application is a continuation of our application Ser. No. 456,656, filed May 18, 1965, now abandoned.
The present invention relates to drill rods composed of at least two elements which are coupled together by means of threads on the elements, as for instance extension rods having externally threaded ends coupled to internally threaded coupling sleeves.
Modern drilling technique continues to develop towards the use of more and more powerful drilling machines and higher drilling eifects. When using drill rods consisting of threaded elements many methods of drilling cause a tightening of the thread connections because of the rotation of the drill during drilling. This tightening is especially pronounced in, for instance, percussion drilling in which separate driving means are used for rotating the drill and also in the operation of rotary earth drills. As the torque which is required for separating the rod elements is related to the torque by which the threads have been screwed together it is difiicult to separate the drill rod elements after drilling with a high torque.
The invention presents a solution to this problem, which gradually has grown with the technical development, and consists in a special shape of the threads which lessens the torque necessary for separating the threads While at the same time the drill rod elements are sufiiciently held together and are held aligned with each other during the drilling.
Details of the invention appear from the following description and the acompanying drawing which illustrate:
FIG. 1 is a drill rod thread according to the invention;
FIG. 2 an enlarged longitudinal section of two coupled threaded elements and FIG. 3 a torque diagram for diiferent types of threads.
FIG. 1 shows one end of an extension rod 10, which has an external thread 11 for connection to a sleeve shaped rod element, as a separate coupling sleeve or a sleeve integral with the adjoining extension rod. A part 12 of the thread forming the flanks of the thread is con- "ice cavely rounded While the crest 13 is straight in longitudinal section. The flank portion 12 has a longitudinal section as illustrated in FIGS. 1 and 2 which is symmetrical in relation to a line 14 perpendicular to the drill axis 15 and situated at equal distances from the nearest crests. The flanks are thus also symmetrical with regard to a normal to the axis 15 through the crest of the thread and run from the crest towards the bottom at equal angles with the axis.
The torque necessary for separation of the threads in relation to the torque by which the threads have been connected depends essentially on two factors, the pitch of the thread and the flank angle. The necessary separating torque becomes greater the greater is the flank angle and smaller the greater is the pitch. The flank angle is illustrated in FIG. 1, the angle v being the flank angle and the angles u and w being the inclination of the flanks in relation to the normal 14. In the present case the angles u and w are substantially equal.
In known threads with wholly rounded longitudinal sections the inclination of the thread surface varies, the surface being parallel with the axis or tangent to planes parallel to the axis at the crests and bottoms and at a maximum inclination therebetween. At the portions where the flanks are inclined at a small angle to the axis a wedging effect arises, so that the force holding the threads together is great and a great torque is required for the separation of the threads. According to the invention the crests of the threads are beveled and have a straight longitudinal section whereby the contact between the matching thread surfaces adjacent the crests of the rod thread is established only at portions of the thread having an angle of inclination to the axis which is substantially different from 0. In this way a limited joining force between the threads is obtained. In order to still more reduce the joining force the thread according to the invention is made with two or possibly more starts thus providing a greater thread pitch. It is of course necessary to observe that the pitch is not so great that the thread unwinds itself, for instance when a vertical drill rod is extracted from a drill hole.
In FIG. 2 is shown a portion 20 of a coupling sleeve with an internal thread and a portion 21 of an extension rod with an external thread. The rod thread has a straight longitudinal section at the crest 22 and there is a space 23 between the crest 22 of this thread and the bottom 26 of the matching thread of the sleeve. The sleeve thread in the same way has a straight longitudinal section at its top 24 thus leaving a space 25. As indicated the crests 22 and 24 preferably have straight longitudinal sections but may be somewhat curved so long as spaces 23 and 25 are maintained. The threads are in contact with each other along the major parts of the inclined flank portions.
In the illustrated embodiment the bottom of the sleeve thread has a straight longitudinal section 26 which gives the advantage that the thinnest and weakest part of the sleeve is thicker than if the bottom of the thread were rounded. It is also easier to manufacture the sleeve by pressing if the thread has this shape. The shaded area 27 marks the gain of thickness. In the embodiment illustrated the bottom portion 26 is connected to the flanks of the thread by curved portions 28. The main part of the flank of the sleeve thread comprises a convexly curved portion 29. The curved portions 28 and 29 are connected by a shorter straight portion 30. However, the portion 30 may be absent, the point of connection between portions 28 and 29 forming an inflection point in the longitudinal contour.
