US9904838B2 - Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof - Google Patents

Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof Download PDF

Info

Publication number
US9904838B2
US9904838B2 US15/243,862 US201615243862A US9904838B2 US 9904838 B2 US9904838 B2 US 9904838B2 US 201615243862 A US201615243862 A US 201615243862A US 9904838 B2 US9904838 B2 US 9904838B2
Authority
US
United States
Prior art keywords
amplifier
detection circuit
capacitor
phase input
fingerprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/243,862
Other languages
English (en)
Other versions
US20160358006A1 (en
Inventor
Chang Zhan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Assigned to SHENZHEN HUIDING TECHNOLOGY CO., LTD. reassignment SHENZHEN HUIDING TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHAN, Chang
Publication of US20160358006A1 publication Critical patent/US20160358006A1/en
Assigned to Shenzhen GOODIX Technology Co., Ltd. reassignment Shenzhen GOODIX Technology Co., Ltd. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SHENZHEN HUIDING TECHNOLOGY CO., LTD.
Application granted granted Critical
Publication of US9904838B2 publication Critical patent/US9904838B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • G06K9/0002
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2203/00Aspects of automatic or semi-automatic exchanges
    • H04M2203/60Aspects of automatic or semi-automatic exchanges related to security aspects in telephonic communication systems
    • H04M2203/6054Biometric subscriber identification

