US9909852B2 - Operation position detection apparatus and vehicular apparatus - Google Patents

Operation position detection apparatus and vehicular apparatus Download PDF

Info

Publication number
US9909852B2
US9909852B2 US14/381,404 US201314381404A US9909852B2 US 9909852 B2 US9909852 B2 US 9909852B2 US 201314381404 A US201314381404 A US 201314381404A US 9909852 B2 US9909852 B2 US 9909852B2
Authority
US
United States
Prior art keywords
operation surface
side operation
back side
front side
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US14/381,404
Other versions
US20150106051A1 (en
Inventor
Shinji Hatanaka
Norio Sanma
Toru Nada
Kiyotaka Taguchi
Makoto MANABE
Akira Yoshizawa
Makoto Obayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Assigned to DENSO CORPORATION, NIPPON SOKEN, INC. reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OBAYASHI, MAKOTO, YOSHIZAWA, AKIRA, TAGUCHI, KIYOTAKA, HATANAKA, SHINJI, MANABE, MAKOTO, NADA, TORU, SANMA, NORIO
Publication of US20150106051A1 publication Critical patent/US20150106051A1/en
Application granted granted Critical
Publication of US9909852B2 publication Critical patent/US9909852B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/10Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04142Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position the force sensing means being located peripherally, e.g. disposed at the corners or at the side of a touch sensing plate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/143Touch sensitive instrument input devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/146Instrument input by gesture
    • B60K2360/1468Touch gesture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/77Instrument locations other than the dashboard
    • B60K2360/782Instrument locations other than the dashboard on the steering wheel