The radius r of the rounded portions 28 is suitably relatively small, so that the increase 27 of the thickness is as great as possible. The radius r of portions 28 is usually smaller than the radius R of the curved part 2921 of the thread flanks. Because of this the rounded portions 28 are not suitable for contact with the attached thread, and therefore the space 23 is made sufiiciently great to avoid this contact. In the illustrated case the space 23 is therefore greater in radial direction than the space 25. The radii R and r can suitably be constant, which means that the section of the flank is a circular are, but also other types of curvature can be used. In the illustrated embodiment the bottom of the rod thread is rounded, but there can be straight portions like the portion 26 of the sleeve thread.
The radius R should be relatively great and at least as great as or greater, preferably substantially greater than the depth E of the rod thread. The reason for this is that the rod thread must have a smooth curvature, the flanks meeting at the bottom without sharp corners, in order that the fatigue strength of the rod thread shall be as high as possible. The concave portion 29 may extend to the crest 22, or there may be as above stated a short straight portion 30, which in the rod thread lies adjacent the crest. The angle between the crest 22 and the flank should be relatively pronounced or sharp in order to avoid as much as possible portions which form a small angle to the axial direction, causing wedging and binding. It is true that such portions are present at the bottoms of the rod threads, but this is necessary in order to increase the fatigue strength of the rod thread.
A suitable value of the angle u is 45-70", preferably 50-60. The angles u and w should be at least approximately equal, the longitudinal section of the thread being symmetrical with regard to the line 14 in FIG. 1 and consequently also with regard to the crests of the thread. The angles u and w are then assumed to be measured at the point of the flank where they have their minimum value, i.e. where in the inclination of the flank with regard to the axis is greatest. This occurs in the rod thread adjacent the crest and in the sleeve thread at the straight portion 30 between the curved portions 28 and 29, or, if there is no straight portion 30, the inflection point between the curved portions 29a and 30a.
The advantage of the said symmetry of the angles is that the quantity of metal in axial direction in the threads is suitably distributed with regard to the axial wear. The surfaces 29a and 30a on the rod thread in FIG. 2 will be worn down and move to the positions 29b, 30b, before the total surface of the flank begins to diminish. The flank can thus be moved along the shaded portion 31 without diminishing the contact surface, the portion 31 representing the worn away material. The sleeve thread will be worn in the same way, and the quantity of material in both threads should be adjusted in such a way that an optimal life is obtained for the joint. The symmetrical form of the thread gives approximately equal depth of wear in axial direction for the sleeve thread and the rod thread. In the embodiment shown in FIG. 2 the material in the rod thread is somewhat more wear resistant, which often is advantageous, because the life of the sleeve is limited by other factors and is shorter than the life of the rod, and furthermore the rodis more expensive to manufacture than the sleeve.
By the symmetry of the thread in combination with the rather small inclination of the flank in relation to the axis, i.e. the relatively large angle u, and also by the close fitting between the threads, which fill out each other well, a good guidance of the parts in relation to each other is obtained so that angular deflections of the rod are avoided.
The length B of the rod thread crests measured in the axial direction should be at the most 0.4, preferably at the most 0.3, and at least 0.05, preferably at least 0.1 of the distance between the centers of two adjacent crests which, as the thread is a multi-start thread, belong to different windings of the thread. The length A of the pos- .4 sibly flattened tops of the sleeve threads may as illustrated, be somewhat smaller than the length B.
The pitch of the thread is greater than usual, because there are at least two starts. For threads of a large diameter the number of starts can be three or more. The pitch should be at least about 0.35 of the pitch diameter of the thread. Usually it should not exceed about 0.75 of the pitch diameter in order to avoid that the thread unwinds itself.
The angle between the helix of the thread and a plane, perpendicular to the axis-i.e. the lead angle-should be in the main similar for different diameters but for practical reasons the pitch is similar for diameters between a limited range, the lead angle thus somewhat varying. As an example of this can be mentioned the following values employed in practice:
The lead angle should preferably not be outside the range 5-14", the preferred range being 7ll.
Practical tests have proved that threads according to the invention are relatively easy to disconnect and that the torque for disconnection is in the main constant even if the connecting torque increases. In FIG. 3 a compari son is made between diflerent types of threads. The disconnecting torque is marked along the vertical axis 41 and the connecting torque along the horizontal axis 42. The torques are expressed in kilogrammeters. The curve 43 represents a usual rounded thread. The curve 44 represents a rounded thread with a crest that is straight in longitudinal section and has an unsymmetrical longitudinal section. The curve 45 represents a thread according to the invention. Curves 43 and 44 show that in earlier known threads the disconnection torque increases approximately in the same proportion as the connection torque. For the thread according to the invention the disconnection torque rapidly reaches a maximum value and remains constant at this value independently of the increase of the connection torque. Said value is substantially smaller than for the earlier known types of threads but it is not so small that the threaded joint can unwind by itself. This special form of thread provides thus a value of the disconnection torque which is not too great and not too small and remains substantially constant. This result is obtained by a suitable combination of the different factors involved including the smooth section line, the pitch and the relatively small flank angle.
As an example of a thread connection according to the invention can be mentioned a rod thread on a rod with about 1 /2" outer diameter and a connected sleeve thread in a coupling sleeve. The pitch is (22.6 mm.) and there are two entrances. The rod thread has a rounded longitudinal section along the flanks and the bottom, the radius R=5 mm. and the crests 22 having the width B=3.3 mm. The height E of the thread is 1.7 mm. The space F between the crest and the bottom of the sleeve thread is 0.35 mm. The sleeve thread has bottom surfaces 26 with a Width C=1 mm. and top surface or crest 24 with the width A=2 mm. The space 25 between the crest 24 and the bottom 25 of the connected thread is 6:01 mm. The height of the thread D=l.95 mm. The length of the coupling sleeve is about mm.
We claim:
1. Drill rod coupling for percussion drilling comprising a threaded rod and a matching threaded sleeve and being of the type suitable for connecting rods for percussion drilling, said threads having a relatively high pitch v and a generally wave-shaped profile. The threads being adapted to respond to a low disconnection torque and to provide a high fatigue strength and having the following features in combination:
(a) the threads have at least two starts,
(b) the flank angle of the rod thread between the flank and a normal to the drill rod axis has a minimum in the vicinity of the crest of the rod thread, where it is [4570] 5060 (c) the flank angle of the rod thread increases gradually from said minimum towards the bottom of the thread, a substantial portion of the flank comprising the base portion thus having a concave shape and the radius of which is at least as great as the depth of the thread,
((1) the flanks of the threads are symmetrical and inclined equally with regard to said normal,
(e) the crests of the rod threads are beveled and have a profile substantially parallel to the drill rod axis, and
(f) the crests of the rod threads are spaced from the bottom of the matching sleeve threads.
2. Drill rod coupling as defined in claim 1 in which the beveled tops of the rod threads are joined to the adjacent flanks by a relatively pronounced angle.
3. Drill rod coupling as defined in claim 1 in which the tops of the sleeve threads are beveled and have a substantially rectilinear profile parallel to the drill axis.
4. Drill rod coupling as defined in claim 1 in which the bottoms of the sleeve threads are beveled and have a substantially rectilinear profile parallel to the drill axis.
5. Drill rod coupling as defined in claim 1 in which the beveled crests of the rod threads have an extension measured in the axial direction which is ODS-0.4 of the distance between the centers of adjacent crests.
6. Drill rod coupling as defined in claim 1 in which the rod thread comprises minor flank portions adjacent the crest, said minor flank portions having a straight longitudinal section and being inclined at the said minimum flank angle.
7. Drill rod coupling as defined in claim 1 in which the beveled crest portions are substantially rectilinear.
8. Drill rod coupling as defined in claim 1 in which the sleeve is integral with one of the coupled rods.
9. Drill rod coupling as defined in claim 1 in which the radius of the concave portion of the rod thread flank is substantially greater than the depth of the thread.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
DAVID J. WILLIAMOWSKI, Primary Examiner W. L. SHEDD, Assistant Examiner US. Cl. X.R. 285334
US2815770 1964-05-29 1970-04-13 Threaded drill rod element Expired USRE27284E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE653264 1964-05-29

