USRE24374E - Tandem axle construction - Google Patents

Tandem axle construction Download PDF

Info

Publication number
USRE24374E
USRE24374E US24374DE USRE24374E US RE24374 E USRE24374 E US RE24374E US 24374D E US24374D E US 24374DE US RE24374 E USRE24374 E US RE24374E
Authority
US
United States
Prior art keywords
axle
beams
axles
respect
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE24374E publication Critical patent/USRE24374E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G5/00Resilient suspensions for a set of tandem wheels or axles having interrelated movements
    • B60G5/02Resilient suspensions for a set of tandem wheels or axles having interrelated movements mounted on a single pivoted arm, e.g. the arm being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B37/00Wheel-axle combinations, e.g. wheel sets

Definitions

  • This invention relates to the running gear of a vehicle and is more specifically directed to a tandem axle construction.
  • One of the objects of this invention is to provide a comparatively light weight axle structure for the framework of a wheeled carriage comprising a heavy duty load sustaining running gear for a vehicle.
  • Another object of the present invention is to provide a tandem axle construction utilizing interchangeable, reversible and invertible parts of simplified design to produce an easily assembled unit having variable possibilities to meet different requirements for different conditions of operation and/or use.
  • Another object of this invention is to provide such flexible joints or unions of the tandem axle structural parts that incorporate simplified fastening elements to easily assemble the main axle parts, and which elements are also usable interchangeably and at random to minimize assembly time and labor costs.
  • These same cooperative fastening elements also simplify inspection and maintenance of the tandem axle structures not to overlook the ease of part replacements or repairs that might be required over periods of use under the heavy going to which such wheeled units are subjected.
  • FIG. 1 is a more or less diagrammatic perspective view of the entire tandem axle construction built in conformance with the principles relating to the present invention, portions of this perspective being shown in exploded form to better illustrate certain details of construction thereof;
  • Fig. 2 is a longitudinal cross sectional View of one of the wheel spindles embodied in the tandem axle structure illustrated in Fig. 1;
  • Fig. 3 is an enlarged fragmentary side elevational view of the central portion of the Walking beams of the tandem axle showing the bracket arrangement employed at this location for securing the axle to a vehicle part, Fig. 3 being substantially a view as seen along the line 3-3 in Fig. 1;
  • Fig. 4 is a side elevational view of a fragmentary portion of the walking beam and bracket assembly illustrated in Fig. 3 with certain portions thereof broken away and in section to illustrate further details of construction thereof;
  • Fig. 5 is a cross sectional view taken vertically through the walking beam and bracket assembly illustrated in Fig. 3 and substantially as viewed along the line 5-5 therein;
  • Fig. 6 is a cross sectional view taken vertically substantially along the line 66 in Fig. 3 showing the same bracket as applied to a different use in securing the tandem axle to a vehicle part;
  • Fig. 7 is a fragmentary side elevational view of the vehicle part which comprises a portion of the connection illustrated in Fig. 6;
  • Fig. 8 is a fragmentary detail side elevational view of the upper portion of the bracket as used in Fig. 6;
  • Fig. 9 is an enlarged side elevational view of one end of one of the axles incorporated in this tandem axle framework with a portion thereof broken away and in section to illustrate further details of construction thereof;
  • Fig. 10 is a cross sectional view taken vertically through the axle end as illustrated in Fig. 9 and substantially as seen along the line 1010 therein;
  • Fig. 11 is a partial transverse cross sectional view of a portion of the walking beam structure substantially as viewed along the line 1111 in Fig. 10.
  • the tandem axle framework forming the constructional backbone for a wheeled carriage of a vehicle, which axle structure comprises the present invention, may best be understood by reference to Fig. 1.
  • the running gear frame consists of a pair of axles 1 and 2 positioned and spaced in predetermined parallel alignment by means of a pair of walking beams 3 and 4 through suitable flexible joints or unions such as 5, 6, 7 and 8.
  • Each of the axles includes aligned spindles 9-40 and 1112, which are specifically designed to receive dual wheel assemblies thereon whereby the framework illustrated in Fig. 1 is designed for movement over the roadways and other surfaces by such running gear as dual wheels.
  • each of the walking beams 3 and 4 includes a central bracket arrangement such as 13 and 14 which each comprise a flexible means for connecting the framework axle structure with a vehicle part.
  • this framework is an improvement over my prior Patent No. 2,456,719, issued December 21, 1948, and the uses of the present tandem axle structure are in general parallel to the uses of the tandem axle running gear shown and described in the aforementioned prior patent.
  • the axles 1 and 2 are each symmetrically constructed to each side of the median plane traversing the length thereof. Furthermore, these axles are also interchangeable and may also be used end for end by reason of their symmetry. Furthermore, the walking beams 3 and 4 are also interchangeable in the sense that they can be used at either side of the framework illustrated, and these walking beams are each also symmetrical with respect to a vertical plane cross bisecting the central point of the lengths of each of the beams. The walking beams 3 and 4 also present a structure which may be inverted to provide a variable connecting structure supplemented by the bracket constructions 13 and 14 to change the relationships between the entire framework and the connected vehicle part or parts.