Definitions

  • the present disclosure relates to a load detection type operation position detection apparatus and a vehicular apparatus.
  • a load detection type operation position detection apparatus which includes an operation body having a plate shape and an operation surface for receiving pushing pressure formed thereon, and a strain detection element for detecting a strain caused by the pushing pressure on the operation surface, is well known (in, for example, patent document No. 1).
  • Such an operation position detection apparatus can detect an operation position on the operation surface applied the pushing pressure and a magnitude of the operation force applied to the operation surface according to the strain detected by the strain detection element.
  • the apparatus can receives various operations via the operation surface.
  • a conventional load detection type operation position detection apparatus can receive only the pushing pressure via the operation surface, which is formed on one side of the operation body having the plate shape. Thus, options of operation for being received via the operation body are limited.
  • an operation position detection apparatus includes: an operation body including a front side operation surface and a back side operation surface and having a substantially plate shape; a casing accommodating the operation body; at least three or more strain generating bodies arranged on at least one of the front side operation surface and the back side operation surface, wherein each strain generating body includes a connection section for connecting to the operation body, a fixed section fixed to the casing, and a displacement transmission surface displaceable according to an operation force, which is generated by a pushing pressure to each of the front side operation surface and the back side operation surface, and wherein the connection section is arranged on one end of the strain generating body, the fixed section is arranged on the other end of the strain generating body, and the displacement transmission surface is arranged between the connection section and the fixed section; a distortion detection section arranged on the displacement transmission surface of each strain generating body and detecting a distortion of the displacement transmission surface caused by a displacement of the strain generating body; and an operation position calculation section detecting which of the front side operation
  • the pushing pressure is accepted by each of the front side operation surface and the back side operation surface, which are arranged on the operation body, so that the operation force and the operation position are detected.
  • the apparatus can receive various options of operation via the operation body having the plate shape.
  • a vehicular apparatus includes: the operation position detection apparatus according to the first aspect of the present disclosure and attached to a steering device of a vehicle in such a manner that the front side operation surface faces a driver, who is driving the vehicle; and a control device executing various processes based on the magnitude of the operation force or the operation position, which are calculated with respect to the pushing pressure to the front side operation surface or the back side operation surface.
  • the driver can operate the vehicular apparatus when the driver is driving the vehicle.
  • convenience is improved.
  • the operation position detection apparatus includes two operation surfaces of the front side operation surface and the back side operation surface, the driver can execute a variety of operations.
  • FIG. 1 is a perspective view of an operation position detection apparatus according to a first embodiment seeing from an upside;
  • FIG. 2 is a perspective view of the operation position detection apparatus according to the first embodiment seeing from a down side;
  • FIG. 3 is an exploded perspective view of the operation position detection apparatus according to the first embodiment
  • FIG. 4 is an exploded perspective view of the operation position detection apparatus according to the first embodiment seeing from a back side;
  • FIG. 5 is a top view of an operation body and a strain generating body of the operation position detection apparatus according to the first embodiment seeing from a front side;
  • FIG. 6 is a cross sectional view of the operation body and the strain generating body of the operation position detection apparatus according to the first embodiment taken along line VI-VI in FIG. 5 ;
  • FIG. 7 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
  • FIG. 8 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
  • FIG. 9 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
  • FIG. 10 is a diagram explaining a construction of a strain detection section
  • FIG. 11 is a diagram explaining a stress applied to a displacement transmission surface of the strain generating body when the pushing operation force is applied to the front side operation surface in perpendicular to the front side operation surface;
  • FIG. 12 is a diagram showing a change of a resistance of each strain detection element when the pushing operation force is applied to the front side operation surface in perpendicular to the front side operation surface;
  • FIG. 13 shows an equivalent circuit of the strain detection section
  • FIG. 14 is a diagram explaining a stress applied to the displacement transmission surface of the strain generating body when the pushing operation force in an in-plane direction on the front side operation surface;
  • FIGS. 15A to 15C are diagrams explaining a calculation method of a center position of the operation force applied to the front side operation surface
  • FIGS. 16A and 16B are diagrams explaining a calculation method of a center position of the operation force applied to the back side operation surface
  • FIG. 17 is a top view showing the strain generating body according to a modification of the first embodiment
  • FIG. 18 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a second embodiment
  • FIG. 19 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XIX-XIX in FIG. 18 according to the second embodiment;
  • FIG. 20 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a third embodiment
  • FIG. 21 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a fourth embodiment
  • FIG. 22 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XXII-XXII in FIG. 21 according to the fourth embodiment;
  • FIG. 23 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to the fourth embodiment
  • FIG. 24 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XXIII-XXIII in FIG. 23 according to the fourth embodiment;
  • FIG. 25 is a front view showing a steering wheel according to a fifth embodiment
  • FIG. 26 is a block diagram showing a vehicular system including a navigation device and the like, which is connected to the operation position apparatus according to the fifth embodiment.
  • FIG. 27 is a block diagram showing the navigation device according to the fifth embodiment.
  • an operation position detection apparatus 1 includes an upper cover 91 , a holding member 93 , a casing 94 , a bottom cover 95 , a front side operation surface 2 a , an operation body 2 having a back side operation surface 2 b and the like, and the like.
  • the apparatus 1 receives an operation via each of the front side operation surface 2 a and the back side operation surface 2 b.
  • the upper cover 91 has a function for maintaining a strength of the operation position detection apparatus 1 , preventing dust, and providing a design.
  • the upper cover 91 is attached to the casing 94 (having a screw hole 94 a ) together with the bottom cover 95 (having a screw hole 95 a ) via a screw hole 91 a .
  • the upper cover 91 has an opening 91 b , and the front side operation surface 2 a exposed from the opening 91 b is operable for an user.
  • the bottom of the casing 94 which is covered by the bottom cover 95 , has an opening 94 e .
  • the back side operation surface 2 b exposed from the opening 94 e is operable for the user.
  • the front side operation surface 2 a and the back side operation surface 2 b provide a sheet member.
  • the front side operation surface 2 a and the back side operation surface 2 b have a function for protecting the front side and the back side of the operation body 2 and a function for improving ornament of the operation position detection apparatus 1 .
  • the front side operation surface 2 a and the back side operation surface 2 b may be integrated with the operation body 2 .
  • the front side operation surface 2 a and the back side operation surface 2 b are attached to the front side and the back side of the operation body 2 (having a screw hole 21 a ) via, for example, screw holes 2 a 1 , 2 b 1 , respectively.
  • the operation body 2 includes an operation main body 21 having a rectangular shape and a plate shape, and multiple operation surface connectors 22 having a square pole shape, each of which protrudes from the operation main body 21 to an outside thereof.
  • the operation body 2 includes one or more pairs of the operation surface connectors 22 , which are arranged to face each other so that the connectors 22 sandwich the front side operation surface 2 a and the back side operation surface 2 b therebetween.
  • two operation surface connectors 22 are formed to be symmetrical with respect to a straight line in a Y axis, which passes through a center position of the front side operation surface 2 a having the square pole shape (please refer to FIG. 5 ).
  • the shape of the operation main body 21 may be a rectangle or a square.
  • a concavity surfaced 23 having a rectangular shape is formed on the back side of the operation body 2 .
  • the back side operation surface 2 b is arranged on the bottom of the concavity surface 23 .
  • the front side operation surface 2 a and the back side operation surface 2 b are opposed to each other to sandwich the bottom of the concavity surface 23 .
  • Each operation surface connector 22 is connected to two strain generating body 3 so as to have a position relationship of sandwiching the operation surface connector 22 (the detail will be explained later).
  • a coupling section 3 e of each strain generating body 3 is coupled to a top end 22 a of the operation surface connector 22 via a screw or an adhesive. Further, a fixed section 3 c is engaged with a groove 94 b of the casing 94 so that the fixed section 3 c is fixed.
  • a convexity 93 b of the holding member 93 is engaged with a concavity 94 c of the casing 94 so as to cover the strain generating body 3 , and the convexity 93 b is screwed with the concavity 94 c (via screw holes 93 a , 94 d , respectively).
  • the strain generating body 3 i.e., the fixed section 3 c
  • the fixed section 3 c is surely fixed.
  • one operation surface connector 22 is connected to two strain generating bodies 3 to have a position relationship of sandwiching the operation surface connector 22 .
  • Each operation surface connector 22 is formed on a X axis of X-Y coordinate system having a center of the front side operation surface 2 a with the rectangular shape as an original point.
  • Each strain generating body 3 includes an extending section 3 g , which extends from a connection position (i.e., the connection section 3 d ) corresponding to the operation surface connector 22 to be in parallel to the front side operation surface 2 a .
  • a top end of the extending section 3 g as the fixed section 3 c is fixed to the casing 94 .
  • a surface of the extending section 3 g provides a displacement transmission surface 3 f , which is an elastic deformable body elastically deformable so that bending deformation is generated at the surface 3 f when the operation force is applied to the front side operation surface 2 a and the back side operation surface 2 b.
  • the distortion detection section 4 arranged on the displacement transmission surface 3 f detects the displacement in the vertical direction Z (i.e., an elastic deformation amount) as the distortion.
  • the front side operation surface 2 a and each of the displacement transmission surface 3 f are disposed on substantially the same plane.
  • the dimensions of the opening 94 e of the casing 94 may be reduced to be smaller than the operation main body 21 so that a clearance D is formed therebetween so as not to contact with the operation main body 21 .
  • a region 94 g of the bottom 94 f of the casing 94 which faces the back surface of the front side operation surface 2 a of the operation body 2 , provides the first deformation restriction surface.
  • Another region 94 h of the bottom 94 f which faces the back surface of the displacement transmission 3 f of the strain generating body 3 , provides the second deformation restriction surface.
  • the operation body 2 does not contact with and is connected to the casing 94 .
  • the strain generating body 3 other than the fixed section 3 c does not contact with the casing 94 .
  • the deformation of the operation body 2 is restricted even when the pushing force is applied to the front side operation surface 2 a with the excess force. Further, the operation position is accurately detected. Further, since the second deformation restriction surface is formed, the deformation of the displacement transmission surface 3 f is restricted even when the excess operation force is applied to the operation body 2 and the strain generating body 3 with the pushing force to the front side operation surface 2 a.
  • the casing 94 accommodates a signal processing section 6 .
  • the signal processing section 6 is provided by a computer hardware including a signal processing circuit and the like such as a conventional CPU, a conventional ROM, a conventional RAM, and a conventional ND converter circuit.
  • a function of the operation position detection apparatus 1 is realized.
  • the signal processing section 6 calculates the magnitude of the operation force generated by the pushing force and a position (i.e., an operation position) at which the pushing force is applied according to the elastic deformation amount detected by the distortion detection section 4 .
  • the distortion detection section 4 having multiple distortion detection elements 4 a - 4 d is formed on the displacement transmission surface 3 f .
  • the distortion detection element 4 a - 4 d detects a stretching amount or a shrinking amount on the displacement transmission surface 3 f corresponding to the stretching stress or the compressing stress.
  • each distortion detection section 4 i.e., bodies 31 - 34
  • the stress applied to the displacement transmission surface 3 f of the strain generating body 3 provides the stretching stress at a position of the distortion detection element 4 a , 4 b , which is arranged along the fixed section 3 c .
  • the stress provides the compressing stress at a position of the distortion detection element 4 c , 4 d , which is arranged along the connection section 3 d (please refer to FIG. 11 ).
  • the signal processing section 6 detects a change of the bridge voltage Vout of the bridge circuit, so that the pushing force to the front side operation surface 2 a . Further, the section 6 calculates the force fz and the momentum force mz applied to the strain generating body 3 .
  • the stress applied to the distortion detection elements 4 a - 4 d of the distortion detection section 4 is the compressing stress at all of four elements 4 a - 4 d or the stretching stress at all of four elements 4 a - 4 d (please refer to FIG. 14 ). Accordingly, the bridge voltage Vout of the bridge circuit provided by the distortion detection elements 4 a - 4 d is not changed. Thus, the force in the in-plane direction is not sensitive. Thus, it is not necessary to consider the force in the in-plane direction when the force fz and the momentum force mz applied to the strain generating body 3 are calculated.
  • the signal processing section 6 calculates the operation position (i.e., x 1 and y 1 ) as follows (please refer to FIGS. 15A to 15C ).
  • the signal processing section 6 calculates the force fz (i.e., fz 1 and fz 2 ) applied to the strain generating body 3 and the momentum force mz (i.e., mz 1 and mz 2 ) based on the bridge voltage Vout. Then, the section 6 calculates the center position (i.e., the operation position of (x 1 , y 1 )) of the operation force Fz applied to the front side operation surface 2 a according to the calculated values of fz and mz and equations of (1-4) and (1-5).
  • the center position i.e., the operation position of (x 1 , y 1 )
  • the equations of (1-4) and (1-5) are developed from a force balance equation of (1-1), a momentum balance equation of (1-2) around the Y axis, and a momentum balance equation of (1-3) around the X axis.
  • w represents a distance between a center line of the strain generating body 31 , 32 in parallel to the Y axis and a center line of the strain generating body 33 , 34 .
  • the signal processing section 6 detects the pushing force with respect to the back side operation surface 2 b according to the change of the bridge voltage Vout of the bridge circuit, which is formed on each distortion detection section 4 . Further, the section 6 calculates the forces fz 1 to fz 4 , which are applied to the back side operation surface 2 b in the Z axis direction perpendicular to the back side operation surface 2 b , with respect to each strain generating body 3 . According to a conventional gravity center calculation method indicated by equations of (2-1) to (2-3), the section 6 calculates the X coordinate (i.e., x 1 ) of the center position (i.e., the operation position) of the operation force F, which is applied to the back side operation surface 2 b .
  • the X coordinate i.e., x 1
  • the center position i.e., the operation position
  • the term of “w” represents a length of the back side operation surface 2 b in the X axis direction.
  • the term of “h” represents a distance between the back side operation surface 2 b and the displacement transmission surface 3 f .
  • the Y coordinate of the operation position is also calculated similarly.
  • the left part of the equation of (2-3) provides a calculation result of the X coordinate of the operation position.
  • This calculation result includes an error (indicative of tan ⁇ h), which is derived from the tilt angle of ⁇ of the operation force F. The larger the distance h is, the larger the error is.
