US9842988B2 - Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications - Google Patents

Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications Download PDF

Info

Publication number
US9842988B2
US9842988B2 US14/803,111 US201514803111A US9842988B2 US 9842988 B2 US9842988 B2 US 9842988B2 US 201514803111 A US201514803111 A US 201514803111A US 9842988 B2 US9842988 B2 US 9842988B2
Authority
US
United States
Prior art keywords
layer
layers
tunnel barrier
magnetic
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/803,111
Other versions
US20170025602A1 (en
Inventor
Huanlong Liu
Yuan-Jen Lee
Jian Zhu
Guenole Jan
Po-Kang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Headway Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headway Technologies Inc filed Critical Headway Technologies Inc
Priority to US14/803,111 priority Critical patent/US9842988B2/en
Assigned to HEADWAY TECHNOLOGIES, INC. reassignment HEADWAY TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAN, GUENOLE, LEE, YUAN-JEN, LIU, HUANLONG, WANG, PO-KANG, ZHU, JIAN
Priority to EP16741836.7A priority patent/EP3326217B1/en
Priority to CN201680052700.2A priority patent/CN108028315B/en
Priority to PCT/US2016/042985 priority patent/WO2017015294A1/en
Publication of US20170025602A1 publication Critical patent/US20170025602A1/en
Priority to US15/835,592 priority patent/US10763428B2/en
Publication of US9842988B2 publication Critical patent/US9842988B2/en
Application granted granted Critical
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEADWAY TECHNOLOGIES, INC.
Priority to US17/008,277 priority patent/US11309489B2/en
Priority to US17/722,511 priority patent/US20220238798A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L43/10
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • H01L43/02
    • H01L43/08
    • H01L43/12
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect

Definitions

  • the present disclosure relates to magnetic random access memory (MRAM), spin-torque MRAM, and other spintronic devices having a magnetic tunnel junction (MTJ) wherein magnetic layers are designed to prevent diffusion of non-magnetic elements into a tunnel barrier layer between two magnetic layers thereby providing a low defect rate after high temperature annealing around 400° C.
  • MRAM magnetic random access memory
  • MTJ magnetic tunnel junction
  • a MTJ is a key component in MRAM, spin-torque MRAM, and other spintronic devices and comprises a tunnel barrier layer such as a metal oxide formed between two magnetic layers that together generate a tunneling magnetoresistance (TMR) effect.
  • TMR tunneling magnetoresistance
  • One of the magnetic layers is a free layer and serves as a sensing layer by switching the direction of its magnetic moment in response to external fields (media field) while the second magnetic layer has a magnetic moment that is fixed and functions as a reference layer.
  • the electrical resistance through the tunnel barrier layer (insulator layer) varies with the relative orientation of the free layer moment compared with the reference layer moment and thereby provides an electrical signal that is representative of a magnetic state in the free layer.
  • the MTJ is formed between a top conductor and bottom conductor.
  • the tunnel barrier is typically about 10 Angstroms thick so that a current through the tunnel barrier can be established by a quantum mechanical tunneling of conduction electrons.
  • Both of the reference layer and free layer may have a synthetic anti-ferromagnetic (SyAF) configuration in which an outer layer is anti-ferromagnetically coupled through a non-magnetic coupling layer to an inner layer that contacts the tunnel barrier.
  • MgO is often preferred as the tunnel barrier and provides a high TMR ratio when adjoining a CoFe or Fe inner magnetic layer.
  • the TMR ratio is known as dR/R where R is the minimum resistance of the MTJ, and dR is the change in resistance observed by changing the magnetic state of the free layer. A higher TMR ratio improves the readout speed.
  • a high performance MTJ requires a low areal resistance RA (area ⁇ resistance) value of about 1 ohm-um 2 , a free layer with low magnetostriction ( ⁇ ) between ⁇ 5 ⁇ 10 ⁇ 6 and 5 ⁇ 10 ⁇ 6 , low coercivity (Hc), and low interlayer coupling (Hin) between the free layer and reference layer through the tunnel barrier layer.