Definitions

  • the present disclosure relates to the technical field of identity identification, and in particular, relates to a fingerprint detection circuit and a capacitive fingerprint sensor and a mobile terminal thereof.
  • Fingerprints due to uniqueness and stability thereof, have become an effective means to identify user identities.
  • three types of fingerprint sensors are prevailing: optical imaging fingerprint sensors, crystal capacitive (or pressure-sensitive) fingerprint sensors and ultrasonic imaging fingerprint sensors.
  • An optical device acquires fingerprint images by using the full reflection principle and by using a CCD device, which achieves a better effect.
  • the device is abrasion resistant, but the cost is high and the volume is large, which is thus unsuitable for mobile terminals having a high requirement on integration.
  • An ultrasonic imaging directly scans dermal tissues, and thus dirt or oil accumulated on the skin surface cause less impact to acquisition of the image.
  • the cost of the device is extremely high, and currently there is no matured product market.
  • the crystal capacitive fingerprint sensor is manufactured according to standard CMOS technique, and acquires quality images (image quality achieved by improving the gain by using software). In addition, this fingerprint sensor has small size and low power consumption, and thus the cost thereof is much lower than that of the other sensors.
  • the crystal capacitive fingerprint sensor includes a plurality of detection units arranged in an array.
  • the fingerprint unit is equivalent to an anode of a capacitor
  • the skin of the finger becomes a cathode of the capacitor
  • the capacitance (or inductance) is different because a practical distance from the fingerprint of the finger to the detection unit is different due to different depths of the grain of the finger (that is, “ridges” and “valleys” of the finger).
  • a fingerprint image formed by ridges and valleys of the finger may be detected according to this principle.
  • FIG. 1 illustrates a commonly used fingerprint detection circuit in a fingerprint detection system.
  • An input signal VIN_ 1 from a finger and a canceling signal VCAN from a high-precision signal source are simultaneously input to the detection unit; and in an output signal VPXL_ 1 of the detection unit, a dotted-line portion represents a useful signal amplitude of the fingerprint information, and a solid-line portion represents a base signal amplitude.
  • This method may be defective in that, firstly, an amplitude of the VCAN signal output from the high-precision signal source fails to follow VIN_ 1 which may dynamically change (this is because VIN_ 1 -VIN_n are determined by a coupling capacitance between the finger and the detection unit, and the coupling capacitance may dynamically change).
  • the signal amplitude of VPXL_ 1 may still include a portion of base signal amplitudes, and the final output signal VOUT_ 1 upon amplification by an amplifier is also the same.
  • VIN_ 1 is fixed, to acquire an ideal base signal cancellation effect, high requirements are imposed on the indicators of the high-precision signal source, and thus implementation of the corresponding signal source inside the chip may cause higher cost and more power consumption.
  • the present disclosure is intended to provide a fingerprint detection circuit and a capacitive fingerprint sensor and a mobile terminal thereof, which may improve capabilities of canceling base signals and further enhance fingerprint identification precision.
  • the present disclosure provides a fingerprint detection circuit, including a plurality of detection units arranged in an array, and further including a summing unit; wherein the detection units include a first detection unit and a second detection unit, the first detection unit and the second detection unit being respectively connected to the summing unit, the summing unit conducting a summing operation for an output signal of each second detection unit and an output signal of the first detection unit to cancel a base signal in the output signal of each second detection unit to acquire a useful signal including fingerprint information.
  • the second detection unit is connected to a positive-phase input of the summing unit, and the first detection unit is connected to a negative-phase input of the summing unit.
  • the fingerprint detection circuit further includes a first amplifier, wherein the first amplifier amplifies a signal output by the summing unit.
  • the number of the first detection unit is one.
  • the detection unit includes a second amplifier, a first capacitor, a second capacitor and a third capacitor; wherein one terminal of the first capacitor is connected to an input signal of a finger, and the other terminal of the first capacitor is connected to a negative-phase input of the second amplifier; the second capacitor is connected between the negative-phase input of the second amplifier and a positive-phase input of the second amplifier; one terminal of the third capacitor is connected to the negative-phase input of the second amplifier, and the other terminal of the third capacitor is connected to an output of the second amplifier; and the positive-phase input of the second amplifier is grounded.