  • the operation position detection apparatus 1 receives the operation on each of the front side operation surface 2 a and the back side operation surface 2 b , which are arranged on both sides of the operation body 2 , respectively, so that the apparatus 1 detects the magnitude of the operation force and the operation position. Accordingly, the apparatus 1 can receive various types of operations.
  • the front side operation surface 2 a is arranged on the substantially same plane as the displacement transmission surface 3 f , on which the distortion detection section 4 . Accordingly, when the pushing force is applied to the front side operation surface 2 a , the distortion detection section 4 does not have sensitivity in a direction other than the vertical direction of the front side operation surface 2 a . Thus, the section 4 detects only the force in the direction perpendicular to the front side operation surface 2 a .
  • the apparatus 1 can detect the operation position accurately.
  • the signal processing section 6 calculates a moment generated around the X axis direction and a moment generated around the Y axis direction on the X-Y plane, and the force in the Z axis direction, which is perpendicular to the X-Y plane, according to the distortion generated at the distortion detection elements 4 a - 4 d by the pushing force to the front side operation surface 2 a wherein the front side operation surface 2 a provides the X-Y plane as a two-dimensional orthogonal coordinate system. Further, the section 6 calculates the gravity center position based on the force and the moments as the operation position of the front side operation surface 2 a.
  • the signal processing section 6 calculates the force in the z axis direction perpendicular to the X-Y plane according to the distortion generated at the distortion detection elements 4 a - 4 d by the pushing force to the back side operation surface 2 b wherein the back side operation surface 2 b provides the X-Y plane as a two-dimensional orthogonal coordinate system. Further, the section 6 calculates the gravity center position based on the force as the operation position of the back side operation surface 2 a.
  • the operation position is calculated by applying a conventional calculation method for calculating the operation position in the operation position detection apparatus 1 , in which the operation surface and the displacement transmission surface are not arranged on the same plane.
  • a conventional calculation method of the operation position in the operation position detection apparatus is utilized. Accordingly, the operation position detection apparatus 1 is manufactured and designed with a low cost and a short period.
  • the concavity surface 23 is formed on the back side of the operation main body 21 .
  • the back side operation surface 2 b is arranged on the back side of the concavity surface 23 .
  • the distance between the displacement transmission surface 3 f and the back side operation surface 2 b is minimized. Accordingly, the error in the calculation result of the operation position on the back side operation surface 2 b is minimized.
  • the displacement transmission surface 3 f of the strain generating body 3 is an elastic deformable body, which provides a bending deformation.
  • the distortion detection section 4 detects the elastic deformation amount generated in an in-plane direction of the displacement transmission surface 3 f . Thus, only the force perpendicular to the back side operation surface 2 b or the front side operation surface 2 a is detected.
  • the distortion detection section 4 is provided by the distortion detection elements 4 a - 4 d and the like, which are arranged on the displacement transmission surface 3 f of each strain generating body 3 . Accordingly, without using an element other than the distortion detection element, the apparatus 1 can detect the operation position with high accuracy. Thus, the dimensions of the operation position detection apparatus 1 are minimized, and the manufacturing cost of the apparatus 1 is reduced.
  • the operation main body 21 of the operation body 2 includes multiple operation surface connectors 22 , which protrude to the outside circumference.
  • the operation surface connectors 22 provide a pair of connectors 22 , which face each other and sandwich the operation main body 21 therebetween.
  • the connectors 22 has a top end, which is connected to the connection section 3 d of the strain generating body 3 . Accordingly, the operation displacement is transmitted to the strain generating body 3 and the distortion detection section 4 with high efficiency.
  • the strain generating body 3 includes the extending section 3 g , which extends from the connection section 3 d .
  • the top end of the extending section 3 g forms the fixed section 3 c .
  • the extending section 3 g provides the displacement transmission surface 3 f .
  • the distortion detection section 4 is arranged on the displacement transmission surface 3 f .
  • the casing 94 is arranged to have a clearance with the operation body 2 and the strain generating body 3 so as not to contact with parts other than the fixed section 3 c . Accordingly, the operation body 2 and the strain generating body 3 are fixed to the casing 94 not to prevent the pushing force to the front side operation surface 2 a or the back side operation surface 2 b.
  • one operation surface connector 22 is connected to two strain generating bodies 3 , which sandwich the one operation surface connector 22 . Accordingly, the operation position is calculated by a method similar to the conventional method. It is not necessary to develop a new calculation method. Thus, the operation position detection apparatus 1 is manufactured with a low cost and a short period.
  • FIG. 17 shows a modification of the strain generating body 3 in the first embodiment.
  • the strain generating body 3 according to the modification extends in the direction perpendicular to the extending direction of the operation surface connector 22 from the connection position with the operation surface connector 22 .
  • the body 3 includes a base end side taper section 3 h having a width, which becomes narrower from the connection section 3 d with the operation surface connector 22 toward an extending end (i.e., the fixed section 3 c ).
  • the strain generating body 3 includes a top end side taper section 3 i having a width, which becomes narrower from the fixed section 3 c with the casing 94 toward the connection section 3 d with the operation surface connector 22 , and the extending section 3 g , on which the displacement transmission surface 3 f is formed, the extending section 3 g connecting the base end side taper section 3 h and the top end side taper section 3 i.
  • the base end side taper section 3 h has an angle ⁇ 1 on a fixed section 3 c side of the operation surface connector 22 with respect to the axis line L in the extending direction of the extending section 3 g , and the angle ⁇ 1 is preferably equal to or larger than 30 degrees and equal to or smaller than 60 degrees.
  • the top end side taper section 3 i has an angle ⁇ 2 on a connection section 3 d side of the casing 94 with respect to the axis line L in the extending direction of the extending section 3 g , and the angle ⁇ 2 is preferably equal to or larger than 30 degrees and equal to or smaller than 60 degrees.
  • connection section 3 d and the fixed section 3 c sufficiently and to detect the distortion on the displacement transmission surface 3 f with high accuracy.
  • the strain generating body 3 is attached to the operation surface connector 22 , which protrudes from four corners of the operation body 2 having the rectangular shape. Specifically, one operation surface connector is connected to one strain generating body.
  • the construction of the strain generating body 3 and the distortion detection section 4 are similar to the first embodiment.
  • the first embodiment a large stress is easily applied to the connection part between the operation body 2 and two strain generating bodies 3 .
  • the stress diverges into four parts.
  • the reliability and the durability of the apparatus are improved.
  • the front side operation surface 2 a and all of the displacement transmission surfaces 3 f are disposed on the same plane (which is similar to other latter embodiments).
  • the number of strain generating bodies 3 (or the distortion detection sections 4 ) in the operation position detection apparatus according to the second embodiment is reduced from four to three, and the strain generating bodies 3 (or the distortion detection sections 4 ) are arranged at a peripheral section of the operation body 2 .
  • the number of the distortion detection section 4 is at least three, the gravity center position can be calculated.
  • the manufacturing cost of the apparatus is reduced.
  • the grooves 21 b , 21 c are formed in a region, which is covered with the back side operation surface 2 b and disposed on the back side of the operation main body 21 of the operation body 2 (please refer to FIGS. 21 and 22 ).
  • the number of grooves and the direction of the grooves are not limited specifically.
  • a protrusion having a rib shape instead of the groove may be formed.
  • a concavity and/or a convexity may be formed.
  • a similar groove or the like may be formed in a region, which is covered with the font side operation surface 2 a on the surface of the operation main body 21 .
  • the shape of the back side operation surface 2 b may be formed to have a substantially regular tetrahedron shape with a center, which is the highest part (please refer to FIGS. 23 and 24 ).
  • the front side operation surface 2 a may be also formed similarly.
  • the back side operation surface 2 b may be formed to have a conical shape, an earthenware mortar shape or the like in order to determine a specific position on the back side operation surface 2 b according to the tactile sense.
  • a groove, a rib shaped protrusion, a concavity, a convexity or the like may be formed on the back side operation surface 2 b.
  • two operation position detection apparatuses 1 described in any one of the first to fourth embodiments are attached to a steering device 100 of a vehicle such that the front side operation surface 2 a faces a driver, who is driving the vehicle (please refer to FIG. 25 ).
  • These operation position detection apparatuses 1 are attached to an upper side spoke so as to be adjacent to a steering wheel. When the driver grips the steering wheel, it is possible to execute an operation to the front side operation surface 2 a with a thumb and to execute an operation to the back side operation surface 2 b with other fingers.
  • the attachment position of the operation position detection apparatus 1 is not limited to the above.
  • the operation position detection apparatus 1 may be attached to a certain position adjacent to the steering wheel or attached on the steering wheel. Further, one, three or more operation position detection apparatuses 1 may be attached to the steering device 100 .
  • These operation position detection apparatus 1 is connected to the navigation device 200 . Further, the navigation device 200 is connected to an ECU such as an audio system 300 and an air conditioning ECU 400 via an in-vehicle LAN 500 (please refer to FIG. 26 ).
  • an ECU such as an audio system 300 and an air conditioning ECU 400 via an in-vehicle LAN 500 (please refer to FIG. 26 ).
  • the navigation device 200 includes a position detector 210 for detecting a current position of the vehicle, an orientation sensor 220 for detecting an absolute orientation based on geomagnetism, and an operation receiving section 230 for communicating with the signal processing section 6 of the operation position detection apparatus 1 .
  • the device 200 is provided by a conventional micro computer mainly, which includes a CPU, a ROM, a RAM, a I/O, and a bus line for connecting them.
  • the device 200 further includes a control section 240 for totally controlling the navigation device 200 according to a program or the like, which is up-loaded to the RAM.
  • the navigation device 200 further includes a HDD and/or a flash memory, and further, includes a memory 250 for storing a map data and the like, and a liquid crystal display, and furthermore, includes a display 260 for displaying various information.
  • the display 260 may be arranged to be integrated with a meter display or the like in a dash board.
  • the display 260 may be a head up display.
  • the navigation device 200 further includes a key switch, a touch switch and the like.
  • the device 200 furthermore includes an operation section 270 for receiving various operations, and an in-vehicle LAN communication section 280 for communicating with other ECU via the in-vehicle LAN 500 .
  • each operation position detection apparatus 1 transmits operation information, which indicates a pushed operation surface, a detected operation position, and an operation force, to the navigation device 200 when the front side operation surface 2 a and the back side operation surface 2 b are pushed.
  • control section 240 of the navigation device 200 executes various processes according to the operation information received from the signal processing section 6 . Further, the control section 240 transmits the operation information received from the operation position detection apparatus 1 to other ECU via the in-vehicle LAN 500 if necessary. Thus, it is possible to operate other ECU with using the operation position detection apparatus 1 .
  • the receiving operations may be assigned to the front side operation surface 2 a , which is operable by the thumb with gripping the steering wheel, and the back side operation surface 2 b , which is operable by other fingers.
  • the driver who is driving the vehicle may not visually confirm the back side operation surface 2 b . Further, under a condition that the driver grips the steering wheel, it may be difficult for the driver to move other fingers other than the thumb handily. Accordingly, it is considered that the back side operation surface 2 b may receive an executable operation with repeating a simple finger movement such as tapping an operation surface with a finger and sliding a finger, which contacts the operation surface.
  • a concrete example of the above operations may be an operation for changing a set value continuously such as a volume of the audio system 300 , a set temperature and an air blow amount of the air conditioning ECU 400 , and an opening degree of a window of the vehicle. Further, in addition to the above operation, it is considered that the example may be an operation for changing continuously a scale and an angle of a map image and an operation for scrolling the map image.
  • the driver easily visually confirms the front side operation surface 2 a while the driver is driving the vehicle. Further, under a condition that the driver grips the steering wheel, it may be easy for the driver to move the thumb comparatively handily. Accordingly, it is considered that any operation may be assigned to the front side operation surface 2 a (and further, the above-described operation for changing a set value continuously may be assigned to the front side operation surface 2 a ).
  • each operation position detection apparatus 1 includes two operation surfaces of the front side operation surface 2 a and the back side operation surface 2 b , an user can execute various operations.
  • the executable operation with repeating a comparatively simple finger movement for changing the set value continuously is assigned to the back side operation surface 2 b . Accordingly, under a condition that the driver grips the steering wheel, the driver can easily execute the operation with respect to the back side operation surface 2 b . Thus, the operation does not bother the driver who is driving the vehicle.
  • the back side operation surface 2 b has the detection accuracy of the operation position or the like, which is lower than the front side operation surface 2 a .
  • the above operations do not require the high detection accuracy of the operation position, and therefore, it is considered that a risk for generating the erroneous operation via the operation of the back side operation surface 2 b is low.
  • the operation position detection apparatus 1 may be provided by the operation position detection apparatus 1 according to the fourth embodiment, and a pushing position on the back side operation surface 2 b may be determined by the tactile sense. Thus, even when the driver is driving the vehicle, the driver can execute the operation to the back side operation surface 1 b with high accuracy.
  • the front side operation surface 2 a and the displacement transmission surface 3 f are arranged on the same plane.
  • the displacement transmission surface 3 f may be arranged between the front side operation surface 2 a and the back side operation surface 2 b.
  • the back side operation surface 2 b is arranged on the bottom of the concavity 23 , which is formed on the back side of the operation body 2 .
  • the back side operation surface 2 b may be arranged on the back side of the operation body 2 without forming the concavity 23 .
  • the operation position detection apparatus 1 can receive the operation from each of the front side operation surface 2 a and the backs ide operation surface 2 b , and therefore, the variations of operations are increased.
  • the operation position detection apparatus 1 is connected to the navigation device 200 .
  • the apparatus 1 may be connected to other ECU.
  • the operation position detection apparatus 1 may be applied to any type of electric equipment in addition to the vehicular device such as the navigation device 200 . In these cases, a similar effect is obtained.
  • the signal processing section 6 in the operation position detection apparatus 1 corresponds to an operation position calculation section.
  • the navigation device 200 corresponds to the vehicular device, and the control section 240 of the navigation device 200 corresponds to a control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Control Devices (AREA)
  • Push-Button Switches (AREA)
  • Steering Controls (AREA)
  • Position Input By Displaying (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