  • RA area ⁇ resistance
  • a high TMR ratio is obtained when the MTJ stack forms a face centered cubic (fcc) crystal structure.
  • fcc face centered cubic
  • bcc body centered cubic
  • a popular solution to this problem is to deposit amorphous CoFeB or FeB rather than CoFe or Fe.
  • MgO forms a fcc structure that induces fcc crystal growth in the adjoining magnetic layers.
  • the boron content in the CoFeB and FeB layers is about 20% or less since B needs to diffuse away from the interfaces with the tunnel barrier layer to achieve high TMR ratio.
  • a free layer may include a non-magnetic insertion layer (INS) in a FL1/INS/FL2 stack, for example, where the insertion layer is sandwiched between two ferromagnetic layers (FL1, FL2) to provide anti-ferromagnetic coupling or a moment diluting effect.
  • INS non-magnetic insertion layer
  • FL1, FL2 ferromagnetic layers
  • non-magnetic metals may diffuse through a free layer or reference layer into the tunnel barrier during or after annealing, and disrupt the insulation property of the barrier thereby causing a device defect.
  • This type of diffusion is even more pronounced in semiconductor devices wherein MRAM devices are integrated (embedded) with complementary metal-oxide-semiconductor (CMOS) units that are processed at temperatures as high as 400° C.
  • CMOS complementary metal-oxide-semiconductor
  • One objective of the present disclosure is to provide a magnetic layer structure that can serve as one or both of a free layer or reference layer in a MTJ, and maintain a defect level of ⁇ 50 ppm therein after high temperature annealing by inhibiting the migration of non-magnetic metals toward an interface with an adjoining tunnel barrier.
  • a second objective of the present disclosure is to provide a MTJ with a magnetic layer structure according to the first objective that also has acceptable A, Hc, Hin, and TMR ratio values.
  • a further objective is to provide a method of forming a MTJ with a magnetic layer structure according to the first and second objectives that can be readily implemented in a manufacturing process and is cost effective.
  • these objectives are achieved with a bottom spin valve configuration when forming a MTJ on a suitable substrate such as a bottom conductor in a MRAM device.
  • a seed layer and an optional antiferromagnetic (AFM) pinning layer may be sequentially formed on the bottom conductor.
  • a reference layer/tunnel barrier/free layer stack of layers is formed on the seed layer or AFM layer.
  • the reference layer may have an AP2/NM1/AP1 configuration wherein an “outer” AP2 ferromagnetic layer contacts the seed layer or AFM layer, NM1 is a first non-magnetic metal or alloy layer used for an antiferromagnetic coupling or moment diluting effect, and AP1 is an inner ferromagnetic layer that contacts the tunnel barrier at a first surface.
  • AP1 comprises a first layer with a B content of 25-50 atomic %, and a second layer having a B content from about 1-20 atomic %. The first and second AP1 layers form an interface with each other, and one of the two AP1 layers contacts the tunnel barrier.
  • the tunnel barrier is preferably MgO although other metal oxides, metal nitrides, or metal oxynitrides may be used.
  • the free layer stack has first magnetic layer with a high B content of 25-50 atomic %, and a second magnetic layer with a B content from 1-20 atomic %. The first and second magnetic layers form an interface with each other and one of the two magnetic layers contacts the tunnel barrier on a surface that is opposite the first surface.
  • the free layer stack has a FL1/FL2/NM2/FL3 where FL1 and FL2 are the first and second magnetic layers, NM2 is a second non-magnetic metal or alloy, and FL3 is a third magnetic layer.
  • the B containing layers with elevated B content in the AP1 reference layer and free layer stack are advantageously employed to substantially reduce the migration of non-magnetic metals in NM1 and NM2, respectively, to the tunnel barrier.
  • the FL1, FL2, and first and second AP1 layers have a composition that is selected from CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ where Q is one of Zr, Hf, Nb, Mo, Ta, and W.
  • one or more of FL2 and the AP1 layers may be made of a different alloy than the FL1 alloy.