Publications (1)

Publication Number Publication Date
USRE27284E true USRE27284E (en) 1972-02-15

Family

ID=20268929

Family Applications (2)

Application Number Title Priority Date Filing Date
US633339A Expired - Lifetime US3388935A (en) 1964-05-29 1967-03-27 Threaded drill rod element
US2815770 Expired USRE27284E (en) 1964-05-29 1970-04-13 Threaded drill rod element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US633339A Expired - Lifetime US3388935A (en) 1964-05-29 1967-03-27 Threaded drill rod element

Country Status (5)

Country Link
US (2) US3388935A (en)
CA (1) CA921510A (en)
FR (1) FR1434083A (en)
GB (1) GB1111995A (en)
NO (1) NO127937C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295751A (en) 1978-09-21 1981-10-20 Boart International Limited Thread structure for percussion drill elements
US4687368A (en) 1985-04-04 1987-08-18 Santrade Limited Thread structure for percussion rock drilling
US6196598B1 (en) * 1997-01-06 2001-03-06 Boart Longyear, Inc. Straight hole drilling system
US20100001522A1 (en) * 2006-05-17 2010-01-07 Sandvik Intellectual Property Ab Rock-drilling tool, a drill rod and a coupling sleeve
US20100140929A1 (en) * 2007-06-05 2010-06-10 Sandvik Intellectual Property Ab Rock-drilling equipment as well as female and male parts therefor
US20160161030A1 (en) * 2014-12-05 2016-06-09 China National Petroleum Corporation Connection structure between pipe body and joint of aluminum alloy drill pipe

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE336316B (en) * 1969-10-22 1971-07-05 Fagersta Bruks Ab
SE401232B (en) * 1970-05-04 1978-04-24 Sandvik Ab THREADED CONNECTION FOR IMPACT BRUSHES
US3876319A (en) * 1973-03-23 1975-04-08 Skil Corp Fastening means for two-piece core bit
US4040756A (en) * 1976-03-05 1977-08-09 Trw Canada Limited Drill rod thread form
US4332502A (en) * 1977-01-11 1982-06-01 Padley & Venables Limited Apparatus for use in drilling
US4473131A (en) * 1982-08-06 1984-09-25 Apx Group, Inc. Threaded muffler nipple and bushing
US4549754A (en) * 1983-06-20 1985-10-29 Reed Tubular Products Company Tool joint
US5358285A (en) * 1992-12-03 1994-10-25 Prideco, Inc. Stress relief groove for drill pipe
US6030004A (en) * 1997-12-08 2000-02-29 Shaw Industries High torque threaded tool joint for drill pipe and other drill stem components
SE520077C2 (en) * 2002-06-27 2003-05-20 Sandvik Ab Male part for percussion drilling of rock, has threaded end section with specific geometry adjacent to stop surface
FR2893683B1 (en) * 2005-11-23 2008-02-01 Messier Dowty Sa Sa METHOD FOR MANUFACTURING A ROD IN COMPOSITE MATERIAL
CA2634557C (en) * 2008-05-07 2013-06-11 Dover Corporation (Canada) Limited Sucker rod
US9107711B2 (en) 2013-02-20 2015-08-18 Stryker Trauma Sa Screw thread with flattened peaks
PL3663506T3 (en) * 2018-12-03 2023-03-13 Sandvik Mining And Construction G.M.B.H. A drilling string, threaded coupling, and rod adaptor for rotary drilling
US11739783B2 (en) * 2021-04-30 2023-08-29 Simpson Strong-Tie Company Inc. Concrete fastener