An operation position detection apparatus includes: an operation body including front and back side operation surfaces; a casing; three strain generating bodies on at least one operation surface, wherein each strain generating body includes a connection section connected to the operation body, a fixed section fixed to the casing, and a displacement transmission surface displaceable by a pushing pressure to each operation surface; a distortion detection section arranged on each displacement transmission surface and detecting a distortion of the displacement transmission surface; and an operation position calculation section detecting which of the front side operation surface and the back side operation surface is pushed, the magnitude of the operation force generated by the pushing pressure, and an operation position of the pushing pressure, according to a detected distortion.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a U.S. National Phase Application under 35 U.S.C. 371 of International Application No. PCT/JP2013/000791 filed on Feb. 14, 2013 and published in Japanese as WO 2013/128819 A1 on Sep. 6, 2013. This application is based on Japanese Patent Application No. 2012-044199 filed on Feb. 29, 2012. The entire disclosures of all of the above applications are incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to a load detection type operation position detection apparatus and a vehicular apparatus.
BACKGROUND
Conventionally, a load detection type operation position detection apparatus, which includes an operation body having a plate shape and an operation surface for receiving pushing pressure formed thereon, and a strain detection element for detecting a strain caused by the pushing pressure on the operation surface, is well known (in, for example, patent document No. 1). Such an operation position detection apparatus can detect an operation position on the operation surface applied the pushing pressure and a magnitude of the operation force applied to the operation surface according to the strain detected by the strain detection element. Thus, the apparatus can receives various operations via the operation surface.
However, a conventional load detection type operation position detection apparatus can receive only the pushing pressure via the operation surface, which is formed on one side of the operation body having the plate shape. Thus, options of operation for being received via the operation body are limited.
PRIOR ART LITERATURES Patent Literature
Patent Literature 1
JP-A-2010-49460
SUMMARY OF INVENTION
It is an object of the present disclosure to provide an operation position detection apparatus and a vehicular apparatus, which are capable of receiving various options of operation via an operation body having a plate shape.
According to a first aspect of the present disclosure, an operation position detection apparatus includes: an operation body including a front side operation surface and a back side operation surface and having a substantially plate shape; a casing accommodating the operation body; at least three or more strain generating bodies arranged on at least one of the front side operation surface and the back side operation surface, wherein each strain generating body includes a connection section for connecting to the operation body, a fixed section fixed to the casing, and a displacement transmission surface displaceable according to an operation force, which is generated by a pushing pressure to each of the front side operation surface and the back side operation surface, and wherein the connection section is arranged on one end of the strain generating body, the fixed section is arranged on the other end of the strain generating body, and the displacement transmission surface is arranged between the connection section and the fixed section; a distortion detection section arranged on the displacement transmission surface of each strain generating body and detecting a distortion of the displacement transmission surface caused by a displacement of the strain generating body; and an operation position calculation section detecting which of the front side operation surface and the back side operation surface is pushed, the magnitude of the operation force generated by the pushing pressure, and an operation position as a position at which the pushing pressure is applied, according to the distortion detected by each distortion detection section.
In the above operation position detection apparatus, the pushing pressure is accepted by each of the front side operation surface and the back side operation surface, which are arranged on the operation body, so that the operation force and the operation position are detected. Thus, the apparatus can receive various options of operation via the operation body having the plate shape.
According to a second aspect of the present disclosure, a vehicular apparatus includes: the operation position detection apparatus according to the first aspect of the present disclosure and attached to a steering device of a vehicle in such a manner that the front side operation surface faces a driver, who is driving the vehicle; and a control device executing various processes based on the magnitude of the operation force or the operation position, which are calculated with respect to the pushing pressure to the front side operation surface or the back side operation surface.
In the above vehicular apparatus, while a driver keeps gripping a steering device, the driver can operate the vehicular apparatus when the driver is driving the vehicle. Thus, convenience is improved. Further, since the operation position detection apparatus includes two operation surfaces of the front side operation surface and the back side operation surface, the driver can execute a variety of operations.
BRIEF DESCRIPTION OF DRAWINGS
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
FIG. 1 is a perspective view of an operation position detection apparatus according to a first embodiment seeing from an upside;
FIG. 2 is a perspective view of the operation position detection apparatus according to the first embodiment seeing from a down side;
FIG. 3 is an exploded perspective view of the operation position detection apparatus according to the first embodiment;
FIG. 4 is an exploded perspective view of the operation position detection apparatus according to the first embodiment seeing from a back side;
FIG. 5 is a top view of an operation body and a strain generating body of the operation position detection apparatus according to the first embodiment seeing from a front side;
FIG. 6 is a cross sectional view of the operation body and the strain generating body of the operation position detection apparatus according to the first embodiment taken along line VI-VI in FIG. 5;
FIG. 7 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
FIG. 8 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
FIG. 9 is a diagram explaining a force applied to the strain generating body and caused by a pushing operation force applied to a front side operation surface;
FIG. 10 is a diagram explaining a construction of a strain detection section;
FIG. 11 is a diagram explaining a stress applied to a displacement transmission surface of the strain generating body when the pushing operation force is applied to the front side operation surface in perpendicular to the front side operation surface;
FIG. 12 is a diagram showing a change of a resistance of each strain detection element when the pushing operation force is applied to the front side operation surface in perpendicular to the front side operation surface;
FIG. 13 shows an equivalent circuit of the strain detection section;
FIG. 14 is a diagram explaining a stress applied to the displacement transmission surface of the strain generating body when the pushing operation force in an in-plane direction on the front side operation surface;
FIGS. 15A to 15C are diagrams explaining a calculation method of a center position of the operation force applied to the front side operation surface;
FIGS. 16A and 16B are diagrams explaining a calculation method of a center position of the operation force applied to the back side operation surface;
FIG. 17 is a top view showing the strain generating body according to a modification of the first embodiment;
FIG. 18 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a second embodiment;
FIG. 19 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XIX-XIX in FIG. 18 according to the second embodiment;
FIG. 20 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a third embodiment;
FIG. 21 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to a fourth embodiment;
FIG. 22 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XXII-XXII in FIG. 21 according to the fourth embodiment;
FIG. 23 is a top view showing the operation body, the strain generating body and the like in an operation position detection apparatus according to the fourth embodiment;
FIG. 24 is a cross sectional view of the operation body, the strain generating body and the like in the operation position detection apparatus taken along line XXIII-XXIII in FIG. 23 according to the fourth embodiment;
FIG. 25 is a front view showing a steering wheel according to a fifth embodiment;
FIG. 26 is a block diagram showing a vehicular system including a navigation device and the like, which is connected to the operation position apparatus according to the fifth embodiment; and
FIG. 27 is a block diagram showing the navigation device according to the fifth embodiment.
EMBODIMENTS FOR CARRYING OUT INVENTION
Embodiments of the present disclosure will be explained with reference to the drawings as follows. Here, embodiments of the present disclosure are not limited to the following embodiments, and the embodiments may be modified variously as long as the embodiments are disposed within a technical aspect of the present disclosure.
First Embodiment
As shown in FIGS. 1 to 3, an operation position detection apparatus 1 according to the first embodiment includes an upper cover 91, a holding member 93, a casing 94, a bottom cover 95, a front side operation surface 2 a, an operation body 2 having a back side operation surface 2 b and the like, and the like. The apparatus 1 receives an operation via each of the front side operation surface 2 a and the back side operation surface 2 b.
The upper cover 91 has a function for maintaining a strength of the operation position detection apparatus 1, preventing dust, and providing a design. The upper cover 91 is attached to the casing 94 (having a screw hole 94 a) together with the bottom cover 95 (having a screw hole 95 a) via a screw hole 91 a. Further, the upper cover 91 has an opening 91 b, and the front side operation surface 2 a exposed from the opening 91 b is operable for an user. The bottom of the casing 94, which is covered by the bottom cover 95, has an opening 94 e. The back side operation surface 2 b exposed from the opening 94 e is operable for the user.
The front side operation surface 2 a and the back side operation surface 2 b provide a sheet member. The front side operation surface 2 a and the back side operation surface 2 b have a function for protecting the front side and the back side of the operation body 2 and a function for improving ornament of the operation position detection apparatus 1. Alternatively, the front side operation surface 2 a and the back side operation surface 2 b may be integrated with the operation body 2. The front side operation surface 2 a and the back side operation surface 2 b are attached to the front side and the back side of the operation body 2 (having a screw hole 21 a) via, for example, screw holes 2 a 1, 2 b 1, respectively.
The operation body 2 includes an operation main body 21 having a rectangular shape and a plate shape, and multiple operation surface connectors 22 having a square pole shape, each of which protrudes from the operation main body 21 to an outside thereof. The operation body 2 includes one or more pairs of the operation surface connectors 22, which are arranged to face each other so that the connectors 22 sandwich the front side operation surface 2 a and the back side operation surface 2 b therebetween. In the first embodiment, two operation surface connectors 22 are formed to be symmetrical with respect to a straight line in a Y axis, which passes through a center position of the front side operation surface 2 a having the square pole shape (please refer to FIG. 5). The shape of the operation main body 21 may be a rectangle or a square.
As shown in FIG. 4, a concavity surfaced 23 having a rectangular shape is formed on the back side of the operation body 2. The back side operation surface 2 b is arranged on the bottom of the concavity surface 23. The front side operation surface 2 a and the back side operation surface 2 b are opposed to each other to sandwich the bottom of the concavity surface 23.
Each operation surface connector 22 is connected to two strain generating body 3 so as to have a position relationship of sandwiching the operation surface connector 22 (the detail will be explained later). A coupling section 3 e of each strain generating body 3 is coupled to a top end 22 a of the operation surface connector 22 via a screw or an adhesive. Further, a fixed section 3 c is engaged with a groove 94 b of the casing 94 so that the fixed section 3 c is fixed. A convexity 93 b of the holding member 93 is engaged with a concavity 94 c of the casing 94 so as to cover the strain generating body 3, and the convexity 93 b is screwed with the concavity 94 c (via screw holes 93 a, 94 d, respectively). Thus, the strain generating body 3 (i.e., the fixed section 3 c) is surely fixed.
Further, as shown in FIG. 5, one operation surface connector 22 is connected to two strain generating bodies 3 to have a position relationship of sandwiching the operation surface connector 22. Each operation surface connector 22 is formed on a X axis of X-Y coordinate system having a center of the front side operation surface 2 a with the rectangular shape as an original point.
Each strain generating body 3 includes an extending section 3 g, which extends from a connection position (i.e., the connection section 3 d) corresponding to the operation surface connector 22 to be in parallel to the front side operation surface 2 a. A top end of the extending section 3 g as the fixed section 3 c is fixed to the casing 94. Then, a surface of the extending section 3 g provides a displacement transmission surface 3 f, which is an elastic deformable body elastically deformable so that bending deformation is generated at the surface 3 f when the operation force is applied to the front side operation surface 2 a and the back side operation surface 2 b.
Accordingly, when the operation force Fz (shown in FIGS. 7 to 9) is caused by the pushing force to the front side operation surface 2 a, an operation displacement in a vertical direction Z with respect to the front side operation surface 2 a is generated at the operation body 2. Then, a displacement in the vertical direction Z reflecting the operation displacement generated on a side, at which the displacement transmission surface 3 f is disposed, is generated on the displacement transmission surface 3 f of each strain generating body 3.
Further, when the operation force F (in FIGS. 16A and 16B) caused by the pushing force to the back side operation surface 3 b is generated, similarly, a displacement in the vertical direction Z reflecting the operation displacement generated on a side, at which the displacement transmission surface 3 f is disposed, is generated on the displacement transmission surface 3 f of each strain generating body 3, the operation displacement being included in the operation displacement in the vertical direction Z generated at the operation body 2.
The distortion detection section 4 arranged on the displacement transmission surface 3 f detects the displacement in the vertical direction Z (i.e., an elastic deformation amount) as the distortion.
Further, as shown in FIG. 6, the front side operation surface 2 a and each of the displacement transmission surface 3 f are disposed on substantially the same plane.
Here, the dimensions of the opening 94 e of the casing 94 may be reduced to be smaller than the operation main body 21 so that a clearance D is formed therebetween so as not to contact with the operation main body 21. In this case, a region 94 g of the bottom 94 f of the casing 94, which faces the back surface of the front side operation surface 2 a of the operation body 2, provides the first deformation restriction surface. Another region 94 h of the bottom 94 f, which faces the back surface of the displacement transmission 3 f of the strain generating body 3, provides the second deformation restriction surface. Thus, the operation body 2 does not contact with and is connected to the casing 94. The strain generating body 3 other than the fixed section 3 c does not contact with the casing 94.
Since the first deformation restriction surface is formed, the deformation of the operation body 2 is restricted even when the pushing force is applied to the front side operation surface 2 a with the excess force. Further, the operation position is accurately detected. Further, since the second deformation restriction surface is formed, the deformation of the displacement transmission surface 3 f is restricted even when the excess operation force is applied to the operation body 2 and the strain generating body 3 with the pushing force to the front side operation surface 2 a.
Further, the casing 94 accommodates a signal processing section 6. The signal processing section 6 is provided by a computer hardware including a signal processing circuit and the like such as a conventional CPU, a conventional ROM, a conventional RAM, and a conventional ND converter circuit. When the CPU executes a control program stored in the ROM, a function of the operation position detection apparatus 1 is realized. Specifically, the signal processing section 6 calculates the magnitude of the operation force generated by the pushing force and a position (i.e., an operation position) at which the pushing force is applied according to the elastic deformation amount detected by the distortion detection section 4.
Specifically, when the pushing operation force Fz is applied to the front side operation surface 2 a, a component force fx of the pushing operation force Fz and a momentum force mz are applied to each strain generating body 3, which is fixed to the casing 94 (please refer to FIGS. 7 to 9). Further, when the pushing operation force F is applied to the back side operation surface 2 b, a component force fz of the pushing operation force Fz as a vertical direction component of the pushing operation force F (please refer to FIGS. 16A and 16B).
At that time, since the strain generating body 3 is fixed to the casing 94, a bending deformation is forced to the strain generating body 3, so that a stretching stress or a compression stress on an in-plane direction is applied to the displacement transmission surface 3 f as a principal surface of the strain generating body 3. In the first embodiment, the distortion detection section 4 having multiple distortion detection elements 4 a-4 d is formed on the displacement transmission surface 3 f. The distortion detection element 4 a-4 d detects a stretching amount or a shrinking amount on the displacement transmission surface 3 f corresponding to the stretching stress or the compressing stress.
Next, a force applied to the strain generating body 3 caused by the operation force generated on the pushed front side operation surface 2 a will be explained. As shown in FIG. 7, when the operation force Fz is applied to the front side operation surface 2 a along the Z axis direction perpendicular to the surface 2 a on the X axis of the X-Y coordinate system having the center of the front side operation surface 2 a with the rectangular shape as an original point, only the force fz is generated at the strain generating body 3 (i.e., bodies 31-34). Further, as shown in FIG. 8, when the operation force Fz along the Z axis direction on the Y axis is applied, the force fz and the momentum force mz are generated at the strain generating body 3 (i.e., bodies 31-34).
On the other hand, the distortion detection elements 4 a-4 d of each distortion detection section 4 (i.e., bodies 31-34) are arranged such that two distortion detection elements 4 a-4 d are aligned along the connection section 3 d or the fixed section 3 c (please refer to FIG. 10). Accordingly, the stress applied to the displacement transmission surface 3 f of the strain generating body 3 provides the stretching stress at a position of the distortion detection element 4 a, 4 b, which is arranged along the fixed section 3 c. The stress provides the compressing stress at a position of the distortion detection element 4 c, 4 d, which is arranged along the connection section 3 d (please refer to FIG. 11).
Thus, in the distortion detection element 4 a, 4 b, at which the stretching stress is generated, the resistance is reduced. In the distortion detection element 4 c, 4 d, at which the compressing stress is generated, is increased (please refer to FIG. 12). In addition, an equivalent circuit of the distortion detection elements 4 a-4 d is indicated by a bridge circuit (please refer to FIG. 13). Thus, the signal processing section 6 detects a change of the bridge voltage Vout of the bridge circuit, so that the pushing force to the front side operation surface 2 a. Further, the section 6 calculates the force fz and the momentum force mz applied to the strain generating body 3.
On the other hand, when the force Fy is applied to the front side operation surface 2 a in an in-plane direction, the stress applied to the distortion detection elements 4 a-4 d of the distortion detection section 4 is the compressing stress at all of four elements 4 a-4 d or the stretching stress at all of four elements 4 a-4 d (please refer to FIG. 14). Accordingly, the bridge voltage Vout of the bridge circuit provided by the distortion detection elements 4 a-4 d is not changed. Thus, the force in the in-plane direction is not sensitive. Thus, it is not necessary to consider the force in the in-plane direction when the force fz and the momentum force mz applied to the strain generating body 3 are calculated.
When the pushing force is applied to the front side operation surface 2 a, the signal processing section 6 calculates the operation position (i.e., x1 and y1) as follows (please refer to FIGS. 15A to 15C).
Specifically, when the signal processing section 6 detects the pushing force to the front side operation surface 2 a according to the bridge voltage Vout of the bridge circuit formed on each distortion detection section 4, the signal processing section 6 calculates the force fz (i.e., fz1 and fz2) applied to the strain generating body 3 and the momentum force mz (i.e., mz1 and mz2) based on the bridge voltage Vout. Then, the section 6 calculates the center position (i.e., the operation position of (x1, y1)) of the operation force Fz applied to the front side operation surface 2 a according to the calculated values of fz and mz and equations of (1-4) and (1-5).