  • the walking beam 3 is provided with a central aperture 15 having oppositely outwardly flared conical portions 16 and 17 to receive flexible bushings 18 and 19 that are sandwiched between interchangeable side brackets 20 and 21 and within the opening 15 of the walking beam 3.
  • a bracket shaft 22 3 has a shoulder portion extending between the adjacent bracket walls 23 and 24 with reduced threaded studs 25 and 26 extending through openings in the brackets 20 and 21 to receive collars 27 and 28 together with the -retaining nuts 29 and 30.
  • the nuts 29 and 30 of the main assembly fastening members of this structure each acts to compress the flexible or resilient bushings 18 and 19 between the confines of the bracket walls and the peripheral interior of the opening 15 of the Walking beam 3.
  • the bushings together act as frictional holding members to maintain the bracket structure in predetermined relation with respect to the walking beam While such bushings through their own resiliency permit flexing between the bracket structures andtheir connected parts and the walking beam proper. Certain adjustments between the connected parts are permissible by the screw arrangements 31 and 32 as best shown in Fig. 3 and as further described in my copending applicatiomSerial 'No. 267,137.
  • Spring 38 seats upon cooperative ledge members-39 .and-40 which form the bottom clamping members of the spring 38 coacting with plate 37 in this respect to hold -the-spring 38 within the bracket structure.
  • a spring such as-38 which is connected in conventional fashion to a vehicle, illustrates one means of connecting the tandem axle assembly with a vehicle.
  • Figs. '6, 7 and 8 illustrate another manner in which the bracket structure-previously described may be used in connecting the tandem axle with another vehicle part.
  • the brackets 20 and 21 have their upper portions cut off along a dot and dash line such as illustrated in Fig. 3 at 41, thus removing the upper boss portions-33'33v and 34-'34.
  • This provides flat stub ends 42.and 43 which cooperatively straddle a depending channel44' that is welded or otherwise secured to the underface- 45 of a-vehicle Ibeam 46.
  • the fastening is completed thr oughthe use of-bolts 47, which in this case pass through. aligned openings. such as 48 illustrated in Figs. 3, 6 .and.8 in the oppositely related bracket partsv 20. and 21.,
  • The/channel 44 is also provided with pairs of aligned openings 49 .and- 50 :for
  • Figs. 9 to l1:'inclusive one of :theaxle ends and the union structure 'sbetweenssuchaaxle and end and its adjacent walking; beam' portion may there best be seen. Since allathe axle endsare identical, the same reference numerals will be applied to the like parts thereof.
  • Each end of the axle 1 terminateswith a circular or ring housing 51 as seen in. Fig. 9, the housing having an opening 52 therethrough arranged about an axis 53 disposed transversely to the medianxaxis 54 ofthe axle per se and intersecting the same.
  • inversion of either axle 1 or 2 will keep the rink housings 51 inthe same longitudinal spaced relationships with respect to each other and obviously on the same longitudinal center line axis 54 of the axle.
  • Each ring housing 51 is "further'provi'ded with an offset 55 carrying a spindle bearing sleeve '56 centered about an axis 57 disposed parallel to the axle axis 54 butvertically spaced therefrom.
  • One 'of the Wheel spindles such as 9 is secured by shrinking or press fitwithin the opening 58 of sleeve 56 to project outwardly beyond the ring housing 51 and the attached or.
  • integ'ral:sleeve forming a cooperative right-angled cellular axle end of great strength 4 and durability.
  • Furthr web or Webs 60 are also introduced to strengthen the offset cellular axle structure.
  • annular ridges 61 and 61a encircle the free end 62 of sleeve 56 to counteract rupture and shearing of the sleeve 56 under reactional forces transmitted to the extended wheel spindle 9.
  • the latter as best seen in Figs. 2, 9 and 10, is fabricated with a hollow center 9a to reduce the Weight thereof while still providing a stiff enough shell or body section 9b to sustain the load under an adequately allowable factor of safety.
  • the terminal part 63 of the free end 62 of the sleeve 56 is externally square in cross section to receive a flange disc or plate'64 thereon.
  • Plate 64 has a corresponding square opening 65 and the plate and sleeve 56 are rigidly connected as by welding 66 or through outer suitable means to hold the plate in a predetermined fixed relation to the axle structure.
  • Plate 64 is normally, employed for carrying the non-rotatable mechanism of a wheel-assembly such as the brake structure and the hydraulic connections therefor.
  • the opening 52 in the ring housing 51 in conically flared oppositely outwardly as at 67 and 68 to constitute this portion of the ring housing as a cooperative part of one of the flexible joints or unions between an axle end and the adjacent end of one of the-walking beams 3.
  • Each walking beam end terminates with a longitudinal bearing shaft 69 disposed in axial alignment with the like shaft at the other end of the walking beam.
  • Large area abutment flanges 70 are interposed between the walking beams at their ends and the bearing shafts 69 with each of the latter being arranged for central insertion through an axle ring hous- -ing 51 on an axis such as 63 shown in Figs. 9 and 10.