  • FL1 may be CoB while one or more of FL2 and the AP1 layers are one of FeB, CoFeB, CoFeNiB, or CoFeBQ.
  • Each of the B containing layers has a thickness of 1 to 10 Angstroms.
  • a boron containing layer such as CoFeB may comprise a bilayer that is CoFe/B or B/CoFe.
  • the boron containing layer may be a multilayer structure with one or more B layers and one or more layers of Co, Fe, CoFe, CoFeB, CoFeNi, or CoFeQ.
  • NM1 and NM2 are selected from a metal M that is Ru, Rh, Ir, Ta, W, Mo, Cr, and Mg, or may be an alloy including one of the M metals and one of Ni, Fe, or Co.
  • the FL1/FL2 stack and the AP1 layer each have a total thickness less than about 20 Angstroms to promote perpendicular magnetic anisotropy in the free layer and reference layer, respectively.
  • the MTJ may have a top spin valve structure where the free layer, tunnel barrier, and reference layer are sequentially formed on the seed layer or AFM layer.
  • the free layer has a FL3/NM2/FL2/FL1 stack where FL3 contacts the seed layer or AFM layer, and FL1 contacts a bottom surface of the tunnel barrier.
  • the reference layer may have an AP1/NM1/AP2 configuration wherein the AP1 layer contacts a top surface of the tunnel barrier.
  • All of the MTJ layers may be deposited in the same sputter chamber. Magnetic layers may be deposited at room temperature or up to 400° C.
  • the tunnel barrier is typically formed by first depositing a metal layer such as Mg on the AP1 reference layer, performing a natural oxidation or radical oxidation step, and then depositing a second metal layer on the oxidized first metal layer. The metal deposition and oxidation sequence may be repeated before an upper metal layer is deposited on the tunnel barrier stack.
  • a high temperature anneal up to 400° C. is performed to transform the tunnel barrier stack into a substantially uniform metal oxide layer wherein the upper metal layer becomes oxidized.
  • the MTJ stack is patterned to form a plurality of MTJ elements.
  • a dielectric layer is deposited to fill the gaps between adjacent MTJ elements prior to forming a top electrode thereon.
  • FIGS. 1 a -1 b are cross-sectional views showing a MTJ stack of layers in a bottom spin valve configuration according to an embodiment of the present disclosure.
  • FIGS. 2 a -2 b are cross-sectional views that depict a MTJ stack of layers in a top spin valve configuration according to another embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view of a MTJ stack of layers with a bottom spin valve configuration according to a third embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of a MTJ stack of layers with a top spin valve configuration according to a fourth embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a MTJ stack having a bottom spin valve configuration formed according to a fifth embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a MTJ stack having a bottom spin valve configuration formed according to a sixth embodiment of the present disclosure.
  • FIGS. 7-9 depict cross-sectional views and show a sequence of steps for forming a MRAM device that comprises a MTJ element according to an embodiment of the present disclosure.
  • the present disclosure relates to a MTJ element wherein each of a reference layer and free layer are multilayer structures including a first layer with high B content of 25-50 atomic %, and a second layer with a low boron content from 1-20 atomic %.
  • the high B content layers prevent non-magnetic metals in other portions of the MTJ from migrating into the tunnel barrier during annealing and other processes with temperatures proximate to 400° C. thereby enabling devices with low defect counts around 10 ppm.
  • the MTJ may have a bottom spin valve, top spin valve, or dual spin value configuration as appreciated by those skilled in the art.
  • the MTJ element may be implemented in a variety of memory devices including but not limited to MRAM, embedded MRAM, spin-torque MRAM, and other spintronic devices such as a spin torque oscillator (STO).
  • STO spin torque oscillator
  • Non-magnetic metals such as Ru, Rh, or Ir that are employed as antiferromagnetic coupling agents in a reference layer, or Ta, Mo, W, Mg, Cr, and the like that are used for a moment diluting effect in a free layer do not bind well with magnetic layers including CoFeB or the like.