The equations of (1-4) and (1-5) are developed from a force balance equation of (1-1), a momentum balance equation of (1-2) around the Y axis, and a momentum balance equation of (1-3) around the X axis. Here, w represents a distance between a center line of the strain generating body 31, 32 in parallel to the Y axis and a center line of the strain generating body 33, 34.
On the other hand, when the pushing force is applied to the back side operation surface 2 b, and the direction of the operation force F caused by the pushing force tilts from the vertical direction of the back side operation surface 2 b by an angle of θ, an error may be generated since the back side operation surface 2 b is not disposed on the substantially same plane as the strain generating body 3 (please refer to FIGS. 16A and 16B).
Specifically, the signal processing section 6 detects the pushing force with respect to the back side operation surface 2 b according to the change of the bridge voltage Vout of the bridge circuit, which is formed on each distortion detection section 4. Further, the section 6 calculates the forces fz1 to fz4, which are applied to the back side operation surface 2 b in the Z axis direction perpendicular to the back side operation surface 2 b, with respect to each strain generating body 3. According to a conventional gravity center calculation method indicated by equations of (2-1) to (2-3), the section 6 calculates the X coordinate (i.e., x1) of the center position (i.e., the operation position) of the operation force F, which is applied to the back side operation surface 2 b. Here, the term of “w” represents a length of the back side operation surface 2 b in the X axis direction. The term of “h” represents a distance between the back side operation surface 2 b and the displacement transmission surface 3 f. The Y coordinate of the operation position is also calculated similarly.
When the above calculation method is utilized, the left part of the equation of (2-3) provides a calculation result of the X coordinate of the operation position. This calculation result includes an error (indicative of tan θ·h), which is derived from the tilt angle of θ of the operation force F. The larger the distance h is, the larger the error is.
Thus, the operation position detection apparatus 1 according to the first embodiment having the above features receives the operation on each of the front side operation surface 2 a and the back side operation surface 2 b, which are arranged on both sides of the operation body 2, respectively, so that the apparatus 1 detects the magnitude of the operation force and the operation position. Accordingly, the apparatus 1 can receive various types of operations.
Further, the front side operation surface 2 a is arranged on the substantially same plane as the displacement transmission surface 3 f, on which the distortion detection section 4. Accordingly, when the pushing force is applied to the front side operation surface 2 a, the distortion detection section 4 does not have sensitivity in a direction other than the vertical direction of the front side operation surface 2 a. Thus, the section 4 detects only the force in the direction perpendicular to the front side operation surface 2 a. Thus, when the pushing force is applied to the front side operation surface 2 a, and the pushing force is applied to the front side operation surface 2 a in a direction other than the vertical direction (i.e., the operation force tilts from the vertical direction of the front side operation surface 2 a), the apparatus 1 can detect the operation position accurately.
Further, the signal processing section 6 calculates a moment generated around the X axis direction and a moment generated around the Y axis direction on the X-Y plane, and the force in the Z axis direction, which is perpendicular to the X-Y plane, according to the distortion generated at the distortion detection elements 4 a-4 d by the pushing force to the front side operation surface 2 a wherein the front side operation surface 2 a provides the X-Y plane as a two-dimensional orthogonal coordinate system. Further, the section 6 calculates the gravity center position based on the force and the moments as the operation position of the front side operation surface 2 a.
The signal processing section 6 calculates the force in the z axis direction perpendicular to the X-Y plane according to the distortion generated at the distortion detection elements 4 a-4 d by the pushing force to the back side operation surface 2 b wherein the back side operation surface 2 b provides the X-Y plane as a two-dimensional orthogonal coordinate system. Further, the section 6 calculates the gravity center position based on the force as the operation position of the back side operation surface 2 a.
Accordingly, with respect to the pushing force to the front side operation surface 2 a, the operation position is calculated by applying a conventional calculation method for calculating the operation position in the operation position detection apparatus 1, in which the operation surface and the displacement transmission surface are not arranged on the same plane. Thus, it is not necessary to develop a new calculation method. Further, with respect to the pushing force to the back side operation surface 2 b, a conventional calculation method of the operation position in the operation position detection apparatus is utilized. Accordingly, the operation position detection apparatus 1 is manufactured and designed with a low cost and a short period.
The concavity surface 23 is formed on the back side of the operation main body 21. The back side operation surface 2 b is arranged on the back side of the concavity surface 23. The distance between the displacement transmission surface 3 f and the back side operation surface 2 b is minimized. Accordingly, the error in the calculation result of the operation position on the back side operation surface 2 b is minimized.
The displacement transmission surface 3 f of the strain generating body 3 is an elastic deformable body, which provides a bending deformation. The distortion detection section 4 detects the elastic deformation amount generated in an in-plane direction of the displacement transmission surface 3 f. Thus, only the force perpendicular to the back side operation surface 2 b or the front side operation surface 2 a is detected.
Further, the distortion detection section 4 is provided by the distortion detection elements 4 a-4 d and the like, which are arranged on the displacement transmission surface 3 f of each strain generating body 3. Accordingly, without using an element other than the distortion detection element, the apparatus 1 can detect the operation position with high accuracy. Thus, the dimensions of the operation position detection apparatus 1 are minimized, and the manufacturing cost of the apparatus 1 is reduced.
Further, the operation main body 21 of the operation body 2 includes multiple operation surface connectors 22, which protrude to the outside circumference. The operation surface connectors 22 provide a pair of connectors 22, which face each other and sandwich the operation main body 21 therebetween. Further, the connectors 22 has a top end, which is connected to the connection section 3 d of the strain generating body 3. Accordingly, the operation displacement is transmitted to the strain generating body 3 and the distortion detection section 4 with high efficiency.
Further, the strain generating body 3 includes the extending section 3 g, which extends from the connection section 3 d. the top end of the extending section 3 g forms the fixed section 3 c. Further, the extending section 3 g provides the displacement transmission surface 3 f. The distortion detection section 4 is arranged on the displacement transmission surface 3 f. Thus, the connection section 3 d, the strain generating body 3 and the displacement transmission surface 3 f are integrated into one body.
Further, the casing 94 is arranged to have a clearance with the operation body 2 and the strain generating body 3 so as not to contact with parts other than the fixed section 3 c. Accordingly, the operation body 2 and the strain generating body 3 are fixed to the casing 94 not to prevent the pushing force to the front side operation surface 2 a or the back side operation surface 2 b.
Further, one operation surface connector 22 is connected to two strain generating bodies 3, which sandwich the one operation surface connector 22. Accordingly, the operation position is calculated by a method similar to the conventional method. It is not necessary to develop a new calculation method. Thus, the operation position detection apparatus 1 is manufactured with a low cost and a short period.
Next, FIG. 17 shows a modification of the strain generating body 3 in the first embodiment. The strain generating body 3 according to the modification extends in the direction perpendicular to the extending direction of the operation surface connector 22 from the connection position with the operation surface connector 22. The body 3 includes a base end side taper section 3 h having a width, which becomes narrower from the connection section 3 d with the operation surface connector 22 toward an extending end (i.e., the fixed section 3 c). Further, the strain generating body 3 includes a top end side taper section 3 i having a width, which becomes narrower from the fixed section 3 c with the casing 94 toward the connection section 3 d with the operation surface connector 22, and the extending section 3 g, on which the displacement transmission surface 3 f is formed, the extending section 3 g connecting the base end side taper section 3 h and the top end side taper section 3 i.
Further, the base end side taper section 3 h has an angle θ1 on a fixed section 3 c side of the operation surface connector 22 with respect to the axis line L in the extending direction of the extending section 3 g, and the angle θ1 is preferably equal to or larger than 30 degrees and equal to or smaller than 60 degrees. Further, the top end side taper section 3 i has an angle θ2 on a connection section 3 d side of the casing 94 with respect to the axis line L in the extending direction of the extending section 3 g, and the angle θ2 is preferably equal to or larger than 30 degrees and equal to or smaller than 60 degrees.
The above construction provides to secure the strength of the connection section 3 d and the fixed section 3 c sufficiently and to detect the distortion on the displacement transmission surface 3 f with high accuracy.
Second Embodiment
Next, the operation position detection apparatus 1 according to the second embodiment will be explained. As shown in FIGS. 18 and 19, in the second embodiment, the strain generating body 3 is attached to the operation surface connector 22, which protrudes from four corners of the operation body 2 having the rectangular shape. Specifically, one operation surface connector is connected to one strain generating body. The construction of the strain generating body 3 and the distortion detection section 4 are similar to the first embodiment.
In the first embodiment, a large stress is easily applied to the connection part between the operation body 2 and two strain generating bodies 3. However, in the second embodiment, the stress diverges into four parts. Thus, the reliability and the durability of the apparatus are improved. In the second embodiment, the front side operation surface 2 a and all of the displacement transmission surfaces 3 f are disposed on the same plane (which is similar to other latter embodiments).
Third Embodiment
Next, an operation position detection apparatus according to the third embodiment will be explained. As shown in FIG. 20, in the operation position detection apparatus according to the third embodiment, the number of strain generating bodies 3 (or the distortion detection sections 4) in the operation position detection apparatus according to the second embodiment is reduced from four to three, and the strain generating bodies 3 (or the distortion detection sections 4) are arranged at a peripheral section of the operation body 2. When the number of the distortion detection section 4 is at least three, the gravity center position can be calculated. In the third embodiment, since the number of distortion detection elements is reduced, the manufacturing cost of the apparatus is reduced.
Fourth Embodiment
Next, an operation position detection apparatus according to the fourth embodiment will be explained. In the fourth embodiment, the grooves 21 b, 21 c are formed in a region, which is covered with the back side operation surface 2 b and disposed on the back side of the operation main body 21 of the operation body 2 (please refer to FIGS. 21 and 22).
Here, the number of grooves and the direction of the grooves are not limited specifically. A protrusion having a rib shape instead of the groove may be formed. Alternatively, a concavity and/or a convexity may be formed. Further, a similar groove or the like may be formed in a region, which is covered with the font side operation surface 2 a on the surface of the operation main body 21.
Further, the shape of the back side operation surface 2 b may be formed to have a substantially regular tetrahedron shape with a center, which is the highest part (please refer to FIGS. 23 and 24). Here, it is necessary to adjust the height of the center section of the back side operation surface 2 b not to deteriorate the detection accuracy of the operation position. Further, it goes without saying that the front side operation surface 2 a may be also formed similarly.
Thus, when the back side operation surface 2 b (or the front side operation surface 2 a) is pushed, it is possible to determine the operation position according to the tactile sense. Thus, usability is improved.
Here, in addition to the substantially regular tetrahedron shape, the back side operation surface 2 b may be formed to have a conical shape, an earthenware mortar shape or the like in order to determine a specific position on the back side operation surface 2 b according to the tactile sense. Alternatively, a groove, a rib shaped protrusion, a concavity, a convexity or the like may be formed on the back side operation surface 2 b.
Fifth Embodiment
Next, a fifth embodiment will be explained. In the fifth embodiment, two operation position detection apparatuses 1 described in any one of the first to fourth embodiments are attached to a steering device 100 of a vehicle such that the front side operation surface 2 a faces a driver, who is driving the vehicle (please refer to FIG. 25).
These operation position detection apparatuses 1 are attached to an upper side spoke so as to be adjacent to a steering wheel. When the driver grips the steering wheel, it is possible to execute an operation to the front side operation surface 2 a with a thumb and to execute an operation to the back side operation surface 2 b with other fingers.
The attachment position of the operation position detection apparatus 1 is not limited to the above. The operation position detection apparatus 1 may be attached to a certain position adjacent to the steering wheel or attached on the steering wheel. Further, one, three or more operation position detection apparatuses 1 may be attached to the steering device 100.
These operation position detection apparatus 1 is connected to the navigation device 200. Further, the navigation device 200 is connected to an ECU such as an audio system 300 and an air conditioning ECU 400 via an in-vehicle LAN 500 (please refer to FIG. 26).
As shown in FIG. 27, the navigation device 200 includes a position detector 210 for detecting a current position of the vehicle, an orientation sensor 220 for detecting an absolute orientation based on geomagnetism, and an operation receiving section 230 for communicating with the signal processing section 6 of the operation position detection apparatus 1. Further, the device 200 is provided by a conventional micro computer mainly, which includes a CPU, a ROM, a RAM, a I/O, and a bus line for connecting them. The device 200 further includes a control section 240 for totally controlling the navigation device 200 according to a program or the like, which is up-loaded to the RAM.
Further, the navigation device 200 further includes a HDD and/or a flash memory, and further, includes a memory 250 for storing a map data and the like, and a liquid crystal display, and furthermore, includes a display 260 for displaying various information. Here, the display 260 may be arranged to be integrated with a meter display or the like in a dash board. Alternatively, the display 260 may be a head up display.
The navigation device 200 further includes a key switch, a touch switch and the like. The device 200 furthermore includes an operation section 270 for receiving various operations, and an in-vehicle LAN communication section 280 for communicating with other ECU via the in-vehicle LAN 500.
The signal processing section 6 of each operation position detection apparatus 1 transmits operation information, which indicates a pushed operation surface, a detected operation position, and an operation force, to the navigation device 200 when the front side operation surface 2 a and the back side operation surface 2 b are pushed.
On the other hand, the control section 240 of the navigation device 200 executes various processes according to the operation information received from the signal processing section 6. Further, the control section 240 transmits the operation information received from the operation position detection apparatus 1 to other ECU via the in-vehicle LAN 500 if necessary. Thus, it is possible to operate other ECU with using the operation position detection apparatus 1.
Further, the receiving operations may be assigned to the front side operation surface 2 a, which is operable by the thumb with gripping the steering wheel, and the back side operation surface 2 b, which is operable by other fingers.
Specifically, the driver who is driving the vehicle may not visually confirm the back side operation surface 2 b. Further, under a condition that the driver grips the steering wheel, it may be difficult for the driver to move other fingers other than the thumb handily. Accordingly, it is considered that the back side operation surface 2 b may receive an executable operation with repeating a simple finger movement such as tapping an operation surface with a finger and sliding a finger, which contacts the operation surface.
A concrete example of the above operations may be an operation for changing a set value continuously such as a volume of the audio system 300, a set temperature and an air blow amount of the air conditioning ECU 400, and an opening degree of a window of the vehicle. Further, in addition to the above operation, it is considered that the example may be an operation for changing continuously a scale and an angle of a map image and an operation for scrolling the map image.
On the other hand, regarding the front side operation surface 2 a, the driver easily visually confirms the front side operation surface 2 a while the driver is driving the vehicle. Further, under a condition that the driver grips the steering wheel, it may be easy for the driver to move the thumb comparatively handily. Accordingly, it is considered that any operation may be assigned to the front side operation surface 2 a (and further, the above-described operation for changing a set value continuously may be assigned to the front side operation surface 2 a).
Thus, the driver can operate the navigation device 200 and the like under a condition that the driver grips the steering wheel. Thus, convenience is improved. Further, since each operation position detection apparatus 1 includes two operation surfaces of the front side operation surface 2 a and the back side operation surface 2 b, an user can execute various operations.
Further, the executable operation with repeating a comparatively simple finger movement for changing the set value continuously is assigned to the back side operation surface 2 b. Accordingly, under a condition that the driver grips the steering wheel, the driver can easily execute the operation with respect to the back side operation surface 2 b. Thus, the operation does not bother the driver who is driving the vehicle.
As described above, the back side operation surface 2 b has the detection accuracy of the operation position or the like, which is lower than the front side operation surface 2 a. However, the above operations do not require the high detection accuracy of the operation position, and therefore, it is considered that a risk for generating the erroneous operation via the operation of the back side operation surface 2 b is low.
It is difficult for the driver who is driving the vehicle to visually confirm the back side operation surface 2 b in general. Thus, the operation position detection apparatus 1 may be provided by the operation position detection apparatus 1 according to the fourth embodiment, and a pushing position on the back side operation surface 2 b may be determined by the tactile sense. Thus, even when the driver is driving the vehicle, the driver can execute the operation to the back side operation surface 1 b with high accuracy.
Other Embodiments
(1) In the operation position detection apparatus 1 according to the first to fifth embodiments, the front side operation surface 2 a and the displacement transmission surface 3 f are arranged on the same plane. However, it is not limited to this feature. For example, the displacement transmission surface 3 f may be arranged between the front side operation surface 2 a and the back side operation surface 2 b.
Further, in the operation position detection apparatus 1 according to the first to fifth embodiments, the back side operation surface 2 b is arranged on the bottom of the concavity 23, which is formed on the back side of the operation body 2. Alternatively, the back side operation surface 2 b may be arranged on the back side of the operation body 2 without forming the concavity 23.
In the above case, the operation position detection apparatus 1 can receive the operation from each of the front side operation surface 2 a and the backs ide operation surface 2 b, and therefore, the variations of operations are increased.
(2) Further, in the fifth embodiment, the operation position detection apparatus 1 according to the first to fourth embodiments is connected to the navigation device 200. Alternatively, the apparatus 1 may be connected to other ECU. Further, the operation position detection apparatus 1 may be applied to any type of electric equipment in addition to the vehicular device such as the navigation device 200. In these cases, a similar effect is obtained.
The signal processing section 6 in the operation position detection apparatus 1 corresponds to an operation position calculation section.
Further, the navigation device 200 according to the fifth embodiment corresponds to the vehicular device, and the control section 240 of the navigation device 200 corresponds to a control device.
While the present disclosure has been described with reference to embodiments thereof, it is to be understood that the disclosure is not limited to the embodiments and constructions. The present disclosure is intended to cover various modification and equivalent arrangements. In addition, while the various combinations and configurations, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the present disclosure.

