USH819H - Palladium-109 labeled anti-melanoma monoclonal antibodies - Google Patents

Palladium-109 labeled anti-melanoma monoclonal antibodies Download PDF

Info

Publication number
USH819H
USH819H US06/605,439 US60543984A USH819H US H819 H USH819 H US H819H US 60543984 A US60543984 A US 60543984A US H819 H USH819 H US H819H
Authority
US
United States
Prior art keywords
palladium
melanoma
antibody
monoclonal antibodies
labeled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US06/605,439
Inventor
Suresh C. Srivastava
Rashid A. Fawwaz
Soldano Ferrone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Energy
Original Assignee
US Department of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Energy filed Critical US Department of Energy
Priority to US06/605,439 priority Critical patent/USH819H/en
Assigned to ENERGY, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF reassignment ENERGY, THE UNITED STATES OF AMERICA AS REPRESENTED BY THE DEPARTMENT OF ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FERRONE, SOLDANO, FAWWAZ, RASHID A., SRIVASTAVA, SURESH C.
Application granted granted Critical
Publication of USH819H publication Critical patent/USH819H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1093Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Definitions

  • the Figure shows the in vitro binding of palladium-109 labeled anti-Human High Molecular Weight Melanoma Associated Antigen Monoclonal Antibody 225.28S to human COLO 38 melanoma cells and to lymphoma cells in times culture.
  • the present invention consists of new radiolabeled monoclonal antibodies, the method of preparing these material, and there use in the radiotherapy of melanoma. More specifically the present invention is directed to the use of anti-melanoma monoclonal antibodies which have been chelate-conjugated and radiolabeled as carriers of radioactivity to the site of a tumor for the purpose of inducing tumor therapy.
  • the radionuclide employed is palladium-109, which is a predominantly beta-emitting radionuclide with a half-life of 13.4 hours, a beta emission of 1.028 MeV maximum, and a scatter area of 2 mm.
  • Palladium-109 is available in meaningful quantities and can be obtained in almost carrier-free form, a necessity for human application.
  • the palladium-109 that has been used in the experimental work discussed herein has been produced at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. This material exhibits a specific activity at the end of bombardment of approximately 1 Curie per milligram.
  • the palladium-109 radionuclide will be produced at the Brookhaven Linac Isotope Production Facility (BLIP).
  • BLIP Brookhaven Linac Isotope Production Facility
  • the material that will be produced at the BLIP will exhibit higher specific activity and will be essentially carrier free.
  • the bifunctional chelate employed is diethylenetriamine pentaacetic acid (DTPA) which can be coupled to the monoclonal antibody using several different synthetic approaches.
  • DTPA diethylenetriamine pentaacetic acid
  • One approach involves the use of mixed anhydrides and this synthetic method has been reported by Krejcarek, et al. in a paper entitled “Covalent Attachment of Chelating Groups to Macromolecules", Biochemical and Biophysical Research Communications, 77 581-585 (1977).
  • the second approach to linking the DTPA to the monoclonal antibody is the cyclic anhydride approach reported by E. Kehuan, et al., Journal of Pharmacological Science, 64, 704-706 (1975), and by Hnatowich, et al.
  • the monoclonal antibodies employed in the present invention are a family of antibodies to human high molecular weight melanoma associated antigens. This family of monoclonal antibodies contains six distinct antibodies designated by the following identifying numbers: 138.13S, 225.28S, 653.40S, 763.24T, 376.96S, and 465.12S. Several of these antibodies recognize one determinant while others recognize more than one. The high degree of heterogeneity exhibited by the tumor can be overcome to some extent by using a combination of several of the above monoclonal antibodies which will then recognize various antigens or determinants. The preparation of the monoclonal antibody 653.40S is reported by Ferrone, et al.
  • the palladium-109 labeled monclonal antibodies of the present invention are useful in the therapeutic treatment of tumors.