  • CoFeB with low B content below 20 atomic % begins to crystallize at annealing temperatures between 300° C.
  • a first embodiment of the present disclosure is shown wherein a MTJ stack 1 is depicted from a cross-sectional view.
  • the MTJ stack of layers in a bottom spin valve configuration may be formed on a bottom conductor (not shown) in a MRAM device, for example.
  • the bottom layer 10 in the MTJ stack may be a seed layer such as NiCr, NiFeCr, or other materials used in the art to promote the desired crystal structure in overlying layers.
  • the bottom layer may be a stack including a plurality of seed layers selected from Ta, Ru, NiCr, Cr, NiFeCr, Zr, Hf, Nb, Mg, Ti, and the like.
  • An optional antiferromagnetic (AFM) pinning layer 34 that is one of IrMn, PtMn, NiMn, OsMn, RuMn, RhMn, PdMn, RuRhMn, or MnPtPd may be employed between the bottom layer and the AP2 magnetic layer 11 in order to pin the magnetic moment in the overlying AP2 magnetic layer.
  • the AP2 magnetic layer is part of a reference layer 15 a 1 ( FIG. 1 a ) or 15 b 1 ( FIG. 1 b ) having an AP2/NM1/AP1 configuration where NM1 is a first non-magnetic layer.
  • the AP2 layer may also be referred to as a pinned layer having a magnetic moment 11 a that is fixed an in-plane direction ( FIG. 1 a ).
  • the magnetic moment 11 b is fixed in a perpendicular-to-plane direction ( FIG. 1 b )
  • an AFM layer is not required.
  • the AP2 layer is said to have perpendicular magnetic anisotropy (PMA) where the shape anisotropy that promotes magnetization in an in-plane direction is less than the magnitude of the PMA component.
  • PMA perpendicular magnetic anisotropy
  • the AP1 layer 17 that is comprised of lower magnetic layer 13 and upper magnetic layer 14 also has PMA.
  • the AP1 layer may further comprise an optional magnetic layer 16 made of Co, Fe, CoFe, or alloys thereof with Ni, B, or other metals that is understood to have a magnetic moment in the same direction as layers 13 , 14 .
  • AP1 layers 13 , 14 have a magnetic moment 13 a , 14 a , respectively, in a direction opposite to that of magnetic moment 11 a in the AP2 layer.
  • the reference layer is said to have a synthetic anti-parallel (SyAP) configuration that is beneficial in balancing the bipolar field and writing symmetry.
  • at least the upper AP1 layer 14 is amorphous when deposited in order to provide a more uniform surface on which to form the tunnel barrier 20 .
  • AP1 layers 13 , 14 have a magnetic moment 13 b , 14 b , respectively, opposite to the magnetic moment 11 b for the AP2 layer, and all AP1, AP2 layers have PMA.
  • the PMA configuration in FIG. 1 b is typically favored over the in-plane embodiment since PMA provides higher thermal stability for reference layer 15 b 1 (and free layer 35 - 1 ) as the MTJ in-plane dimensions are scaled down to provide higher density memory devices.
  • the NM1 layer 12 is a moment diluting layer that is a made of an element M selected from Ru, Ta, Ti, W, Zr, Hf, Nb, Mo, V, Mg, and Cr, or is an alloy which includes a magnetic element (Fe, Co, or Ni) and a non-magnetic element M, the magnetic moments of all three layers 11 , 13 , 14 are aligned in the same direction.
  • the NM1 layer is preferably amorphous to block the growth of a crystalline AP1 layer until a subsequent anneal step.
  • all magnetic moments are in-plane while in other embodiments where all AP1 and AP2 layers have PMA, all magnetic moments in the reference layer 15 b 1 are in a perpendicular-to-plane direction when NM1 is a moment diluting layer.
  • a moment diluting material in this context is defined as a non-magnetic metal or alloy that is employed to replace a portion of the magnetic material in a reference (or free) layer thereby decreasing the overall magnetic moment for the reference layer or free layer while maintaining essentially a constant reference layer or free layer thickness.