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA745931A (en) * 1966-11-08 A. Gustafsson Gunnar Threaded drill rod element
CA757828A (en) * 1967-05-02 F. Duffield Joseph Plastic moulded thread form
US2062407A (en) * 1935-02-19 1936-12-01 Spang Chalfant & Company Inc Joint
US2592698A (en) * 1948-04-10 1952-04-15 Chance Co Ab Insulator supporting pin and cob
US2681815A (en) * 1951-12-10 1954-06-22 Burtis B Mccarn Threaded coupling means for tubes having multiple type threads and transitional thread means therebetween
NL201628A (en) * 1954-03-16

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295751A (en) 1978-09-21 1981-10-20 Boart International Limited Thread structure for percussion drill elements
US4687368A (en) 1985-04-04 1987-08-18 Santrade Limited Thread structure for percussion rock drilling
US6196598B1 (en) * 1997-01-06 2001-03-06 Boart Longyear, Inc. Straight hole drilling system
US20100001522A1 (en) * 2006-05-17 2010-01-07 Sandvik Intellectual Property Ab Rock-drilling tool, a drill rod and a coupling sleeve
US20100059285A1 (en) * 2006-05-17 2010-03-11 Carlstroem Bo Top hammer rock-drilling tool, a drill rod coupling sleeve
US20100140929A1 (en) * 2007-06-05 2010-06-10 Sandvik Intellectual Property Ab Rock-drilling equipment as well as female and male parts therefor
US8262139B2 (en) * 2007-06-05 2012-09-11 Sandvik Intellectual Property Ab Rock-drilling equipment as well as female and male parts therefor
US20160161030A1 (en) * 2014-12-05 2016-06-09 China National Petroleum Corporation Connection structure between pipe body and joint of aluminum alloy drill pipe
US10036213B2 (en) * 2014-12-05 2018-07-31 China National Petroleum Corporation Connection structure between pipe body and joint of aluminum alloy drill pipe

Also Published As

Publication number Publication date
CA921510A (en) 1973-02-20
NO127937C (en) 1977-10-27
US3388935A (en) 1968-06-18
FR1434083A (en) 1966-04-01
GB1111995A (en) 1968-05-01
NO127937B (en) 1973-09-03

Similar Documents

Publication Publication Date Title
USRE27284E (en) Threaded drill rod element
EP0009398B1 (en) Thread structure for percussion drill elements
US3062568A (en) Safety screw thread arrangement
US6447025B1 (en) Oilfield tubular connection
US4549754A (en) Tool joint
US4040756A (en) Drill rod thread form
US3586353A (en) Thread arrangement for earth boring members
US2289271A (en) Pipe connection
US3109672A (en) Threaded tubing joint
US5169183A (en) Threaded joint for drill rod elements
US2180866A (en) Connector
US4712815A (en) Metal-to-metal wedge thread coupling connector
US2885225A (en) Drill pipe coupling having particular thread formations
US11795981B2 (en) Threaded and coupled tubular goods connection
US3537738A (en) Drill rod for long hole drilling in the ground
US2196966A (en) Well pipe joint
US2234957A (en) Thread locking means
US3717368A (en) Connection thread system for sets of extension drill rods
US3326581A (en) Well drilling pipe construction and the like
US2073093A (en) Well pipe and tool joint
US2205697A (en) Tool joint for well drilling
JP4083738B2 (en) Threaded joint of drill string for impact rock drilling
US3822952A (en) Drill rod coupling
US1191717A (en) Tool.
PL171252B1 (en) Threaded union joint

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANTRADE LTD., ALPENQUAI 12, CH-6002, LUCERNE, SWI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN;REEL/FRAME:004085/0132

Effective date: 19820908