  • Each shaft 69 has a reduced diameter threaded stud 71 to receive a bushing retainer or washer 72 of a size and shape as the abutment flange 70 on the beam.
  • Conically formed bushings 73 and 74, of resilient material, are
  • the bushings 73 and 74 frictionally keep the parts together in their designed relationships, and the surface contour of the bearing shaft 69 counteracts axial rotation of the walking. beam about an axis lengthwise of the beam and coincidentwith the two bearing shafts of thebeam.
  • the-surface of shaft 69 is flattened as at 75 in Fig.. 11 to attain this non-rotational feature.
  • Shaft 69 is also'made of tubular construction being I cored out at 76 to reduce weight and to still possess the necessary strength in a joint of this kind. Both the open ends of shafts 69 or of the spindles 9 may be suitably plugged to prevent entry of moisture or foreign materials when in use.
  • the bushings 18 and 19 are identical with each other and with bushings 73 and 74, while the bracket shafts 22 have the same cross-sectional shapes and contours as the bearing shafts 69 of the axle corner connections.
  • the walking beams 3 and 4 are invertible and can be used end
  • the axles are usable end for end and are also bodily interchangeable and may, ifdesired, be invertedfrom a raised spindle position as shown'in full lines in Fig. 9 to a lowered dotted line spindle position coincidentwith an axis 57a.
  • Various underslung arrangements are thus possible and various tandem axle clearance arrangements with respect to a vehicle body or part are also possible. Wheel sizes may be varied and clearances provided to suit such variations and changes.
  • the axles generally maintain a uniform I-beam section size throughout their lengths.
  • the walking beam bodies taper from a larger central size to narrower terminal ends at the axles, thereby reducing weight while providing means to accommodate the bracket connections and to establish central openings to receive resilient bushings of the same sizes and shapes at the resilient bushings at the corner joints of the axle framework of the wheeled unit.
  • a tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles.
  • a tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles at their ends connected in vertical offset relations with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindle, and said axles each being bodily invertible with respect to the walking beams at their respective points of connection to dispose said offset spindles of each axle in a different vertical relation with respect to the axle framework.
  • a tandem axle framework comprising a pair of axles, Walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each having bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles, and bracket units fixedly connected with said walking beams at their offset portions and having fastening parts for connection with a vehicle part, said brackets being arranged for inversion relatively to their beams upon inversion of said beams.
  • a framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset relation with respect to the axle center lines, beams to connect said axles at said ring housings, and a releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams.
  • a framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset reation with respect to the axle center lines, beams to connect said axles at said ring housings, and releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the-beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams, said beams each having vertically offset portions intermediate their lengths for connection with a vehicle, and said beams each being bodily invertible with respect to said axles at said releasable fastening units to displace the offset portions of the beams at a different vehicle attachment
  • a framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset relation with respect to the axle center lines, beams to connect said axles at said ring housings, and releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams, said beams each having vertically offset portions intermediate their lengths for connection with a vehicle, and said beams each being bodily invertible with respect to said axles at said releasable fastening units to displace the offset portions of the beams at a different vehicle attachment elevation and with respect
  • a tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles, said axles being constructed symmetrically end for end about a central transverse plane whereby said axles are bodily interchangeable and usable in end to end relation at either axle location, and said walking beams each comprising an end to end symmetrical structure taken in relation to a central transverse plane whereby said beams are bodily interchangeable and usable in end to end relation at either beam location of the axle framework.
  • a tandem axle framework comprising, in combination, a pair of axles, a pair of walking beams, said axles each comprising an I-beam terminating with hollow ring housings at the opposite ends thereof, hollow sleeves carried generally tangentially of said housings and in offset relation with respect to the axle, and hollow wheel spindles secured in said sleeves and extending outwardly therefrom and away from said ring housings for connection with the wheels, and said walking beams each comprising an I-beam having narrow ends and an enlarged mid-portion with a central aperture for the reception of vehicle connecting brackets, said walking beam ends including hollow stub members for disposition within said ring housings of the axle, and fastening units each adapted for cooperatively joining said stub members and ring housings, respectively, to connect the adjacent axle and walking beam parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rehabilitation Tools (AREA)
  • Handcart (AREA)