  • the detection unit includes a second amplifier, a first capacitor, a second capacitor and a third capacitor; wherein one terminals of both the first capacitor and the second capacitor are grounded, and the other terminals of both the first capacitor and the second capacitor are connected to a negative-phase input of the second amplifier; one terminal of the third capacitor is connected to the negative-phase input of the second amplifier, and the other terminal of the third capacitor is connected to an output of the second amplifier; and a positive-phase input of the second amplifier is connected to an input signal of a finger.
  • the summing unit includes a third amplifier, a positive-phase input of the third amplifier being connected to an output of the second detection unit, and a negative-phase input of the third amplifier being connected to an output of the first detection unit.
  • the summing unit further includes a first resistor, a second resistor, a third resistor and a fourth resistor; wherein the first resistor is connected between the output of the first detection unit and the negative-phase input of the third amplifier; the second resistor is connected between the output of the second detection unit and the positive-phase input of the third amplifier; one terminal of the third resistor is connected to the positive-phase input of the third amplifier, and the other terminal of the third resistor is grounded; and one terminal of the fourth resistor is connected to the negative-phase input of the third amplifier, and the other terminal of the fourth resistor is connected to an output of the third amplifier.
  • the present disclosure further provides a capacitive fingerprint sensor, including a fingerprint detection panel, and a fingerprint detection region located on the fingerprint detection panel, wherein the fingerprint detection circuit as described above is arranged in the fingerprint detection region.
  • the present disclosure further provides a mobile terminal, including the capacitive fingerprint sensor as described above.
  • At least one detection unit is selected as a canceling unit, and a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signals of the other detection units.
  • a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signals of the other detection units.
  • the summing circuit is simple in structure, occupies a small chip area, and may implement low power consumption.
  • FIG. 1 is a schematic diagram of a fingerprint detection circuit of a capacitive fingerprint sensor in the related art
  • FIG. 2 is a schematic diagram of a fingerprint detection circuit of a capacitive fingerprint sensor according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of distribution of detection units of the capacitive fingerprint sensor according to an embodiment of the present disclosure
  • FIG. 4 is a schematic circuit diagram of one detection unit of the capacitive fingerprint sensor according to an embodiment of the present disclosure
  • FIG. 5 is a schematic circuit diagram of another detection unit of the capacitive fingerprint sensor according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a base signal amplitude of a fingerprint signal of the capacitive fingerprint sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic circuit diagram of a summing unit of the capacitive fingerprint sensor according to an embodiment of the present disclosure.
  • a capacitive fingerprint sensor includes: a fingerprint detection panel, and a fingerprint detection region located on the fingerprint detection panel, wherein a fingerprint detection circuit is arranged in the fingerprint detection region.
  • FIG. 2 is a schematic diagram of a fingerprint detection circuit, wherein the fingerprint detection circuit includes a plurality of detection units arranged in an array, a summing unit and a first amplifier A 1 .
  • any one detection unit is selected from the plurality of detection units as a first detection unit, and the remaining detection units serve as second detection units.
  • Outputs of both the first detection unit and the second detection units are connected to the summing unit, and the summing unit conducts a summing operation for an output signal of each second detection unit and an output signal of the first detection unit to cancel a base signal in the output signal of each second detection unit to acquire a useful signal including fingerprint information.
  • the first amplifier A 1 amplifies the signal output by the summing unit.
  • FIG. 4 and FIG. 5 schematically illustrate two types of the specific circuits of the detection unit.
  • the detection unit as illustrated in FIG. 4 includes: a second amplifier A 2 , a first capacitor Cs, a second capacitor Cp and a third capacitor Cf; wherein Cs represents a coupling capacitance between a finger and the detection unit, Cf represents a feedback capacitor inside the detection unit, and Cp represents a parasitic capacitor inside the detection unit.
  • Cs represents a coupling capacitance between a finger and the detection unit
  • Cf represents a feedback capacitor inside the detection unit
  • Cp represents a parasitic capacitor inside the detection unit.