  • the mammalian subject in need of such therapeutic treatment may be treated with the palladium-109 labeled material by administration of this material through intravenous infusion.
  • the palladium-109 labeled monoclonal antibodies may be infused very slowly, preferably over a period of about one hour, as pure material or they may be diluted with saline or dextrose for infusion.
  • the administration regimen to be followed will depend on the individual patient. In general, about 150 millicuries bound to 100 ⁇ g-2 mg of the antibody should provide the therapeutic dose for most human patients.
  • the palladium-109 labeled monoclonal antibodies will upon administration seek out the site of the melanoma and deliver to the tumor the prescribed dose of radiation.
  • These radiopharmaceutical compositions will seek out both the primary and secondary melanoma sites, that is the primary site of the tumor and any secondary sites resulting from metastasis.
  • Hybridomas were constructed with the murine myeloma cell line Sp2/0-Ag-14 and splenocytes from mice immunized with the melanoma cell line M21 as described in Ferrone, et al., Transplantation Proceedings, 12, 380-383 (1980).
  • the hybridomas secreting the monoclonal antibody 225.28S have been subcloned and propagated in vitro and in vivo.
  • the monoclonal antibody 225.28S is cell membrane reactive.
  • the monoclonal antibody 465.12S was also prepared. This monoclonal antibody is cytoplasm reactive. Both the 225.28S and 485.12S monoclonal antibodies are of the IgG2a subclass and were purified from mouse ascites fluid by adsorption/elution from protein A Sepharose 4B (purchased from Pharmacia, Piscataway, N.J.).
  • the monoclonal antibody 653.40S was also prepared. This monoclonal antibody falls into the IgGI subclass.
  • DTPA anhydride was added to the antibody at a pH of 7.0 (HEPES, 0.05M) and incubated for 30 minutes at room temperature.
  • the antibody concentration was kept between 0.2 and 1.5 milligrams per milliliter, and the ratio of anhydride to antibody was either 1:1 or 10:1.
  • the resulting mixture was dialyzed against two one-liter batches of 0.05M HEPES (pH 7.0) at 4° C. for two days.
  • the mixed anhydride method a 300 to 2000 fold excess of the anhydride was added to the antibody at a pH of 7 to 8 (0.1M NaHCO 3 ) and incubation carried out at 4° C. overnight.
  • the protein concentration varied between 0.2 and 1.5 milligrams per milliliter.
  • the mixture was then dialyzed against two one-liter batches of a 0.1M acetate buffer, pH 5.0 (or with 0.1M glycine/HCl buffer at pH 3.5) at 4° C. for two days.
  • Palladium-109 chloride was prepared by bombarding palladium-108 chloride in a sealed quartz ampule in the Brookhaven High Flux Beam Reactor (8 ⁇ 10 14 n s -1 cm -2 ) for 24 hours. Typically, approximately two milligrams of palladium as palladium-108 chloride provided over two Curies of palladium-109 at the end of bombardment. The material was dissolved in either 2.0 milliliters DMSO or in 1 ml of a 0.1M pH5 acetate buffer by gentle heating and stirring.
  • This column method provided an effective separation of the desired palladium-109 labeled monoclonal antibody DTPA conjugate from unwanted impurities found in the preparation.
  • the yield varied between 6 and 10 percent depending on the amount of palladium-109 used and the amount of the monoclonal antibody DTPA solution.
  • the specific activity of these preparations was 0.6-1.0 ⁇ Ci of palladium-109/ ⁇ g protein.
  • the labeling yields and the specific activity of the preparations can be increased much further by employing carrier-free palladium-109.
  • Tumor Cell Lines Human melanoma cells (COLO-38) were cultured in RPMI 1640 medium with L-glutamycin. Solid tumors were produced in athymic nude mice (Swiss/Webster,nu/nu) by injection of 10 7 melanoma cells in the flank. The tumors were allowed to reach a size of approximately 5 mm in diameter prior to experimentation.
  • FIG. 1 demonstrates that Pd-109-MoAB 225.28S achieved significantly (P ⁇ 0.001) higher melanoma cell binding in tissue culture (41.3% in the plateau region) than with control lymphoma cells (3.1%).
  • Decreased liver and renal uptake and enhanced tumor to background ratios can be achieved by using carrier free palladium-109, increasing the binding efficiency (under different conditions and using other chelating agents) of palladium-109 to antibody, and by using antibody fragments labeled with palladium-109.