  • NM1 is an alloy
  • increasing the content of the magnetic element in the alloy will increase the coupling strength between the AP1 and AP2 layers but may lower the TMR ratio.
  • the thickness of the NM1 layer may vary from about 1 to 10 Angstroms in order to adjust the TMR ratio, magnetostriction ( ⁇ ), and coupling strength (Hin) between the AP1 and AP2 layers.
  • the lower AP1 layer 13 is a first boron containing alloy wherein the B content is from 25-50 atomic %
  • the upper AP1 layer 14 is a second boron containing alloy wherein the B content is from 1 to 20 atomic %.
  • the B content may be raised to 50 atomic % in the first boron containing alloy in AP1 layer 13 and in the subsequently deposited FL1 layer 30 without substantially affecting MTJ performance including TMR ratio.
  • boron tends to migrate away from the tunnel barrier during annealing to leave a region of free layer (and reference layer) adjacent to the tunnel barrier that is substantially free of boron. A high TMR ratio is thereby achieved with the resulting reference layer/tunnel barrier/free layer stack.
  • Each of the AP1 layers 13 , 14 has a composition that is selected from one of CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ where Q is one of Zr, Hf, Nb, Ta, Mo, or W.
  • each of AP1 layer 13 and AP1 layer 14 has a thickness from 1 to 10 Angstroms.
  • one or both of the AP1 layers may be comprised of a bilayer configuration such as 13 - 1 / 13 - 2 (and 14 - 1 / 14 - 2 ) as depicted in FIG.
  • a first layer is Co, Fe, CoFe, CoFeNi, CoFeQ, or CoFeB
  • the second layer is B.
  • a CoFeB alloy instead of a CoFeB alloy, one or both of the AP1 layers 13 , 14 may be represented by a CoFe/B or B/CoFe configuration. In yet another embodiment shown in FIG.
  • one or both of the AP1 layers may have a multilayer configuration such as 13 - 1 / 13 - 2 / 13 - 3 (and 14 - 1 / 14 - 2 / 14 - 3 ) including one or more boron layers, and one or more layers selected from Co, Fe, CoFe, CoFeB, CoFeNi, and CoFeQ in order to adjust the boron content in an AP1 layer.
  • Tunnel barrier 20 contacts a top surface of AP1 layer 14 .
  • the tunnel barrier may be an oxide, oxynitride, or nitride of Mg, Ti, AlTi, MgZn, Al, Zn, Zr, Ta, or Hf, or a native CoFeB, CoB, or FeB oxide.
  • the tunnel barrier may be a laminated stack of one or more of the aforementioned materials.
  • the tunnel barrier is typically around 10 Angstroms thick but the thickness may be adjusted to tune the resistance ⁇ area (RA) value. As the tunnel barrier thickness increases or the degree of oxidation of the metal or alloy in the tunnel barrier increases, the RA value also becomes greater.
  • the free layer stack 35 - 1 in FIG. 1 a and FIG. 1 b has only two magnetic layers 30 , 31 where a first free layer (FL1) 30 contacts a top surface of the tunnel barrier 20 and has a high boron content of 25-50 atomic %, and a second free layer (FL2) 31 has a low boron content from 1-20 atomic % and forms an interface with the first free layer.
  • the FL1 and FL2 layers may have different compositions. However, both layers 30 , 31 have a composition that is selected from CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ described previously. Also, the present disclosure encompasses an embodiment depicted in FIG.
  • a CoFeB alloy layer may be replaced by a bilayer represented by CoFe/B or B/CoFe.
  • one or both of FL1 and FL2 may have a multilayer configuration 30 - 1 / 30 - 2 / 30 - 3 (or 31 - 1 / 31 - 2 / 31 - 3 ) comprised of one or more B layers and one or more layers selected from Co, Fe, CoFe, CoFeB, CoFeNi, and CoFeQ as shown in FIG. 1 f .
  • Each of the FL1 and FL2 layers preferably has a thickness from 1 to 10 Angstroms.