  • One terminal of the first capacitor Cs is connected to an input signal of a finger, and the other terminal of the first capacitor Cs is connected to a negative-phase input of the second amplifier A 2 .
  • the second capacitor Cp is connected between the negative-phase input of the second amplifier A 2 and a positive-phase input of the second amplifier A 2 .
  • One terminal of the third capacitor Cf is connected to the negative-phase input of the second amplifier A 2 , and the other terminal of the third capacitor Cf is connected to an output terminal of the second amplifier A 2 .
  • the positive-phase input of the second amplifier A 2 is grounded.
  • the detection unit as illustrated in FIG. 5 includes: a second amplifier A 2 , a first capacitor Cs, a second capacitor Cp and a third capacitor Cf; wherein Cs represents an coupling capacitance between a finger and the detection unit, Cf represents a feedback capacitor inside the detection unit, and Cp represents a parasitic capacitor inside the detection unit.
  • Cs represents an coupling capacitance between a finger and the detection unit
  • Cf represents a feedback capacitor inside the detection unit
  • Cp represents a parasitic capacitor inside the detection unit.
  • One terminal of the third capacitor Cf is connected to a negative-phase input of the second amplifier A 2 , and the other terminal of the third capacitor Cf is connected to an output terminal of the second amplifier A 2 .
  • a positive-phase input of the second amplifier A 2 is connected to an input signal of a finger.
  • a signal amplitude corresponding to the valley of the fingerprint is a base signal amplitude.
  • VIN_c is the signal amplitude corresponding to the valley of the fingerprint.
  • VPXL_ 1 is connected to a positive-phase input of a summing unit
  • VCAN is connected to a negative-phase input of the summing unit
  • an output signal VSUM_ 1 of the summing unit is equal to VPXL_ 1 -VCAN.
  • the signal VSUM_ 1 includes only a useful signal amplitude of the fingerprint information, and the base signal amplitude is absolutely cancelled.
  • a signal VOUT_ 1 obtained upon amplification of VSUM_ 1 through the first amplifier A 1 enable the useful signal amplitude representing the fingerprint information to be amplified as much as possible.
  • the summing unit includes a third amplifier A 3 , wherein a positive-phase input of the third amplifier A 3 is connected to an output of the second detection unit, and a negative-phase input of the third amplifier A 3 is connected to an output of the first detection unit.
  • the summing unit further includes: a first resistor R 1 , a second resistor R 2 , a third resistor R 3 and a fourth resistor R 4 .
  • the first resistor R 1 is connected between the output of the first detection unit and the negative-phase input of the third amplifier A 3 .
  • the second resistor R 2 is connected between the output of the second detection unit and the positive-phase input of the third amplifier A 3 .
  • One terminal of the third resistor R 3 is connected to the positive-phase input of the third amplifier A 3 , and the other terminal of the third resistor R 3 is grounded.
  • One terminal of the fourth resistor R 4 is connected to the negative-phase input of the third amplifier A 3 , and the other terminal of the fourth resistor R 4 is connected to an output of the third amplifier A 3 .
  • VCAN amplitude is a fixed value
  • the fingerprint amplitude is 0.505 V, and the base signal amplitude is 0.495 V. (The base signal amplitude upon cancellation is reduced from 99% to 49.5%).
  • VOUT_ 1 signal amplitudes are useful fingerprint amplitudes. (The base signal amplitude upon cancellation is reduced from 99% to 0%).
  • the gain G2 of the first amplifier A 1 may be defined to a greater value, to acquire a greater useful fingerprint amplitude, so as to improve fingerprint identification precision.
  • the fingerprint detection circuit In the fingerprint detection circuit according to the present application, at least one detection unit is selected as a canceling unit, and a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signals of the other detection units.
  • a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signals of the other detection units.
  • the present disclosure further provides a mobile terminal, including the capacitive fingerprint sensor as described above.
  • At least one selection unit is selected as a canceling unit, and a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signal of the at least one detection unit.
  • a summing operation is performed for output signals of the other detection units and an output signal of the at least one detection unit to cancel a base signal in the output signal of the at least one detection unit.
  • the summing circuit is simple in structure, occupies a small chip area, and may implement low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
US15/243,862 2014-09-29 2016-08-22 Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof Active 2035-03-10 US9904838B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410515210 2014-09-29
CN201410515210.4 2014-09-29
CN201410515210.4A CN104268530B (zh) 2014-09-29 2014-09-29 指纹检测电路及其电容式指纹传感器、移动终端
PCT/CN2015/073823 WO2016050035A1 (zh) 2014-09-29 2015-03-06 指纹检测电路及其电容式指纹传感器、移动终端