Abstract

Palladium-109, a beta-emitting radionuclide, when chelated to anti-melanoma monoclonal antibody demonstrates high uptake in melanoma and thus is useful for tumor therapy.

Description

The U. S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.
BACKGROUND OF THE INVENTION
Recently, monoclonal antibodies labeled with the radionuclide iodine-131 have been used for the detection of tumors. Goldenberg reported the imaging of tumors using monoclonal antibodies [Journal of Nuclear Medicine, 24, 360-362 (1983)] while Larson, et al. reported melanoma imaging using iodine-131 labeled monoclonal antibodies [Journal of Nuclear Medicine, 24, 123-129 (1983)]. One of the problems that has been encountered with such radionuclide labeled monoclonal antibodies has been that the labeling inactivates the antibody because the radionuclide attaches at or near the antigen-binding sites. One approach to overcoming this problem is to employ bi-functional chelates that are capable of covalently binding to the antibody and also complexing with a metallic radionuclide. Krejcarek, et al. discuss the covalent attachment of chelating groups to macromolecules, [Biochemical and Biophysics Research Communications, 77, 581-585 (1977)].
DESCRIPTION OF THE DRAWING
The Figure shows the in vitro binding of palladium-109 labeled anti-Human High Molecular Weight Melanoma Associated Antigen Monoclonal Antibody 225.28S to human COLO 38 melanoma cells and to lymphoma cells in times culture.
DETAILED DESCRIPTION OF THE INVENTION
The present invention consists of new radiolabeled monoclonal antibodies, the method of preparing these material, and there use in the radiotherapy of melanoma. More specifically the present invention is directed to the use of anti-melanoma monoclonal antibodies which have been chelate-conjugated and radiolabeled as carriers of radioactivity to the site of a tumor for the purpose of inducing tumor therapy.
The radionuclide employed is palladium-109, which is a predominantly beta-emitting radionuclide with a half-life of 13.4 hours, a beta emission of 1.028 MeV maximum, and a scatter area of 2 mm. Palladium-109 is available in meaningful quantities and can be obtained in almost carrier-free form, a necessity for human application. The palladium-109 that has been used in the experimental work discussed herein has been produced at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. This material exhibits a specific activity at the end of bombardment of approximately 1 Curie per milligram. For future human application, it is intended that the palladium-109 radionuclide will be produced at the Brookhaven Linac Isotope Production Facility (BLIP). The material that will be produced at the BLIP will exhibit higher specific activity and will be essentially carrier free.
The bifunctional chelate employed is diethylenetriamine pentaacetic acid (DTPA) which can be coupled to the monoclonal antibody using several different synthetic approaches. One approach involves the use of mixed anhydrides and this synthetic method has been reported by Krejcarek, et al. in a paper entitled "Covalent Attachment of Chelating Groups to Macromolecules", Biochemical and Biophysical Research Communications, 77 581-585 (1977). The second approach to linking the DTPA to the monoclonal antibody is the cyclic anhydride approach reported by E. Kehuan, et al., Journal of Pharmacological Science, 64, 704-706 (1975), and by Hnatowich, et al. in "Radioactive Labeling of Antibody: A Simple and Efficient Method", Science, 220, 613-615 (1983). The cyclic anhydride approach for the preparation of the chelate-conjugated monoclonal antibodies of the present invention is preferred. Other chelating agents may be used in place of the DTPA. For example, several polyamine-carboxylate compounds, 8-hydroxy quinoline and its derivatives, dimethylglyoxime, and desferrioxamine, are also suitable chelating agents for conjugation to the monoclonal antibody for attaching the metallic radionuclide palladium-109.
The monoclonal antibodies employed in the present invention are a family of antibodies to human high molecular weight melanoma associated antigens. This family of monoclonal antibodies contains six distinct antibodies designated by the following identifying numbers: 138.13S, 225.28S, 653.40S, 763.24T, 376.96S, and 465.12S. Several of these antibodies recognize one determinant while others recognize more than one. The high degree of heterogeneity exhibited by the tumor can be overcome to some extent by using a combination of several of the above monoclonal antibodies which will then recognize various antigens or determinants. The preparation of the monoclonal antibody 653.40S is reported by Ferrone, et al. in the Journal of the National Cancer Institute, 67, 591-601 (1981). The preparation of the monclonal antibodies 225.28S and 465.12S is reported by Ferrone, et al. in the International Journal of Cancer, 28, 293-300 (1981). The other members of this monoclonal antibody family are prepared following the procedures and purification methods reported in both of the cited Ferrone, et al. papers.