  • Second non-magnetic (NM2) layer 32 is one of Ru, Rh, or Ir and functions as an anti-ferromagnetic coupling layer thereby causing the magnetic moments (not shown) of the FL1, FL2 layers to be aligned in an opposite direction to the magnetic moment of a third free layer (FL3) 33 .
  • the NM2 layer may be employed to balance dipolar field and writing symmetry in the MTJ.
  • NM2 layer 32 is a moment diluting layer with a composition that is an element M selected from Ru, Ta, Ti, W, Zr, Hf, Nb, Mo, V, Mg, and Cr, or is an alloy which includes a magnetic element (Fe, Co, or Ni) and a non-magnetic element M as described earlier with regard to NM1 12 .
  • an element M selected from Ru, Ta, Ti, W, Zr, Hf, Nb, Mo, V, Mg, and Cr
  • the magnetic moments of layers 30 , 31 , 33 are aligned in the same direction and crystalline character in the subsequently deposited FL3 layer is blocked until an annealing step is performed following deposition of all MTJ layers.
  • the thickness of the NM2 layer may vary between 1 and 10 Angstroms to adjust the coupling strength between FL2 31 and FL3 33 , the TMR ratio, and magnetostriction ( ⁇ ).
  • a strong coupling (Hcp) between the FL2 and FL3 layers is desirable in order to minimize noise in the MTJ and improve the signal to noise (SNR) ratio.
  • SNR signal to noise
  • magnetic stability improves as Hcp increases.
  • FL3 layer 33 may be comprised of any magnetic material including Co, Fe, CoFe, and alloys thereof with Ni, B, or other metals.
  • the FL3 layer may be a laminate of Co or CoFe, with Ni or NiCo.
  • the thickness of the FL1/FL2 stack is preferably less than or equal to about 20 Angstroms to promote PMA in the FL1 and FL2 layers.
  • the NM2 layer may be omitted to give a free layer stack that is a trilayer represented by a FL1/FL2/FL3 configuration.
  • the magnetic moments (not shown) of FL1 30 and FL2 31 may be aligned either in the same direction or in the opposite direction with respect to magnetic moment 14 a in FIG. 1 a , or with respect to magnetic moment 14 b in FIG. 1 b .
  • the magnetization in the FL1 and FL2 layers is always in the same direction.
  • the uppermost layer in the MTJ is a capping layer 40 that may be Ru, Ta, or a combination thereof.
  • the capping layer may comprise a metal oxide that interfaces with the free layer stack 35 - 1 to promote or enhance PMA in the adjoining free layer.
  • FIG. 2 a another embodiment of the present disclosure is depicted where the MTJ 2 has a top spin valve configuration.
  • the composition of layers is retained from FIG. 1 a but the ordering of layers in the MTJ stack is modified.
  • free layer stack 35 - 1 is switched with reference layer 15 a 1 , and the ordering of layers within each stack 15 a 1 , 35 - 1 is reversed such that FL3 now contacts the bottom layer 10 , and AP1 layer 14 contacts a top surface of tunnel barrier 20 .
  • the free layer may have a FL2/FL1 structure or an optional FL3/NM2/FL2/FL1 configuration with the FL1 layer contacting a bottom surface of the tunnel barrier while the reference layer has an AP1/NM1/AP2 configuration in which a lower AP1 layer 14 has a boron content of 1-20 atomic % and an upper AP1 layer 13 has a boron content of 25-50 atomic %.
  • layer 16 is the uppermost AP1 layer.
  • an optional AFM layer 34 is provided between AP2 layer 11 and capping layer 40 .
  • FIG. 2 a indicates reference layers 11 , 13 , 14 have in-plane magnetization 11 a , 13 a , 14 a.
  • each of the AP1 layers 13 , 14 , and AP2 layer 11 has PMA as indicated by magnetic moment directions 13 b , 14 b , 11 b , respectively.