Description

Oct. 15, 1957 w. E. MARTIN TANDEM AXLECONSTRUCT'ION Original Filed Jan. 18. 1952 4 Shady-Sheet 1 Oct. 15, 1957 w. E. MARTIN Re. 24,
TANDEM AXLE CONSTRUCTION Original Filed Jan. ,18, 1952 4 Sheets-Sheet 2 IN VEN TOR.
Oct. 15, 1957 w. E. MARTIN R 24,374
TANDEM AXLE CONSTRUCTION Original Filed Jan. 18, 1952 4 sheets-finest s IN VEN TOR.
William Elia/ 57,72
Oct. 15, 1957 w. E. MARTIN 24,374
' TANDEM AXLE CONSTRUCTION Original Filed Jan. 18, 1952 4 Sheets-Sheet 4 INVENTOR.
[a 5 mzzmm Effarin United States Patent Ofifice m Re. 24,374 suecl Oct. 15, 1957 TANDEM AXLE CONSTRUCTION William E. Martin, Kewanee, Ill.
Original No. 2,749,141, dated June 5, 1956, Serial No. 267,136, January 18, 1952. Application for reissue July 24, 1957, Serial No. 674,285
12 Claims. (Cl. 280104.5)
Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This invention relates to the running gear of a vehicle and is more specifically directed to a tandem axle construction.
One of the objects of this invention is to provide a comparatively light weight axle structure for the framework of a wheeled carriage comprising a heavy duty load sustaining running gear for a vehicle.
Another object of the present invention is to provide a tandem axle construction utilizing interchangeable, reversible and invertible parts of simplified design to produce an easily assembled unit having variable possibilities to meet different requirements for different conditions of operation and/or use.
It is another object of the present invention to provide a tandem axle construction wherein the several parts are each designed for connection with adjacent parts through flexible joints or unions, each of the connecting portions of such adjacent parts including cooperative means to form the salient connecting elements of the resilient or flexible union interposed therebetween.
Another object of this invention is to provide such flexible joints or unions of the tandem axle structural parts that incorporate simplified fastening elements to easily assemble the main axle parts, and which elements are also usable interchangeably and at random to minimize assembly time and labor costs. These same cooperative fastening elements also simplify inspection and maintenance of the tandem axle structures not to overlook the ease of part replacements or repairs that might be required over periods of use under the heavy going to which such wheeled units are subjected.
Other objects and advantages relating to the tandem axle construction of the present invention shall hereinafter appear in the following detailed description having reference to the accompanying drawings forming a part of this specification.
In the drawings:
=Fig. 1 is a more or less diagrammatic perspective view of the entire tandem axle construction built in conformance with the principles relating to the present invention, portions of this perspective being shown in exploded form to better illustrate certain details of construction thereof;
Fig. 2 is a longitudinal cross sectional View of one of the wheel spindles embodied in the tandem axle structure illustrated in Fig. 1;
Fig. 3 is an enlarged fragmentary side elevational view of the central portion of the Walking beams of the tandem axle showing the bracket arrangement employed at this location for securing the axle to a vehicle part, Fig. 3 being substantially a view as seen along the line 3-3 in Fig. 1;
Fig. 4 is a side elevational view of a fragmentary portion of the walking beam and bracket assembly illustrated in Fig. 3 with certain portions thereof broken away and in section to illustrate further details of construction thereof;
Fig. 5 is a cross sectional view taken vertically through the walking beam and bracket assembly illustrated in Fig. 3 and substantially as viewed along the line 5-5 therein;
Fig. 6 is a cross sectional view taken vertically substantially along the line 66 in Fig. 3 showing the same bracket as applied to a different use in securing the tandem axle to a vehicle part;
Fig. 7 is a fragmentary side elevational view of the vehicle part which comprises a portion of the connection illustrated in Fig. 6;
Fig. 8 is a fragmentary detail side elevational view of the upper portion of the bracket as used in Fig. 6;
Fig. 9 is an enlarged side elevational view of one end of one of the axles incorporated in this tandem axle framework with a portion thereof broken away and in section to illustrate further details of construction thereof;
Fig. 10 is a cross sectional view taken vertically through the axle end as illustrated in Fig. 9 and substantially as seen along the line 1010 therein; and
Fig. 11 is a partial transverse cross sectional view of a portion of the walking beam structure substantially as viewed along the line 1111 in Fig. 10.
The tandem axle framework forming the constructional backbone for a wheeled carriage of a vehicle, which axle structure comprises the present invention, may best be understood by reference to Fig. 1. As there illustrated, the running gear frame consists of a pair of axles 1 and 2 positioned and spaced in predetermined parallel alignment by means of a pair of walking beams 3 and 4 through suitable flexible joints or unions such as 5, 6, 7 and 8. Each of the axles includes aligned spindles 9-40 and 1112, which are specifically designed to receive dual wheel assemblies thereon whereby the framework illustrated in Fig. 1 is designed for movement over the roadways and other surfaces by such running gear as dual wheels. in addition, each of the walking beams 3 and 4 includes a central bracket arrangement such as 13 and 14 which each comprise a flexible means for connecting the framework axle structure with a vehicle part. In general, this framework is an improvement over my prior Patent No. 2,456,719, issued December 21, 1948, and the uses of the present tandem axle structure are in general parallel to the uses of the tandem axle running gear shown and described in the aforementioned prior patent.