It has been discovered that palladium-109 when chelated to anti-melanoma monoclonal antibodies demonstrates high uptake in human melanoma. Therefore, these novel palladium-109 labeled, chelate conjugated monoclonal antibodies are therapeutically useful for tumor therapy. It is recognized that the tumor therapy attributes of the material might also be substantially enhanced by using antibody fragments to increase blood clearance, decrease bone marrow toxicity, and to decrease normal tissue uptake.
The palladium-109 labeled monclonal antibodies of the present invention are useful in the therapeutic treatment of tumors. For this purpose, the mammalian subject in need of such therapeutic treatment may be treated with the palladium-109 labeled material by administration of this material through intravenous infusion. The palladium-109 labeled monoclonal antibodies may be infused very slowly, preferably over a period of about one hour, as pure material or they may be diluted with saline or dextrose for infusion. The administration regimen to be followed will depend on the individual patient. In general, about 150 millicuries bound to 100 μg-2 mg of the antibody should provide the therapeutic dose for most human patients. The palladium-109 labeled monoclonal antibodies will upon administration seek out the site of the melanoma and deliver to the tumor the prescribed dose of radiation. These radiopharmaceutical compositions will seek out both the primary and secondary melanoma sites, that is the primary site of the tumor and any secondary sites resulting from metastasis.
EXAMPLE 1 Preparation of the Monoclonal Antibodies
Hybridomas were constructed with the murine myeloma cell line Sp2/0-Ag-14 and splenocytes from mice immunized with the melanoma cell line M21 as described in Ferrone, et al., Transplantation Proceedings, 12, 380-383 (1980). The hybridomas secreting the monoclonal antibody 225.28S have been subcloned and propagated in vitro and in vivo. The monoclonal antibody 225.28S is cell membrane reactive.
Following exactly the same procedure as described above, the monoclonal antibody 465.12S was also prepared. This monoclonal antibody is cytoplasm reactive. Both the 225.28S and 485.12S monoclonal antibodies are of the IgG2a subclass and were purified from mouse ascites fluid by adsorption/elution from protein A Sepharose 4B (purchased from Pharmacia, Piscataway, N.J.).
Following the specific procedures described above, the monoclonal antibody 653.40S was also prepared. This monoclonal antibody falls into the IgGI subclass.
EXAMPLE 2 Preparation of the Monoclonal Antibody - DTPA Conjugate
Two methods were used for conjugating DTPA to the antibody; the mixed anhydride method and the cyclic anhydride method. In the latter method, the DTPA anhydride was added to the antibody at a pH of 7.0 (HEPES, 0.05M) and incubated for 30 minutes at room temperature. The antibody concentration was kept between 0.2 and 1.5 milligrams per milliliter, and the ratio of anhydride to antibody was either 1:1 or 10:1. The resulting mixture was dialyzed against two one-liter batches of 0.05M HEPES (pH 7.0) at 4° C. for two days. In the mixed anhydride method, a 300 to 2000 fold excess of the anhydride was added to the antibody at a pH of 7 to 8 (0.1M NaHCO3) and incubation carried out at 4° C. overnight. The protein concentration varied between 0.2 and 1.5 milligrams per milliliter. The mixture was then dialyzed against two one-liter batches of a 0.1M acetate buffer, pH 5.0 (or with 0.1M glycine/HCl buffer at pH 3.5) at 4° C. for two days.
EXAMPLE 3 Labeling of the Chelate Conjugated Monoclonal
Antibody With Palladium-109
Palladium-109 chloride was prepared by bombarding palladium-108 chloride in a sealed quartz ampule in the Brookhaven High Flux Beam Reactor (8×1014 n s-1 cm-2) for 24 hours. Typically, approximately two milligrams of palladium as palladium-108 chloride provided over two Curies of palladium-109 at the end of bombardment. The material was dissolved in either 2.0 milliliters DMSO or in 1 ml of a 0.1M pH5 acetate buffer by gentle heating and stirring. An aliquot of this solution (10-20 μl) was transferred into a 10 ml multi-injection bottle containing 1 ml of a pH 5.0, 0.1M acetate buffer and 0.3 ml of the monoclonal antibody DTPA conjugate (1.43 mg/ml in acetate buffer). The mixture was incubated at 37° for two hours and then applied onto a 0.9×100 cm Sephadex G-150 column for purification. The eluting buffer consisted of 0.05 M HEPES, pH 7.0. The radioactivity of the fraction was assayed using a dose calibrator and the appropriate fractions combined and concentrated to reduce the volume. This column method provided an effective separation of the desired palladium-109 labeled monoclonal antibody DTPA conjugate from unwanted impurities found in the preparation. The yield varied between 6 and 10 percent depending on the amount of palladium-109 used and the amount of the monoclonal antibody DTPA solution. The specific activity of these preparations was 0.6-1.0 μCi of palladium-109/ μg protein. The labeling yields and the specific activity of the preparations can be increased much further by employing carrier-free palladium-109.