  • the free layer may have a FL3/FL2/NM2/FL1 configuration where FL3 33 contacts bottom layer 10 , and FL1 30 contacts a bottom surface of tunnel barrier 20 .
  • AP1 layer 14 adjoins a top surface of the tunnel barrier, and the AP2 layer contacts the capping layer 40 .
  • the magnetic moments (not shown) of the FL1, FL2, FL3 layers may either be aligned in the same direction as AP1 magnetization 14 b , or all may be aligned opposite to the AP1 layer magnetization 13 b , 14 b direction depending on the memory state of MTJ 2 .
  • Optional AP1 layer 16 has a magnetization in the same direction as the other AP1 layers.
  • the positions of FL1 30 and FL2 31 in FIG. 1 b may be switched so that the FL2 layer contacts a top surface of the tunnel barrier 20 while FL1 adjoins the NM2 layer 32 to give a FL2/FL1/NM2/FL3 configuration for free layer 35 - 2 .
  • the NM2 layer may be omitted to give a FL2/FL1/FL3 configuration, or both NM2 and FL3 are omitted to provide a FL2/FL1 free layer stack.
  • AP1 layers 13 , 14 may be switched in the reference layer stack 15 b 2 to give a composite AP1 layer 18 wherein AP1 layer 13 with 25-50 atomic % boron contacts a bottom surface of the tunnel barrier, and AP1 layer 14 adjoins a top surface of NM1 layer 12 .
  • layer 16 is located a greater distance from the tunnel barrier than layers 13 , 14 .
  • the reference layer 18 has an AP2 layer 11 formed on the bottom layer 10 and NM1 is an anti-ferromagnetic coupling layer, or a moment diluting layer.
  • the AP2 layer has a magnetic moment 11 b aligned opposite to the direction of magnetic moments 13 b , 14 b for the AP1 layers, and NM1 is an anti-ferromagnetic coupling layer.
  • FIG. 4 an alternative top spin valve embodiment is shown in MTJ 4 wherein the positions of free layer 35 - 2 and reference layer 15 b 2 in FIG. 3 are switched.
  • AP1 layer 13 contacts a top surface of tunnel barrier 20 and AP1 layer 14 is formed on the AP1 layer with high B content while AP2 layer 11 interfaces with a bottom surface of capping layer 40 .
  • FL2 31 contacts a bottom surface of the tunnel barrier, and FL3 33 interfaces with a top surface of bottom layer 10 . Otherwise, all the properties and compositions of each of the layers in MTJ 3 and 4 are retained from previous embodiments.
  • the NM2 layer 32 when present may either enable anti-ferromagnetic coupling between FL1 and FL3 layers in FIGS. 3-4 , or provide a moment diluting effect within the free layer.
  • AP1 layer 17 in the FIG. 1 b embodiment is replaced by AP1 layer 18 to give a reference layer 15 b 2 configuration as depicted earlier.
  • the free layer stack 35 - 1 is retained from FIG. 1 b such that high boron content FL1 layer 30 contacts a top surface of the tunnel barrier 20 .
  • High boron content AP1 layer 13 adjoins a bottom surface of the tunnel barrier.
  • the present disclosure also anticipates a top spin valve design (not shown) where placement of free layer stack 35 - 1 and reference layer 15 b 2 is switched.
  • FIG. 6 another embodiment of the present disclosure is illustrated where the free layer stack 35 - 1 in FIG. 1 b is replaced by free layer stack 35 - 2 .
  • reference layer 15 b 1 is retained such that low boron content AP1 layer 14 contacts a bottom surface of tunnel barrier 20 .
  • Low boron content FL2 31 adjoins a top surface of the tunnel barrier. It should be understood that the positions of reference layer 15 b 1 and free layer stack 35 - 2 may be switched to provide a top spin valve version (not shown) of the MTJ stack found in FIG. 6 .
  • the present disclosure also encompasses a method of fabricating a MTJ in a magnetic memory element as illustrated in FIGS. 7-9 .
  • a MTJ stack of layers is formed on a bottom conductor 8 depicted in FIG. 7 .