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073823 Continuation WO2016050035A1 (zh) 2014-09-29 2015-03-06 指纹检测电路及其电容式指纹传感器、移动终端

Publications (2)

Publication Number Publication Date
US20160358006A1 US20160358006A1 (en) 2016-12-08
US9904838B2 true US9904838B2 (en) 2018-02-27

Family

ID=52160050

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/243,862 Active 2035-03-10 US9904838B2 (en) 2014-09-29 2016-08-22 Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof

Country Status (5)

Country Link
US (1) US9904838B2 (ko)
EP (1) EP3203411B1 (ko)
KR (1) KR102028243B1 (ko)
CN (1) CN104268530B (ko)
WO (1) WO2016050035A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104268530B (zh) 2014-09-29 2017-07-11 深圳市汇顶科技股份有限公司 指纹检测电路及其电容式指纹传感器、移动终端
KR20160144466A (ko) * 2014-10-08 2016-12-16 선전 후이딩 테크놀로지 컴퍼니 리미티드 지문센서에서 액티브 베이스라인 신호 취소
TWI598827B (zh) * 2015-04-24 2017-09-11 速博思股份有限公司 生物特徵辨識裝置及方法
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
CN107104648B (zh) 2016-02-19 2019-12-17 深圳市汇顶科技股份有限公司 一种放大电路
CN105975947B (zh) * 2016-03-25 2020-02-21 深圳市奔凯安全技术股份有限公司 一种全局扫描式指纹处理方法
CN107368773A (zh) * 2016-05-12 2017-11-21 戴孟均 一种指纹传感器及应用其的智能设备
US9864895B1 (en) * 2016-07-07 2018-01-09 Fingerprint Cards Ab Fingerprint sensing system with finger detect
WO2018076283A1 (zh) 2016-10-28 2018-05-03 敦泰电子有限公司 一种指纹感测芯片及终端设备
CN108694365B (zh) * 2017-04-12 2022-11-15 江西欧迈斯微电子有限公司 一种图像获取方法及终端
CN107492176A (zh) * 2017-08-31 2017-12-19 北京军秀咨询有限公司 一种基于无线网络的指纹识别门禁***
CN111433781B (zh) * 2017-12-11 2023-11-14 指纹卡安娜卡敦知识产权有限公司 指纹感测装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026635A1 (en) * 2000-04-29 2004-02-12 Dong-Won Lee Method and apparatus for discriminating latent fingerprint optical fingerprint input apparatus
US20040170307A1 (en) * 2003-02-28 2004-09-02 Manansala Michael C. Chip carrier for fingerprint sensor
KR20060000701A (ko) 2004-06-29 2006-01-06 정동근 반지형 생체신호 감지센서 및 반지형 생체신호 감지센서가구비된 생체신호 측정장치
CN101253512A (zh) 2005-07-19 2008-08-27 沃勒戴蒂传感器公司 消除了差分噪声的电子指纹传感器
US20100077143A1 (en) * 2008-07-09 2010-03-25 Arm Limited Monitoring a data processing apparatus and summarising the monitoring data
US8574658B1 (en) * 2011-02-25 2013-11-05 The United States Of America As Represented By The Secretary Of The Navy Fumeless latent fingerprint detection
CN104268530A (zh) 2014-09-29 2015-01-07 深圳市汇顶科技股份有限公司 指纹检测电路及其电容式指纹传感器、移动终端
US20160350577A1 (en) * 2014-10-13 2016-12-01 Shenzhen Huiding Technology Co., Ltd. Sensor pixel circuitry for fingerprint identification
US20160364596A1 (en) * 2014-11-14 2016-12-15 Shenzhen Huiding Technology Co., Ltd. Detection method and device for detecting fingerprint
US20170118642A1 (en) * 2015-10-27 2017-04-27 Kyocera Corporation Electronic apparatus, method for authenticating the same, and recording medium
US20170235992A1 (en) * 2014-11-07 2017-08-17 Shenzhen Huiding Technology Co., Ltd. Fingerprint detection circuit, sensor and touch screen
US20170243044A1 (en) * 2015-10-21 2017-08-24 Shenzhen Huiding Technology Co., Ltd. Signal conversion circuit and fingerprint identification system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078365A (ja) * 2001-09-05 2003-03-14 Sony Corp オペアンプ回路、静電容量検出装置および指紋照合装置
JP4441927B2 (ja) * 2004-10-12 2010-03-31 セイコーエプソン株式会社 静電容量検出装置
WO2008062778A1 (fr) * 2006-11-21 2008-05-29 Hitachi Metals, Ltd. Dispositif de détection d'angle de rotation, dispositif de rotation et procédé de détection d'angle de rotation
US8115497B2 (en) * 2007-11-13 2012-02-14 Authentec, Inc. Pixel sensing circuit with common mode cancellation
JP5196187B2 (ja) * 2009-04-15 2013-05-15 セイコーエプソン株式会社 センシング装置および電子機器
KR101156573B1 (ko) * 2010-09-29 2012-06-20 포항공과대학교 산학협력단 면적변화형 정전용량 센서 및 이 센서의 자가 보정 및 신호 선형화 방법
US8854062B2 (en) * 2011-08-29 2014-10-07 Robert Bosch Gmbh Readout circuit for self-balancing capacitor bridge
US20130279769A1 (en) * 2012-04-10 2013-10-24 Picofield Technologies Inc. Biometric Sensing
CN103914190B (zh) * 2012-12-31 2017-03-15 比亚迪股份有限公司 电容检测电路
CN103713784B (zh) * 2013-04-12 2015-11-25 深圳市汇春科技有限公司 电容式触摸检测电路、装置及其防污渍致误识别的方法
CN104020914A (zh) * 2014-06-06 2014-09-03 深圳市汇顶科技股份有限公司 自电容触摸检测电路