EXAMPLE 4
In Vitro Binding Assay: To determine the melanoma binding affinity of the Pd--09 labeled anti-melanoma monoclonal antibody, cultured COLO-38 human melanoma cells were incubated for one hour at room temperature with the radiolabeled antibody. Cultured human lymphoma cells incubated in a similar manner were used as a control. The cells were washed three times and the binding of antibody to cells was determined in triplicate at antibody dilutions ranging from 1:1 to 1:128.
              TABLE 1                                                     
______________________________________                                    
Percent of Administered Pd-109 MoAb 225.28s Per Gram Tissue               
       Hours Post Injection                                               
13               24         48                                            
______________________________________                                    
Blood   0.50 ± 0.03                                                    
                     0.51 ± 0.04                                       
                                0.30 ± 0.04                            
Tumor   19.99 ± 0.54                                                   
                     19.51 ± 1.46                                      
                                18.51 ± 2.11                           
Lung    1.46 ± 0.07                                                    
                     0.94 ± 0.12                                       
                                0.64 ± 0.05                            
Liver   5.04 ± 0.41                                                    
                     4.54 ± 0.44                                       
                                4.26 ± 0.18                            
Spleen  2.69 ± 0.16                                                    
                     3.15 ± 0.40                                       
                                3.01 ± 0.11                            
Kidney  13.67 ± 0.46                                                   
                     11.15 ± 1.50                                      
                                10.05 ± 1.16                           
Muscle  0.51 ± 0.05                                                    
                     0.55 ± 0.29                                       
                                0.32 ± 0.07                            
Bone    1.35 ± 0.08                                                    
                     1.48 ± 0.18                                       
                                1.31 ± 0.14                            
______________________________________                                    
Tumor Cell Lines: Human melanoma cells (COLO-38) were cultured in RPMI 1640 medium with L-glutamycin. Solid tumors were produced in athymic nude mice (Swiss/Webster,nu/nu) by injection of 107 melanoma cells in the flank. The tumors were allowed to reach a size of approximately 5 mm in diameter prior to experimentation.
In Vitro Binding of Pd-109-MoAB 225.28S to Melanoma: FIG. 1 demonstrates that Pd-109-MoAB 225.28S achieved significantly (P <0.001) higher melanoma cell binding in tissue culture (41.3% in the plateau region) than with control lymphoma cells (3.1%).
EXAMPLE 5 In Vivo Binding of Palladium-109 Monoclonal Antibody 225.28S to Melanoma Tumor
Three groups of athymic nude mice bearing COLO 38 human melanoma tumor (n=3-6/group) were injected with 10 μCi of Pd-109-MoAb 225.28S and sacrificed 13,24 and 48 hours later, respectively, for determination of radioactivity (% injected dose/g). As shown in Table 1, the concentration of Pd-109 MoAb 25.28S in melanoma at different periods after administration of radioactivity was uniformly higher (P <0.001) than achieved in other tissues.
Decreased liver and renal uptake and enhanced tumor to background ratios can be achieved by using carrier free palladium-109, increasing the binding efficiency (under different conditions and using other chelating agents) of palladium-109 to antibody, and by using antibody fragments labeled with palladium-109.