As seen in Fig. l, the axles 1 and 2 are each symmetrically constructed to each side of the median plane traversing the length thereof. Furthermore, these axles are also interchangeable and may also be used end for end by reason of their symmetry. Furthermore, the walking beams 3 and 4 are also interchangeable in the sense that they can be used at either side of the framework illustrated, and these walking beams are each also symmetrical with respect to a vertical plane cross bisecting the central point of the lengths of each of the beams. The walking beams 3 and 4 also present a structure which may be inverted to provide a variable connecting structure supplemented by the bracket constructions 13 and 14 to change the relationships between the entire framework and the connected vehicle part or parts. The more specific details of this invertible arrangement and the construction of the walking beams per se, together with the cooperative bracket structures 13 and 14, are discussed and discribed in my copending application, Serial No. 267,137, filed of even date herewith and now Patent No. 2,754,132 dated July 10, 1956.
Referring to Figs. 3, 4 and 5, the walking beam 3 is provided with a central aperture 15 having oppositely outwardly flared conical portions 16 and 17 to receive flexible bushings 18 and 19 that are sandwiched between interchangeable side brackets 20 and 21 and within the opening 15 of the walking beam 3. A bracket shaft 22 3 has a shoulder portion extending between the adjacent bracket walls 23 and 24 with reduced threaded studs 25 and 26 extending through openings in the brackets 20 and 21 to receive collars 27 and 28 together with the - retaining nuts 29 and 30. The nuts 29 and 30 of the main assembly fastening members of this structure each acts to compress the flexible or resilient bushings 18 and 19 between the confines of the bracket walls and the peripheral interior of the opening 15 of the Walking beam 3. The bushings together act as frictional holding members to maintain the bracket structure in predetermined relation with respect to the walking beam While such bushings through their own resiliency permit flexing between the bracket structures andtheir connected parts and the walking beam proper. Certain adjustments between the connected parts are permissible by the screw arrangements 31 and 32 as best shown in Fig. 3 and as further described in my copending applicatiomSerial 'No. 267,137.
The upper ends of the brackets 20..and. 21--are provided with suitable aperture'bosses 33-33 and 34-34 for the reception of bolts 3535 and 3636=which connect through apertures in a bearing plate 37 for the purpose of securing a vehicle-spring-SS into the bracket structure and for connecting the tandem axle unit with a vehicle part such as the spring 38. Spring 38 seats upon cooperative ledge members-39 .and-40 which form the bottom clamping members of the spring 38 coacting with plate 37 in this respect to hold -the-spring 38 within the bracket structure.
The foregoing connection with a spring such as-38, which is connected in conventional fashion to a vehicle, illustrates one means of connecting the tandem axle assembly with a vehicle. Figs. '6, 7 and 8 illustrate another manner in which the bracket structure-previously described may be used in connecting the tandem axle with another vehicle part. As seen in'Fig. 6, the brackets 20 and 21 have their upper portions cut off along a dot and dash line such as illustrated in Fig. 3 at 41, thus removing the upper boss portions-33'33v and 34-'34. This provides flat stub ends 42.and 43 which cooperatively straddle a depending channel44' that is welded or otherwise secured to the underface- 45 of a-vehicle Ibeam 46. The fastening is completed thr oughthe use of-bolts 47, which in this case pass through. aligned openings. such as 48 illustrated in Figs. 3, 6 .and.8 in the oppositely related bracket partsv 20. and 21., The/channel 44 is also provided with pairs of aligned openings 49 .and- 50 :for
. receiving the fastening-bolts 47 therethrough.
Referring to Figs. 9 to l1:'inclusive,. one of :theaxle ends and the union structure 'sbetweenssuchaaxle and end and its adjacent walking; beam' portion may there best be seen. Since allathe axle endsare identical, the same reference numerals will be applied to the like parts thereof. Each end of the axle 1 terminateswith a circular or ring housing 51 as seen in. Fig. 9, the housing having an opening 52 therethrough arranged about an axis 53 disposed transversely to the medianxaxis 54 ofthe axle per se and intersecting the same. Thus, inversion of either axle 1 or 2 will keep the rink housings 51 inthe same longitudinal spaced relationships with respect to each other and obviously on the same longitudinal center line axis 54 of the axle.
Each ring housing 51 is "further'provi'ded with an offset 55 carrying a spindle bearing sleeve '56 centered about an axis 57 disposed parallel to the axle axis 54 butvertically spaced therefrom. One 'of the Wheel spindles such as 9 is secured by shrinking or press fitwithin the opening 58 of sleeve 56 to project outwardly beyond the ring housing 51 and the attached or. integ'ral:sleeve forming a cooperative right-angled cellular axle end of great strength 4 and durability. Furthr web or Webs 60 are also introduced to strengthen the offset cellular axle structure.
One or more annular ridges 61 and 61a encircle the free end 62 of sleeve 56 to counteract rupture and shearing of the sleeve 56 under reactional forces transmitted to the extended wheel spindle 9. The latter, as best seen in Figs. 2, 9 and 10, is fabricated with a hollow center 9a to reduce the Weight thereof while still providing a stiff enough shell or body section 9b to sustain the load under an adequately allowable factor of safety.
The terminal part 63 of the free end 62 of the sleeve 56 is externally square in cross section to receive a flange disc or plate'64 thereon. Plate 64 has a corresponding square opening 65 and the plate and sleeve 56 are rigidly connected as by welding 66 or through outer suitable means to hold the plate in a predetermined fixed relation to the axle structure. Plate 64 is normally, employed for carrying the non-rotatable mechanism of a wheel-assembly such as the brake structure and the hydraulic connections therefor.