Claims (7)

What is claimed is:
1. An operation position detection apparatus comprising:
an operation body including a front side operation surface and a back side operation surface and having a substantially plate shape;
a casing accommodating the operation body;
at least three or more strain generating bodies arranged on at least one of the front side operation surface and the back side operation surface, wherein each strain generating body includes a connection section for connecting to the operation body, a fixed section fixed to the casing, and a displacement transmission surface displaceable according to an operation force, which is generated by a pushing pressure to each of the front side operation surface and the back side operation surface, and wherein the connection section is arranged on one end of the strain generating body, the fixed section is arranged on the other end of the strain generating body, and the displacement transmission surface is arranged between the connection section and the fixed section;
a distortion detection section arranged on the displacement transmission surface of each strain generating body and detecting a distortion of the displacement transmission surface caused by a displacement of the strain generating body; and
an operation position calculation section detecting which of the front side operation surface and the back side operation surface is pushed, the magnitude of the operation force generated by the pushing pressure, and an operation position as a position at which the pushing pressure is applied, according to the distortion detected by each distortion detection section.
2. The operation position detection apparatus according to claim 1,
wherein the connection section of each strain generating body is connected to a periphery of the operation body, and
wherein the front side operation surface and the displacement transmission surface of all of the strain generating bodies corresponding to the front side operation surface are arranged on a same plane.
3. The operation position detection apparatus according to claim 2,
wherein the front side operation surface is defined as a X-Y plane of a two-dimensional orthogonal coordinate system,
wherein a predetermined direction of the X-Y plane is defined as a first direction, and a direction perpendicular to the first direction is defined as a second direction,
wherein a direction perpendicular to the X-Y plane is defined as a third direction,
wherein the operation position calculation section calculates a moment around the first direction, a moment around the second direction and a force in the third direction according to the distortion detected by the distortion detection section and caused by the pushing pressure to the front side operation surface,
wherein the operation position calculation section calculates a gravity center position based on the moment around the first direction, the moment around the second direction and the force in the third direction,
wherein the operation position calculation section detects a calculated gravity center position as the operation position of the front side operation surface,
wherein the back side operation surface is defined as a X-Y plane of another two-dimensional orthogonal coordinate system,
wherein a predetermined direction of the another X-Y plane is defined as a fourth direction, and a direction perpendicular to the fourth direction is defined as a fifth direction,
wherein a direction perpendicular to the another X-Y plane is defined as a sixth direction,
wherein the operation position calculation section calculates a force in the sixth direction according to the distortion detected by the distortion detection section and caused by the pushing pressure to the back side operation surface,
wherein the operation position calculation section calculates another gravity center position based on the force in the sixth direction,
wherein the operation position calculation section detects another calculated gravity center position as the operation position of the back side operation surface.
4. The operation position detection apparatus according to claim 3,
wherein a back side of the operation body 2 further includes a concavity surface,
wherein the back side operation surface is arranged on a bottom of the concavity surface, and
wherein the front side operation surface is arranged at a position opposing to the back side operation surface to sandwiching the concavity surface therebetween.
5. A vehicular apparatus comprising:
the operation position detection apparatus according to claim 1 and attached to a steering device of a vehicle in such a manner that the front side operation surface faces a driver, who is driving the vehicle; and
a control device executing various processes based on the magnitude of the operation force or the operation position, which are calculated with respect to the pushing pressure to the front side operation surface or the back side operation surface.
6. The vehicular apparatus according to claim 5,
wherein the control device executes various processes based on the magnitude of the operation force or the operation position, which are calculated with respect to the pushing pressure to the front side operation surface in the operation position detection apparatus,
wherein the control device executes a process for changing continuously a predetermined set value based on the magnitude of the operation force or the operation position, which are calculated with respect to the pushing pressure to the back side operation surface in the operation position detection apparatus.
7. The vehicular apparatus according to claim 5,
wherein the back side operation surface includes a concavity or a convexity for determining a position on the back side operation surface.
US14/381,404 2012-02-29 2013-02-14 Operation position detection apparatus and vehicular apparatus Expired - Fee Related US9909852B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012044199A JP5840980B2 (en) 2012-02-29 2012-02-29 Operation position detection device and in-vehicle device
JP2012-044199 2012-02-29
PCT/JP2013/000791 WO2013128819A1 (en) 2012-02-29 2013-02-14 Operation position detection device and vehicle-mounted apparatus