Claims (4)

We claim:
1. A radiopharmaceutical composition consisting of the monoclonal antibodies to human high molecular weight melanoma associated antigens, or fragments of said antibodies which are chelate-conjugated and labeled with palladium-109.
2. The composition of claim 1 wherein the monoclonal antibody is MoAb 225.28S.
3. The composition of claim 6 wherein the chelate component is diethylenetriaminepentaacetic acid (DTPA).
4. A radiotherapeutic method of treating melanoma by the intravenous infusion of a radiopharmaceutical composition consisting of an antibody to human high molecular weight melanoma associated antigens, or a fragment of said antibody, which is chelate-conjugated and labeled with palladium-109.
US06/605,439 1984-04-30 1984-04-30 Palladium-109 labeled anti-melanoma monoclonal antibodies Abandoned USH819H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/605,439 USH819H (en) 1984-04-30 1984-04-30 Palladium-109 labeled anti-melanoma monoclonal antibodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/605,439 USH819H (en) 1984-04-30 1984-04-30 Palladium-109 labeled anti-melanoma monoclonal antibodies

Publications (1)

Publication Number Publication Date
USH819H true USH819H (en) 1990-09-04

Family

ID=24423663

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/605,439 Abandoned USH819H (en) 1984-04-30 1984-04-30 Palladium-109 labeled anti-melanoma monoclonal antibodies

Country Status (1)

Country Link
US (1) USH819H (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744119A (en) * 1993-05-11 1998-04-28 Sterling Winthrop Preparation of a radioconjugate formulation
US6168946B1 (en) * 1990-03-22 2001-01-02 Sloan-Kettering Institute For Cancer Research gp75 as a tumor vaccine for melanoma
WO2005000349A2 (en) * 2003-06-23 2005-01-06 Biolife Science Forschungs- Und Entwicklungsgesellschaft M.B.H. Passive immune therapy against malignant melanoma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444744A (en) 1980-03-03 1984-04-24 Goldenberg Milton David Tumor localization and therapy with labeled antibodies to cell surface antigens
US4452774A (en) 1982-04-30 1984-06-05 President And Fellows Of Harvard College Isonitrile radionuclide complexes for labelling and imaging agents
US4472509A (en) 1982-06-07 1984-09-18 Gansow Otto A Metal chelate conjugated monoclonal antibodies
US4500508A (en) 1983-05-03 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Radionuclide labeled lymphocytes for therapeutic use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444744A (en) 1980-03-03 1984-04-24 Goldenberg Milton David Tumor localization and therapy with labeled antibodies to cell surface antigens
US4452774A (en) 1982-04-30 1984-06-05 President And Fellows Of Harvard College Isonitrile radionuclide complexes for labelling and imaging agents
US4472509A (en) 1982-06-07 1984-09-18 Gansow Otto A Metal chelate conjugated monoclonal antibodies
US4500508A (en) 1983-05-03 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Radionuclide labeled lymphocytes for therapeutic use

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
CRC Handbook Series in Clinical Laboratory Science, Section A: Nuclear Meine, vol. II, CRC Press, Inc., Boca Raton, Fla., (1982), p. 147.
Fawwaz et al., J. Nucl. Med., 24(5), p. 78, (May 1983).
Fawwaz et al., J. Nucl. Med., 25:796-9, (1984).
Goldenberg, J. Nucl. Med., 24(4), 360-62, (1983).
Halpern et al., J. Nucl. Med., 23, p. 8, (May, 1982).
Hnatowich et al., Int. J. Appl. Rad. Isotopes, 33, 327-32, (1983).
Imai et al., Chemical Abstracts, 99, (1983), #205742j.
Krejcarek et al., Biochem. Biophys. Res. Comm., 77(2), 581-5, (1977).
Larson et al., J. Nucl. Med., 24, 123-129, (1983).
Matzku et al., Chemical Abstracts, 99, (1983), #84512y.
Meares et al., Proc. Natl. Acad. Sci., U.S.A., 73(11), 3803-6, (1976).
Natali et al., J. Nat. Cancer Inst., 67(3), 591-601, (1981).
Order et al., Cancer Research, 40, 3001-7, (1980).
Scheinberg et al., Science, 215, 1511-3, (1982).
Sfakianakis et al., J. Nucl. Med., 23, 840-50, (1982).
Sundberg et al., J. Med. Chem., 17(12), 1304-7, (1974).
Wilson et al., Int. J. Cancer, 28, 293-300, (1981).

