USRE25017E - Electric lamp - Google Patents

Electric lamp Download PDF

Info

Publication number
USRE25017E
USRE25017E US25017DE USRE25017E US RE25017 E USRE25017 E US RE25017E US 25017D E US25017D E US 25017DE US RE25017 E USRE25017 E US RE25017E
Authority
US
United States
Prior art keywords
envelope
filament
lamp
bulb
electric lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE25017E publication Critical patent/USRE25017E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/28Envelopes; Vessels
    • H01K1/32Envelopes; Vessels provided with coatings on the walls; Vessels or coatings thereon characterised by the material thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material

Definitions

  • This invention relates to a new and improved electric lamp.
  • a still' further object is to provide an envelope for an elecn'ic lamp and comprising a polymeric plastic which will permit the enclosed area to be maintained relatively free of water vapor and other oxygen-containing gases and vapors in any substantial amount under operating conditions.
  • FIGURE 1 represents a sectional view of atypical 'Iautomobile headlamp embodying the preferred materials ⁇ and structure disclosedin this specification;
  • FIG. 2 represents a "sectional view of a portion of the envelope of a similar lamp employing a second embodiment of the invention.
  • a preferred material is polychlorotri-
  • the plastic material may comfluor'oethylene; other examples are polytetrafluoroethyl ene, copolymers of chlorotrifiuoroethylene and tetrafluoroethylene, vinylidene chloride resins (sold under the trade name Saran), and polyethylene terephthalate.
  • such materials may be substantially transparent or translucent and substantially impervious to gases; they should have softening points above the highest temperatures to which the envelope of aproperly designed lamp need be subjected. Thesematerials neither adsorb nor absorb gases or water vapor .toany significant degree; hence, once oxygen and water vapor are removed from the bulb by techniques of evacuation well known in the art, a negligible amount of tungsten will be deposited on the envelope during the operating life of the bulb and bulb blackening will be avoided. As a result, the life of the bulb is greatly extended.
  • plastics mentioned above are relatively easy to work with. They may be molded into the desired shapes at relatively low temperatures; thus processing personnel are not subjected to unpleasantly warm working conditions. Since these materials do not possess the brittle qualities of some other materials, such as glass, they provide an inherent shock mounting for the filament and leads of the bulb; other materials necessary to the operation of the bulb may be selected for optimum efficiency with little regard for their coefficients of thermal expansion.
  • Dyes may be incorporated within the material at some stage of the manufacturing process, if a colored light is desired.
  • the support wires 20 and the filament 22, as well as a fuse, if desired, may be inserted in accordance with procedures well known in the art.
  • a zirconium or other getter may be used, although tests indicate that it is usually not necessary.
  • the reflector portion When the filament and supporting elements are properly inserted and positioned, the reflector portion may be cemented or clamped to the lens portion by techniques well known in the art. Tests indicate that an envelope comprising polychlorotri-fluoroethylene will provide a suitably airtight device if the components are forcefitted together, employing, for example, an interlocking lip configuration to maintain tight contact. An example of such a configuration is shown at point A of the draw- 3 Jen and argon. Further processing of the bulb may be done in accordance with techniques well known in the art. It will be noted that some of the polymeric plasmenfioned have high electrical resistances; their use obviates the need for any other insulating material around sub-leads and contacts.
  • a reflector such as in a sealed-beam automobile headlight, aluminum, for example, may be evaporated upon the inner wall of the desired reflecting por- ,tion of the envelope, or a bright-metal reflector may be properly positioned where desired outside the envelope 'wall.
  • envelope refers to all or any portion of the substantially rigid, airtight container enclosing the filament.
  • a single-envelope incandescent electric lamp comprising, in combination, a filament, electrically conductive leads [supporting said filament and] operatively attached thereto, a [light-transmitting] gas-tight envelope :completely surrounding said filament and constituting the single envelope for said lamp, at least the inner face of said envelope comprising a substantially rigid [light-transmitting] polymeric plastic from'the class consisting of the vinyl and condensation polymers having a high degree of molecular order and having a softening temperature above approximately 80 C., at least a portion of said envelope and said inner face being light transmissive, and an atmosphere within said envelope substantially completely free of detectable water vapor and oxygen.
  • a lamp according to claim 1, wherein .the polymeric plastic comprises polytetrafluoroethylene.
  • a lamp according to claim 1, wherein the polymeric plastic comprises polyethylene terephthalate.
  • a lamp according to claim 1, wherein the polymeric plastic comprises a copolymer of chlorotrifiuoroethylene and tetrafiuoroethylene.
  • a lamp according to claim 1, wherein the polymeric plastic comprises a vinylidene chloride resin.
  • a single-envelope incandescent electric lamp comprising, in combination, a filament, electrically conduclive leads operatively .attached ,thereto, a gas-tight envelope completely siinrounding said filament and constituting thesingle .envelope for said lamp, said envelope consisting entirely of a substantially rigid polymeric plastic from the class consisting of the vinyl and condensation polymers having -a high degree of mol cular order and having a softening temperature above approximately C., at least a portion of said envelope being light- .transmissi've, and an atmosphere within said envelope substantially completely free of detectable watr vapor and oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