Publications (2)

Publication Number Publication Date
US20150106051A1 US20150106051A1 (en) 2015-04-16
US9909852B2 true US9909852B2 (en) 2018-03-06

Family

ID=49082035

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/381,404 Expired - Fee Related US9909852B2 (en) 2012-02-29 2013-02-14 Operation position detection apparatus and vehicular apparatus

Country Status (5)

Country Link
US (1) US9909852B2 (en)
JP (1) JP5840980B2 (en)
CN (1) CN104205022B (en)
DE (1) DE112013001200T8 (en)
WO (1) WO2013128819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180086289A1 (en) * 2016-09-28 2018-03-29 Yazaki Corporation Vehicle-mounted equipment operating device
US11243632B2 (en) 2016-09-23 2022-02-08 Murata Manufacturing Co., Ltd. Piezoelectric device and display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840980B2 (en) * 2012-02-29 2016-01-06 株式会社日本自動車部品総合研究所 Operation position detection device and in-vehicle device
JP5844178B2 (en) 2012-02-29 2016-01-13 株式会社日本自動車部品総合研究所 In-vehicle device
JP5849033B2 (en) * 2012-08-31 2016-01-27 株式会社日本自動車部品総合研究所 Operation input device
EP3370135B1 (en) * 2015-10-28 2020-08-26 Alps Alpine Co., Ltd. Operation device
CN207610820U (en) * 2017-08-25 2018-07-13 深圳市雷骏科技有限公司 Sensor and Segway Human Transporter with sensor
CN107704134B (en) * 2017-09-30 2021-04-20 厦门天马微电子有限公司 Display panel and display device
CN112992581B (en) * 2021-04-28 2023-03-14 维沃移动通信有限公司 Key structure and electronic equipment