As best seen in Fig. 10, the opening 52 in the ring housing 51 in conically flared oppositely outwardly as at 67 and 68 to constitute this portion of the ring housing as a cooperative part of one of the flexible joints or unions between an axle end and the adjacent end of one of the-walking beams 3. Each walking beam end terminates with a longitudinal bearing shaft 69 disposed in axial alignment with the like shaft at the other end of the walking beam. Large area abutment flanges 70 are interposed between the walking beams at their ends and the bearing shafts 69 with each of the latter being arranged for central insertion through an axle ring hous- -ing 51 on an axis such as 63 shown in Figs. 9 and 10.
Each shaft 69 has a reduced diameter threaded stud 71 to receive a bushing retainer or washer 72 of a size and shape as the abutment flange 70 on the beam. Conically formed bushings 73 and 74, of resilient material, are
r for end and are bodily interchangeable.
..beams and theaxles of I-beamcrosssections.
carried upon the shaft 69 and extend outwardly from the sides ofthe ring housing 51 for compression between abutment-70 and the retainer or washer 72 as may be instituted by the fastening nut 73' when drawn up to a predetermined amount to rigidly connect all the several parts of this flexible joint or union into the relative cooperative positions best illustrated in Fig. 10.
The bushings 73 and 74 frictionally keep the parts together in their designed relationships, and the surface contour of the bearing shaft 69 counteracts axial rotation of the walking. beam about an axis lengthwise of the beam and coincidentwith the two bearing shafts of thebeam. Thus, the-surface of shaft 69 is flattened as at 75 in Fig.. 11 to attain this non-rotational feature.
Shaft 69 is also'made of tubular construction being I cored out at 76 to reduce weight and to still possess the necessary strength in a joint of this kind. Both the open ends of shafts 69 or of the spindles 9 may be suitably plugged to prevent entry of moisture or foreign materials when in use.
-The bushings 18 and 19 are identical with each other and with bushings 73 and 74, while the bracket shafts 22 have the same cross-sectional shapes and contours as the bearing shafts 69 of the axle corner connections. The walking beams 3 and 4 are invertible and can be used end The axles are usable end for end and are also bodily interchangeable and may, ifdesired, be invertedfrom a raised spindle position as shown'in full lines in Fig. 9 to a lowered dotted line spindle position coincidentwith an axis 57a. Various underslung arrangements are thus possible and various tandem axle clearance arrangements with respect to a vehicle body or part are also possible. Wheel sizes may be varied and clearances provided to suit such variations and changes.
a As a further weightsaving factor, 'both of the walking The axles generally maintain a uniform I-beam section size throughout their lengths. The walking beam bodies taper from a larger central size to narrower terminal ends at the axles, thereby reducing weight while providing means to accommodate the bracket connections and to establish central openings to receive resilient bushings of the same sizes and shapes at the resilient bushings at the corner joints of the axle framework of the wheeled unit.
Changes in the exact arrangement and combination of elements are contemplated without departure from the fundamental concept of the present invention. Such modifications shall, however, be governed by the limitations presented by the breadth and scope of the language in the following claims.
What I claim is:
1. A tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles.
2. A tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles at their ends connected in vertical offset relations with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindle, and said axles each being bodily invertible with respect to the walking beams at their respective points of connection to dispose said offset spindles of each axle in a different vertical relation with respect to the axle framework.
3. A tandem axle framework comprising a pair of axles, Walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each having bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles, and bracket units fixedly connected with said walking beams at their offset portions and having fastening parts for connection with a vehicle part, said brackets being arranged for inversion relatively to their beams upon inversion of said beams.
4. A framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset relation with respect to the axle center lines, beams to connect said axles at said ring housings, and a releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams.
5. A framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset reation with respect to the axle center lines, beams to connect said axles at said ring housings, and releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the-beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams, said beams each having vertically offset portions intermediate their lengths for connection with a vehicle, and said beams each being bodily invertible with respect to said axles at said releasable fastening units to displace the offset portions of the beams at a different vehicle attachment elevation and with respect to the general horizontal plane of the framework of the axle.