INVENTOR BY mmm ATTORNEYS D. P. COOPER, JR
ELECTRIC LAMP Original Filed March 5, 1955 FIG.
FIG. 2
' Aug. 8,1961
United States Patent 25,017 ELECTRIC LAMP Dexter P. Cooper, Jr., Lexington, Mass, asiguor to Polar oid Co tion, a corporation of Delaware cation; matter printed in italics indicates the additions made by reissue.
This invention relates to a new and improved electric lamp.
It is one object of the present invention to provide an electric lamp whose envelope comprises a polymeric plastic.
Another object is to provide an electric lamp having an inexpensive, relatively shatter-proof envelope.
A still' further object is to provide an envelope for an elecn'ic lamp and comprising a polymeric plastic which will permit the enclosed area to be maintained relatively free of water vapor and other oxygen-containing gases and vapors in any substantial amount under operating conditions.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the product pos sessing the features, properties and the relation of elements which are exemplified in the following detailed disclosure and the scope of the application of which will be indicated in the claims. H
For a fuller understanding 'of the nature and objects of the invention, reference should be had to the following detailed description. taken in'co'nnection with the accompanying drawings, wherein: p I
Q FIGURE 1 represents a sectional view of atypical 'Iautomobile headlamp embodying the preferred materials {and structure disclosedin this specification; and
FIG. 2 represents a "sectional view of a portion of the envelope of a similar lamp employing a second embodiment of the invention.
Practically all electric lamps manufactured today use a glass envelope and stem press. Glass adsorbs and absorbs gases, including oxygen and water vapor. In the manufacture of incandescent bulbs, steps are usually taken to eliminate as much of these adsorbed and absorbed gases as possible, but the present day processes are not always successful. As a result, any oxygen in the bulb atmosphere will attack the filament to form tungstem oxide. If any water vapor or other sources of hydrogen and oxygen are present in the bulb atmosphere, a cyclical process may occur, causing tungsten from the filament to be systematically deposited upon the inner wall of the envelope. This will cause bulb blackening, impairing the light output from the bulb. In addition, tungsten evaporates from the filament to maintain the proper equilibrium between the solid and vapor phases. Eventually, the filament may be eaten away and may fail.
In this invention, it is proposed that the lamp envelope comprise a relatively rigid polymeric plastic with a high softening point. prise the entire envelope, or it may be deposited, by techniques well known in the art, upon the inner wall of an envelope made of some other material, such as glass. High softening point polymeric plastics selected from the class comprising vinyl and condensation polymers having a high degree of molecular order and having softening temperatures above approximately 80 C. may be used. A preferred material is polychlorotri- The plastic material may comfluor'oethylene; other examples are polytetrafluoroethyl ene, copolymers of chlorotrifiuoroethylene and tetrafluoroethylene, vinylidene chloride resins (sold under the trade name Saran), and polyethylene terephthalate.
It will be noted that such materials may be substantially transparent or translucent and substantially impervious to gases; they should have softening points above the highest temperatures to which the envelope of aproperly designed lamp need be subjected. Thesematerials neither adsorb nor absorb gases or water vapor .toany significant degree; hence, once oxygen and water vapor are removed from the bulb by techniques of evacuation well known in the art, a negligible amount of tungsten will be deposited on the envelope during the operating life of the bulb and bulb blackening will be avoided. As a result, the life of the bulb is greatly extended.
The plastics mentioned above are relatively easy to work with. They may be molded into the desired shapes at relatively low temperatures; thus processing personnel are not subjected to unpleasantly warm working conditions. Since these materials do not possess the brittle qualities of some other materials, such as glass, they provide an inherent shock mounting for the filament and leads of the bulb; other materials necessary to the operation of the bulb may be selected for optimum efficiency with little regard for their coefficients of thermal expansion.
Many materials in the designated class may be prepared in a translucent form, by techniques well known in-the art, to'give a frosted efiect, if desired. Dyes may be incorporated within the material at some stage of the manufacturing process, if a colored light is desired.
These materials may also be used successfully in gaseous-discharge illuminating bulbs or tubes and in other such as sealed-beam automobile headlights, in which relatively high resistance to shock and vibration is det b l For the preferred embodiment of this invention, shown in FIGURE 1, polychlorotrifluoroethylene, in the form of a molding powder, is used as a starting material. The lens portion 12 and the reflector portion 14 of the envelope may be fashioned in separate operations, with the molds having dimensions such that the reflector portion may be force fitted into the lens portion. The reflector portion may include the exhaust tube 16 as an integral part, and the lead wires 18, which may be of any suitable electrically conductive material, may be embedded in the reflector portion during the molding operation. The reflector portion may be adapted, by