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040026635A1 (en) * 2000-04-29 2004-02-12 Dong-Won Lee Method and apparatus for discriminating latent fingerprint optical fingerprint input apparatus
US20040170307A1 (en) * 2003-02-28 2004-09-02 Manansala Michael C. Chip carrier for fingerprint sensor
KR20060000701A (ko) 2004-06-29 2006-01-06 정동근 반지형 생체신호 감지센서 및 반지형 생체신호 감지센서가구비된 생체신호 측정장치
CN101253512A (zh) 2005-07-19 2008-08-27 沃勒戴蒂传感器公司 消除了差分噪声的电子指纹传感器
US20100077143A1 (en) * 2008-07-09 2010-03-25 Arm Limited Monitoring a data processing apparatus and summarising the monitoring data
US8574658B1 (en) * 2011-02-25 2013-11-05 The United States Of America As Represented By The Secretary Of The Navy Fumeless latent fingerprint detection
CN104268530A (zh) 2014-09-29 2015-01-07 深圳市汇顶科技股份有限公司 指纹检测电路及其电容式指纹传感器、移动终端
US20160358006A1 (en) * 2014-09-29 2016-12-08 Shenzhen Huiding Technology Co., Ltd. Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof
US20160350577A1 (en) * 2014-10-13 2016-12-01 Shenzhen Huiding Technology Co., Ltd. Sensor pixel circuitry for fingerprint identification
US20170235992A1 (en) * 2014-11-07 2017-08-17 Shenzhen Huiding Technology Co., Ltd. Fingerprint detection circuit, sensor and touch screen
US20160364596A1 (en) * 2014-11-14 2016-12-15 Shenzhen Huiding Technology Co., Ltd. Detection method and device for detecting fingerprint
US20170243044A1 (en) * 2015-10-21 2017-08-24 Shenzhen Huiding Technology Co., Ltd. Signal conversion circuit and fingerprint identification system
US20170118642A1 (en) * 2015-10-27 2017-04-27 Kyocera Corporation Electronic apparatus, method for authenticating the same, and recording medium

Also Published As

Publication number Publication date
CN104268530B (zh) 2017-07-11
US20160358006A1 (en) 2016-12-08
KR20160114153A (ko) 2016-10-04
EP3203411A4 (en) 2018-05-23
EP3203411B1 (en) 2019-05-01
KR102028243B1 (ko) 2019-10-02
WO2016050035A1 (zh) 2016-04-07
EP3203411A1 (en) 2017-08-09
CN104268530A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
US9904838B2 (en) Fingerprint detection circuit, and capacitive fingerprint sensor and mobile terminal thereof
JP6750059B2 (ja) 改良された感知素子を備えた容量指紋センサ
US10049255B2 (en) Finger biometric sensing device including series coupled error compensation and drive signal nulling circuitry and related methods
US9477870B2 (en) Finger biometric sensing device including drive signal nulling circuitry and related methods
WO2015139447A1 (zh) 电容指纹感应电路和感应器
CN105574520B (zh) 用于指纹传感器的信号处理电路及方法
US8005276B2 (en) Apparatus and method for reducing parasitic capacitive coupling and noise in fingerprint sensing circuits
US10205895B2 (en) Capacitive image sensor with noise reduction feature and method operating the same
US9684812B2 (en) Fingerprint sensing device with common mode suppression
US9940501B2 (en) Method and system for processing fingerprint sensing signals and fingerprint identification terminal
US10578575B2 (en) Noise-reduced capacitive sensing unit
US10162995B2 (en) Capacitive image sensor with noise reduction feature and method operating the same
CN108345870B (zh) 一种防寄生电容影响的高精度指纹传感器
US9767339B1 (en) Fingerprint identification device
CN105447434B (zh) 电流模式指纹识别传感器
US20150009186A1 (en) Finger biometric sensing device including coupling capacitor and reset circuitry and related methods
US10121046B2 (en) Dermatoglyph identification apparatus and identifying method thereof
CN108363991B (zh) 一种灵敏度增强型指纹传感器
CN107239723B (zh) 指纹识别装置
KR101857475B1 (ko) 지문 검출 장치의 리드아웃 회로
TW202125322A (zh) 生物特徵採集電路與方法、具有該電路之資訊處理裝置、以及應用該方法之資訊處理裝置

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHENZHEN HUIDING TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHAN, CHANG;REEL/FRAME:039775/0370

Effective date: 20160720

AS Assignment

Owner name: SHENZHEN GOODIX TECHNOLOGY CO., LTD., CHINA

Free format text: CHANGE OF NAME;ASSIGNOR:SHENZHEN HUIDING TECHNOLOGY CO., LTD.;REEL/FRAME:042956/0775

Effective date: 20170601

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4