6. A framework for a tandem axle including a pair of axles, ring housings at the ends of each axle disposed upon the longitudinal center line of said axle, hollow wheel spindle sleeves carried generally tangentially upon each of said ring housings and in offset relation with respect to the axle center lines, beams to connect said axles at said ring housings, and releasable fastening units interposed between said ring housings and the adjacent ends of the beams to connect the axles with the beams, said axles each being bodily invertible at their connections with said beams through said releasable fastening units whereby said spindle sleeves may be positioned at different elevations with respect to the general plane of the framework of said axle and in relation to the axle connecting beams, said beams each having vertically offset portions intermediate their lengths for connection with a vehicle, and said beams each being bodily invertible with respect to said axles at said releasable fastening units to displace the offset portions of the beams at a different vehicle attachment elevation and with respect to the general horizontal plane of the framework of the axle, and a bracket unit connectible with each of said offset portions of said beams and having fastening parts for connection with a vehicle, said bracket units each being bodily invertible with respect to their associated beams.
7. A tandem axle framework comprising a pair of axles, walking beams connected with said axles at points disposed in a common plane, said axles having wheel spindles disposed in predetermined positions with respect to said common plane, said walking beams each being bodily offset in a vertical direction with respect to said common plane and intermediate their lengths, and said beams being bodily invertible about their axle connections to dispose the offset beam portions in another elevational offset position with respect to said common plane and in respect to the positions of said spindles, said axles being constructed symmetrically end for end about a central transverse plane whereby said axles are bodily interchangeable and usable in end to end relation at either axle location, and said walking beams each comprising an end to end symmetrical structure taken in relation to a central transverse plane whereby said beams are bodily interchangeable and usable in end to end relation at either beam location of the axle framework.
8. A tandem axle framework comprising, in combination, a pair of axles, a pair of walking beams, said axles each comprising an I-beam terminating with hollow ring housings at the opposite ends thereof, hollow sleeves carried generally tangentially of said housings and in offset relation with respect to the axle, and hollow wheel spindles secured in said sleeves and extending outwardly therefrom and away from said ring housings for connection with the wheels, and said walking beams each comprising an I-beam having narrow ends and an enlarged mid-portion with a central aperture for the reception of vehicle connecting brackets, said walking beam ends including hollow stub members for disposition within said ring housings of the axle, and fastening units each adapted for cooperatively joining said stub members and ring housings, respectively, to connect the adjacent axle and walking beam parts.
1 -9. A tandem-j-axle-framework-comprising; in combination, a pair of axles, a pair ofwalking beams, said axles each comprising an I-beam terminating with hollow ring housings at the opposite ends thereof, hollow sleeves carried generally tangentially of said housings and inoffset relation with respect to the axle, andhollow wheel spindles secured in said sleeves and extending outwardly therefrom and away from said ring housings for connection with thewheels, and said walking beams each comprising an I- beam having narrow ends and an enlargedmid-portion with a central aperture for the reception of vehicle connecting brackets, said walking beam ends including hollow stub members for disposition within said ring housings of the axle, and resilient fastening units each adapted for connecting the hollow stub members with the ring housings, respectively, to connect the adjacent axle and Walking beam parts, said fastening units each comprising resilient bushings formed to fit the internal contour of a ringhousing, said bushings having apertures to fit a hollow stub member, said bushings extending outwardly of the sides of the ring housing, said adjacent walking beam end having an abutment disc to engage the bushings at one side, a washer at the other side of the bushings, and screw means to draw said abutment and washer together to compress the resilient bushings and' to expand the same in said ring housing to firmly join the adjacently disposed parts and to provide a flexible connection between the axle and walking beam.
10. A tandem axle framework comprising at least one pair of axle members, walking beam members for said" '*bodilyfoffset intermediate.their .ends and in relationxito -=said common 'plane locationof-said fastening units,- and 7 anyone of-said axle members and said-walkingbeam members.
11. A tandem axle framework of the character vset forth in claim 10, but wherein bracket assemblies are fastened to andconnected with said oflset portions of said certain of said-members and adapted for rigid connection with a vehicle structure to thereby mountsaid latter members in a given relation with respect to said vehicle structure.
12. A tandem 'axle framework of the character set forth in claim 1l, but wherein said fastening units include resilient means to-permit limited relative flexing between-the connected members, and wherein said bracket assemblies include resilient means to allow limited relative flexing between such brackets and the associated con- --nected members.
References Citedin the. file of this patent or the original patent F'UNITED STATES PATENTS 1,243,401 .Griswold Oct. 16, 1917 11,739,450 Eageol --,Dec. 10, 1929 1,946,624 Irish Feb. 13, 1934 2,445,686 Nabors July 20, 1948 2,488,002 Carraher Nov. 15, 1949 1,510,172 f Double et al. June 6, 1950 2,523,954 Jungwirth Sept. 26, 1950 2,547,993 Benz Apr. 10. 1951
US24374D 1952-01-18 Tandem axle construction Expired USRE24374E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US267136A US2749141A (en) 1952-01-18 1952-01-18 Tandem axle construction