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298013A (en) 1992-04-24 1993-11-12 Toshiba Corp Pressure-sensitive coordinate input device
JPH10108851A (en) 1996-10-03 1998-04-28 Yoshihide Naito Load sensor for gravitational center oscillation gauge
JP2750472B2 (en) 1990-09-07 1998-05-13 三菱重工業株式会社 Building construction method and device
JP2760473B2 (en) 1994-03-11 1998-05-28 アニマ株式会社 Body sway meter
JPH1139093A (en) 1997-07-15 1999-02-12 Toshiba Corp Information processor and pointing device
JP2003091360A (en) 2001-09-17 2003-03-28 Alps Electric Co Ltd Coordinate input device and electronic equipment
JP2003330616A (en) 2002-05-09 2003-11-21 Sanee Denki Kk Picture input touch panel and information processor using the same
JP2006120009A (en) 2004-10-22 2006-05-11 Nissan Motor Co Ltd Information operating unit
CN2792878Y (en) 2005-03-01 2006-07-05 广东铁将军防盗设备有限公司 Anti-robbing device installed on steering wheel of vehicle
JP2006252093A (en) 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Interface device having haptic force type touch panel
US20090046071A1 (en) * 2007-08-13 2009-02-19 Research In Motion Limited Tactile touchscreen for electronic device
US20090065267A1 (en) * 2007-09-11 2009-03-12 Tadamitsu Sato Input apparatus
JP2009129171A (en) 2007-11-22 2009-06-11 Denso It Laboratory Inc Information processor loaded in mobile body
JP2009187290A (en) 2008-02-06 2009-08-20 Yamaha Corp Controller with touch panel and program
US20090315834A1 (en) 2008-06-18 2009-12-24 Nokia Corporation Apparatus, method and computer program product for manipulating a device using dual side input devices
JP2010018204A (en) 2008-07-11 2010-01-28 Nippon Soken Inc Information provision device and information provision system
US20100045624A1 (en) 2008-08-21 2010-02-25 Denso Corporation Manipulation input apparatus
JP2010049460A (en) 2008-08-21 2010-03-04 Denso Corp Operation input device
JP2010086076A (en) 2008-09-29 2010-04-15 Denso Corp Manipulation input apparatus
US20110074665A1 (en) 2009-09-30 2011-03-31 Nintendo Co., Ltd. Information processing program having computer-readable storage medium therein and information processing apparatus
JP2012003304A (en) 2010-06-14 2012-01-05 Sony Computer Entertainment Inc Terminal
US20120008266A1 (en) * 2009-07-29 2012-01-12 Alps Electric Co., Ltd. Operation device
US20120055268A1 (en) 2010-09-08 2012-03-08 Nippon Soken, Inc. Manipulated position detection device
US20120128966A1 (en) 2009-08-04 2012-05-24 Jingjing Ma Non-halogenated polyisobutylene-thermoplastic elastomer blend pressure sensitive adhesives
US20130088437A1 (en) 2010-06-14 2013-04-11 Sony Computer Entertainment Inc. Terminal device
JP2013182324A (en) * 2012-02-29 2013-09-12 Nippon Soken Inc Operation position detection device and in-vehicle device
US8780062B2 (en) * 2009-03-25 2014-07-15 Mitsubishi Electric Corporation Coordinate input display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903090B2 (en) * 2005-06-10 2011-03-08 Qsi Corporation Force-based input device

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750472B2 (en) 1990-09-07 1998-05-13 三菱重工業株式会社 Building construction method and device
JPH05298013A (en) 1992-04-24 1993-11-12 Toshiba Corp Pressure-sensitive coordinate input device
JP2760473B2 (en) 1994-03-11 1998-05-28 アニマ株式会社 Body sway meter
JPH10108851A (en) 1996-10-03 1998-04-28 Yoshihide Naito Load sensor for gravitational center oscillation gauge
JPH1139093A (en) 1997-07-15 1999-02-12 Toshiba Corp Information processor and pointing device
JP2003091360A (en) 2001-09-17 2003-03-28 Alps Electric Co Ltd Coordinate input device and electronic equipment
US20030071784A1 (en) 2001-09-17 2003-04-17 Tadamitsu Sato Coordinate input device having non-flat operation surface and electronic apparatus
JP2003330616A (en) 2002-05-09 2003-11-21 Sanee Denki Kk Picture input touch panel and information processor using the same
JP2006120009A (en) 2004-10-22 2006-05-11 Nissan Motor Co Ltd Information operating unit
CN2792878Y (en) 2005-03-01 2006-07-05 广东铁将军防盗设备有限公司 Anti-robbing device installed on steering wheel of vehicle
JP2006252093A (en) 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Interface device having haptic force type touch panel
JP4682357B2 (en) 2005-03-10 2011-05-11 独立行政法人産業技術総合研究所 Interface device with haptic touch panel
US20090046071A1 (en) * 2007-08-13 2009-02-19 Research In Motion Limited Tactile touchscreen for electronic device
US20090065267A1 (en) * 2007-09-11 2009-03-12 Tadamitsu Sato Input apparatus
JP2009129171A (en) 2007-11-22 2009-06-11 Denso It Laboratory Inc Information processor loaded in mobile body
JP2009187290A (en) 2008-02-06 2009-08-20 Yamaha Corp Controller with touch panel and program
US20090315834A1 (en) 2008-06-18 2009-12-24 Nokia Corporation Apparatus, method and computer program product for manipulating a device using dual side input devices
CN102067070A (en) 2008-06-18 2011-05-18 诺基亚公司 Apparatus, method and computer program product for manipulating a device using dual side input devices
JP2010018204A (en) 2008-07-11 2010-01-28 Nippon Soken Inc Information provision device and information provision system
US20100045624A1 (en) 2008-08-21 2010-02-25 Denso Corporation Manipulation input apparatus
JP2010049460A (en) 2008-08-21 2010-03-04 Denso Corp Operation input device
JP2010086076A (en) 2008-09-29 2010-04-15 Denso Corp Manipulation input apparatus
US8780062B2 (en) * 2009-03-25 2014-07-15 Mitsubishi Electric Corporation Coordinate input display apparatus
US20120008266A1 (en) * 2009-07-29 2012-01-12 Alps Electric Co., Ltd. Operation device
US20120128966A1 (en) 2009-08-04 2012-05-24 Jingjing Ma Non-halogenated polyisobutylene-thermoplastic elastomer blend pressure sensitive adhesives
JP2011076440A (en) 2009-09-30 2011-04-14 Nintendo Co Ltd Information processing program and information processing apparatus
US20110074665A1 (en) 2009-09-30 2011-03-31 Nintendo Co., Ltd. Information processing program having computer-readable storage medium therein and information processing apparatus
JP2012003304A (en) 2010-06-14 2012-01-05 Sony Computer Entertainment Inc Terminal
US20130088437A1 (en) 2010-06-14 2013-04-11 Sony Computer Entertainment Inc. Terminal device
US20120055268A1 (en) 2010-09-08 2012-03-08 Nippon Soken, Inc. Manipulated position detection device
JP2012058967A (en) 2010-09-08 2012-03-22 Nippon Soken Inc Operation position detection apparatus
JP2013182324A (en) * 2012-02-29 2013-09-12 Nippon Soken Inc Operation position detection device and in-vehicle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Search Report and Written Opinion (in Japanese with English Translation) for PCT/JP2013/000791, dated Apr. 16, 2013; ISA/JP.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243632B2 (en) 2016-09-23 2022-02-08 Murata Manufacturing Co., Ltd. Piezoelectric device and display device
US20180086289A1 (en) * 2016-09-28 2018-03-29 Yazaki Corporation Vehicle-mounted equipment operating device

Also Published As

Publication number Publication date
DE112013001200T8 (en) 2015-04-16
WO2013128819A1 (en) 2013-09-06
CN104205022B (en) 2017-03-08
DE112013001200T5 (en) 2015-02-19
JP2013182324A (en) 2013-09-12
US20150106051A1 (en) 2015-04-16
JP5840980B2 (en) 2016-01-06
CN104205022A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US9909852B2 (en) Operation position detection apparatus and vehicular apparatus
US9074955B2 (en) Detection device, electronic apparatus, and robot
US9459712B2 (en) Detection device, electronic apparatus, and robot
US8800385B2 (en) Detection device, electronic apparatus, and robot
US8707802B2 (en) Detection device, electronic apparatus, and robot
US10509512B2 (en) Operation input device and image processing system
US9110537B2 (en) In-vehicle apparatus including distortion detection element
US9261981B2 (en) Portable electronic device and rotation detection method thereof
CN107025017B (en) Touch input device
US8887583B2 (en) Manipulated position detection device
US20150276515A1 (en) Operation input device
JP6287482B2 (en) Operation input device
WO2013175818A1 (en) Pen-type input device
US9162698B2 (en) Vehicular input apparatus
KR101347180B1 (en) Touch panel based on pressing force
KR101598807B1 (en) Method and digitizer for measuring slope of a pen
US11507202B2 (en) 3-D input device
CN105453003A (en) Operation position detection device
KR101924546B1 (en) Apparatus for measuring pressure
JP5663375B2 (en) Operation detection device
JP2013045342A (en) Operation device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HATANAKA, SHINJI;SANMA, NORIO;NADA, TORU;AND OTHERS;SIGNING DATES FROM 20140723 TO 20140807;REEL/FRAME:033621/0672

Owner name: NIPPON SOKEN, INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HATANAKA, SHINJI;SANMA, NORIO;NADA, TORU;AND OTHERS;SIGNING DATES FROM 20140723 TO 20140807;REEL/FRAME:033621/0672

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20220306