way of a suitable mold, to fit the desired power-supplying receptacle; this procedure will permit the use of a metal strip electrical contact with the power source, and permit a saving of metal over present day processes.
The support wires 20 and the filament 22, as well as a fuse, if desired, may be inserted in accordance with procedures well known in the art. A zirconium or other getter may be used, although tests indicate that it is usually not necessary.
When the filament and supporting elements are properly inserted and positioned, the reflector portion may be cemented or clamped to the lens portion by techniques well known in the art. Tests indicate that an envelope comprising polychlorotri-fluoroethylene will provide a suitably airtight device if the components are forcefitted together, employing, for example, an interlocking lip configuration to maintain tight contact. An example of such a configuration is shown at point A of the draw- 3 Jen and argon. Further processing of the bulb may be done in accordance with techniques well known in the art. It will be noted that some of the polymeric plasmenfioned have high electrical resistances; their use obviates the need for any other insulating material around sub-leads and contacts.
It may be desirable to coat the inner wall of a glass envelope with a plastic of the described class. This embodiment is shown in FIG. '2, wherein 24 represents a glass outer wall having a coating 26 comprising a plastic of the described class. It is to be noted that in this embodiment, the plastic need not itself be rigid, so long as it will adhere to the .glass wall to which it is applied.
If a reflector is desired, such as in a sealed-beam automobile headlight, aluminum, for example, may be evaporated upon the inner wall of the desired reflecting por- ,tion of the envelope, or a bright-metal reflector may be properly positioned where desired outside the envelope 'wall.
It should be noted that the term envelope, as used herein, refers to all or any portion of the substantially rigid, airtight container enclosing the filament.
Since certain changes may be made in the above prodnot without departing from the scope of the invention herein involved, it is intended that all matter contained :in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a -limiting sense. In particular, although the product of this invention is applicable to automobile headlamps, it is not intended that the scope of the invention be so limited.
What is claimed is:
1. A single-envelope incandescent electric lamp comprising, in combination, a filament, electrically conductive leads [supporting said filament and] operatively attached thereto, a [light-transmitting] gas-tight envelope :completely surrounding said filament and constituting the single envelope for said lamp, at least the inner face of said envelope comprising a substantially rigid [light-transmitting] polymeric plastic from'the class consisting of the vinyl and condensation polymers having a high degree of molecular order and having a softening temperature above approximately 80 C., at least a portion of said envelope and said inner face being light transmissive, and an atmosphere within said envelope substantially completely free of detectable water vapor and oxygen.
2. A lamp according "to claim 1, wherein said envelope also comprises a glass outer portion substantially completely enclosing said inner face.
3. A lamp according to claim 1, wherein the polymeric plastic comprises polychlorotrifiuoroethylene.
4. A lamp according to claim 1, wherein .the polymeric plastic comprises polytetrafluoroethylene.
5. A lamp according to claim 1, wherein the polymeric plastic comprises polyethylene terephthalate.
6. A lamp according to claim 1, wherein the polymeric plastic comprises a copolymer of chlorotrifiuoroethylene and tetrafiuoroethylene.
7. A lamp according to claim 1, wherein the polymeric plastic comprises a vinylidene chloride resin.
,8. A lamp according to claim 1, wherein the {polymeric plastic material comprises a polymerized halo- =genat'ed hydrocarbon.
9. A single-envelope incandescent electric lamp comprising, in combination, a filament, electrically conduclive leads operatively .attached ,thereto, a gas-tight envelope completely siinrounding said filament and constituting thesingle .envelope for said lamp, said envelope consisting entirely of a substantially rigid polymeric plastic from the class consisting of the vinyl and condensation polymers having -a high degree of mol cular order and having a softening temperature above approximately C., at least a portion of said envelope being light- .transmissi've, and an atmosphere within said envelope substantially completely free of detectable watr vapor and oxygen.
References Cited in the file of this patent or the original patent UNITED STATES PATENTS 2,574,000 .Victoreen Nov. 6, 1951 2,599,644 'Keukens June 10, 1952 2,606,586 .l Aug. 12, 1952 2,644,113 Etzkorn June 30, -3
US25017D Electric lamp Expired USRE25017E (en)