Publications (1)

Publication Number Publication Date
USRE24374E true USRE24374E (en) 1957-10-15

Family

ID=23017468

Family Applications (2)

Application Number Title Priority Date Filing Date
US24374D Expired USRE24374E (en) 1952-01-18 Tandem axle construction
US267136A Expired - Lifetime US2749141A (en) 1952-01-18 1952-01-18 Tandem axle construction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US267136A Expired - Lifetime US2749141A (en) 1952-01-18 1952-01-18 Tandem axle construction

Country Status (1)

Country Link
US (2) US2749141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968055A (en) * 1987-07-28 1990-11-06 Reilly Bruce J Apparatus to vary axle orientation
USRE34659E (en) * 1987-07-28 1994-07-12 Reilly; Bruce J. Apparatus to vary axle orientation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991065A (en) * 1960-01-21 1961-07-04 Robert A Jewell Tandem rocker mount

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1243401A (en) * 1917-03-14 1917-10-16 Marius E Griswold Vehicle-axle.
USRE17889E (en) * 1923-04-23 1930-12-02 Road vehicle
US1946624A (en) * 1932-07-01 1934-02-13 Irish Louis Herman Axle mounting
US2488002A (en) * 1945-10-17 1949-11-15 Lawrence Leahy Trailer frame and wheel mounting therefor
US2445686A (en) * 1946-04-06 1948-07-20 William C Nabors Tandem axle assembly
US2510172A (en) * 1947-02-06 1950-06-06 Euclid Road Machinery Company Tandem axle construction
US2523954A (en) * 1947-02-12 1950-09-26 Jungwirth John All universal tandem rear end for trucks, tractors, and trailers
US2547993A (en) * 1947-05-17 1951-04-10 Benz August Spring and axle assembly for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968055A (en) * 1987-07-28 1990-11-06 Reilly Bruce J Apparatus to vary axle orientation
USRE34659E (en) * 1987-07-28 1994-07-12 Reilly; Bruce J. Apparatus to vary axle orientation

Also Published As

Publication number Publication date
US2749141A (en) 1956-06-05

Similar Documents

Publication Publication Date Title
US1640179A (en) Railway-car truck
US3618533A (en) Elastomeric railway vehicle spring suspension
US2995383A (en) Rubber vehicle suspension
US3545787A (en) Vehicle suspension
US3737174A (en) Full axle compression rubber spring suspension for vehicles
US3687477A (en) Vehicle suspension
USRE24374E (en) Tandem axle construction
US3411806A (en) Suspension system for trailers
US2742302A (en) Arm and joint for connecting a vehicle axle and frame
US2665142A (en) Vehicle having a removable section
US3315977A (en) Vehicle axle suspension
US2660450A (en) Beam suspension for vehicles
US3495848A (en) Spring suspension for vehicle axle
US2387874A (en) Load bearing spring assembly for trucks or the like
US3794343A (en) Independent wheel vehicle spring suspension
US3007713A (en) Fabricated equalizer beam
US2095344A (en) Automobile
US3516365A (en) Motorized railway car truck
USRE23428E (en) Railroad car truck
US2760784A (en) Detachable rear axle unit
US2316374A (en) Vehicle supporting truck
US2639166A (en) Trailer truck tandem axle spring suspension
US2599469A (en) Differential wheel unit for trailers or the like
US3105700A (en) Three wheel-axis suspension system
US2280016A (en) Vehicle frame