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168946B1 (en) * 1990-03-22 2001-01-02 Sloan-Kettering Institute For Cancer Research gp75 as a tumor vaccine for melanoma
US5744119A (en) * 1993-05-11 1998-04-28 Sterling Winthrop Preparation of a radioconjugate formulation
WO2005000349A2 (en) * 2003-06-23 2005-01-06 Biolife Science Forschungs- Und Entwicklungsgesellschaft M.B.H. Passive immune therapy against malignant melanoma
WO2005000349A3 (en) * 2003-06-23 2005-05-06 Biolife Science Forschungs Und Passive immune therapy against malignant melanoma

Similar Documents

Publication Publication Date Title
US5194594A (en) Modified antibodies
US4348376A (en) Tumor localization and therapy with labeled anti-CEA antibody
Hartmann et al. Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor α-expressing lymphoma utilizing the α-emitting radionuclide-conjugated monoclonal antibody 212Bi-anti-Tac
US4831122A (en) Radioimmunotoxins
US5004606A (en) Non-covalent antibody-anthracycline immunocomplexes
JPS6270377A (en) Antibody complex of haptene-modified diagnostic drug and remedy
US5130116A (en) Radiotherapeutic immunoconjugates labeled with iodine-125
AU676162B2 (en) Method and means for site directed therapy
JPH03141230A (en) Parenteral composition for treating human tumor
Fawwaz et al. Potential of palladium-109-labeled antimelanoma monoclonal antibody for tumor therapy
Appelbaum et al. Antibody-radionuclide conjugates as part of a myeloablative preparative regimen for marrow transplantation
Kwok et al. Optimization of radioimmunotherapy using human malignant melanoma multicell spheroids as a model
US20080279772A1 (en) Methods for detecting pathological sites
EP0222360A2 (en) A method of producing a patient-specific cytotoxic reagent and composition
USH819H (en) Palladium-109 labeled anti-melanoma monoclonal antibodies
Anderson et al. Antibodies labeled with 199Au: Potential of 199Au for radioimmunotherapy
Izzo et al. Localization of an 125I-labeled rat transplantation antibody in tumors carrying the corresponding antigen
EP0380542B1 (en) Method for treating malignancy and autoimmune disorders in humans
Lee et al. Radioimmunotherapy of human colorectal carcinoma xenografts using 90Y-labeled monoclonal antibody CO17-1A prepared by two bifunctional chelate techniques
Fawwaz et al. The use of radionuclides for tumor therapy
Kinsey et al. Efficient conjugation of DTPA to an IgM monoclonal antibody in ascites fluid
Badger et al. Biodistribution of p-iodobenzoyl (PIP) labeled antibodies in a murine lymphoma model
USH735H (en) Lead-203 as a label for radioimaging
Zhu et al. Immunoreactivity, stability, pharmacokinetics and biodistribution of a monoclonal antibody to human leukemic B cells after three different methods of radioiodination
Otsuji et al. Biodistribution of monoclonal antibody A7 and its F (ab′) 2 fragment in athymic nude mice bearing human pancreatic carcinoma

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA AS REPRESENTED BY THE DEP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SRIVASTAVA, SURESH C.;FAWWAZ, RASHID A.;FERRONE, SOLDANO;REEL/FRAME:004323/0818;SIGNING DATES FROM 19840426 TO 19840504

STCF Information on status: patent grant

Free format text: PATENTED CASE