Publications (1)

Publication Number Publication Date
USRE25017E true USRE25017E (en) 1961-08-08

Family

ID=2093566

Family Applications (1)

Application Number Title Priority Date Filing Date
US25017D Expired USRE25017E (en) Electric lamp

Country Status (1)

Country Link
US (1) USRE25017E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223273A (en) * 1962-09-07 1965-12-14 Duro Test Corp Reinforced envelope for light source and method of making
US3279941A (en) * 1963-02-14 1966-10-18 Corning Glass Works Method of forming a moisture-collecting coating of porous glass
FR2423715A1 (en) * 1978-04-17 1979-11-16 Gen Electric MONOBLOC PLASTIC PROJECTOR
EP0175333A2 (en) * 1984-09-17 1986-03-26 GTE Products Corporation Electric lamp including a containment coating as part thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223273A (en) * 1962-09-07 1965-12-14 Duro Test Corp Reinforced envelope for light source and method of making
US3279941A (en) * 1963-02-14 1966-10-18 Corning Glass Works Method of forming a moisture-collecting coating of porous glass
FR2423715A1 (en) * 1978-04-17 1979-11-16 Gen Electric MONOBLOC PLASTIC PROJECTOR
EP0175333A2 (en) * 1984-09-17 1986-03-26 GTE Products Corporation Electric lamp including a containment coating as part thereof
EP0175333A3 (en) * 1984-09-17 1988-10-19 GTE Products Corporation Electric lamp including a containment coating as part thereof

Similar Documents

Publication Publication Date Title
KR820000527B1 (en) Plastic headlamp
US4591752A (en) Incandescent lamp with high pressure rare gas filled tungsten-halogen element and transparent thick walled safety envelope
US5506464A (en) Unit of electric lamp and reflector
CA2069788A1 (en) Electric reflector lamp
US2596469A (en) Tantalum carbide filament electric lamp containing hydrogen-volatile hydrocarbon mixture
US2909696A (en) Electric lamp
US3500105A (en) Incandescent lamp having a ceramic screw type base
USRE25017E (en) Electric lamp
US3237284A (en) Method of forming carbide coated coiled filaments for lamps
US3022437A (en) Electric lamps
US20040232837A1 (en) Incandescent lighting
US3960278A (en) Lamp cap assembly
US3392299A (en) Quartz-halogen incandescent lamp having a filament and a support made of rhenium-tungsten alloy
US3441778A (en) Base for electric lamp
US3162785A (en) Projection lamp
CA1293290C (en) Electric lamp, base for use therewith and method of assembling same
EP0309040B1 (en) Headlight lantern system and electric lamp for this system
CA2030047A1 (en) Vibration resistant mount structure for double ended tungsten-halogen lamp
US3706902A (en) Electric lamp with resilient base
US4174487A (en) Mirror condenser lamp
US2181291A (en) Reflector bulb lamp
US3701578A (en) Method of making ceramic electrical device
US3319115A (en) Standby circuit using a two filament incandescent lamp to maintain approximately thesame light output
CA1116573A (en) All plastic headlamp
US401646A (en) Thomas a