  • All layers in the MTJ stack may be deposited in a DC sputtering chamber of a sputtering system such as an Anelva C-7100 sputter deposition system that includes ultra high vacuum DC magnetron sputter chambers with multiple targets and at least one oxidation chamber.
  • the sputter deposition process involves an inert gas such as Ar and a base pressure between 5 ⁇ 10 ⁇ 8 and 5 ⁇ 10 ⁇ 9 torr. A lower pressure enables more uniform films to be deposited.
  • the temperature in the sputter deposition chamber during deposition processes may vary from room temperature to 400° C.
  • the fabrication process involves depositing a seed layer and then a reference layer 15 b 1 or 15 b 2 as previously described.
  • a first Mg, metal, or alloy layer having a thickness between 4 and 8 Angstroms is deposited on an uppermost AP1 layer which is layer 13 or 14 in a bottom spin valve embodiment, or on FL1 30 or FL2 31 in a top spin valve structure.
  • the fabrication sequence involves oxidizing the first Mg, metal, or alloy layer with a natural oxidation (NOX) process, and then depositing a second Mg, metal, or alloy layer with a thickness of 2 to 4 Angstroms on the oxidized first Mg, metal, or alloy layer.
  • NOX natural oxidation
  • the second Mg (or metal or alloy) layer serves to protect the subsequently deposited free layer from oxidation.
  • the free layer stack is deposited followed by the capping layer.
  • oxygen tends to diffuse from the lower metal oxide layer into the second metal or alloy layer thereby oxidizing the latter to form a tunnel barrier that is substantially oxidized throughout.
  • the NOX process may be performed in an oxidation chamber within the sputter deposition system by applying an oxygen pressure of 0.1 mTorr to 1 Torr for about 15 to 300 seconds.
  • Oxygen pressure between 10 ⁇ 6 and 1 Torr is preferred for an oxidation time mentioned above when a resistance ⁇ area (RA) value is desired from about 0.5 to 5 ohm-um 2 .
  • a mixture of O 2 with other inert gases such as Ar, Kr, or Xe may also be used for better control of the oxidation process.
  • the process to form a metal oxide or metal oxynitride tunnel barrier may comprise one or both of a natural oxidation and a conventional radical oxidation (ROX) process as appreciated by those skilled in the art.
  • ROX radical oxidation
  • the MTJ stack is annealed in a vacuum oven between 330° C. to about 400° C. for about 1 to 5 hours to enhance PMA in one or both of the reference layer and free layer, increase coercivity (Hc) and the uniaxial magnetic anisotropy field (Hk), and promote crystallinity in the AP1 layer/tunnel barrier/FL1/FL2 stack of layers.
  • Hc coercivity
  • Hk uniaxial magnetic anisotropy field
  • a photoresist layer is coated on a top surface of the MTJ stack and is then patternwise exposed and developed to provide a photoresist mask 55 .
  • a conventional ion beam etch (IBE) or reactive ion etch (RIE) process is employed to remove unprotected portions of the MTJ stack and generate MTJ element 1 with sidewalls Is that extend to a top surface 8 t of the bottom conductor.
  • the sidewalls may be perpendicular to the bottom conductor top surface, but are often non-vertical because of the nature of the etching process employed for the sidewall formation process. Openings 40 are formed on each side of the MTJ element.
  • the photoresist patterning and etching sequence forms a plurality of MTJ elements typically arrayed in rows and columns on a plurality of bottom conductors. However, only one MTJ and one bottom conductor are shown in order to simplify the drawing.
  • a first insulation layer 50 is deposited along sidewalls 1 s and fills openings 40 between adjacent MTJ elements. Thereafter, a well known chemical mechanical polish (CMP) process may be performed to remove the photoresist mask and form a top surface 50 t on the insulation layer that is coplanar with a top surface 1 t of MTJ 1 .
  • CMP chemical mechanical polish
  • a conventional sequence of steps that includes photoresist patterning and etch processes is used to form a top conductor 60 within a second insulation layer 70 wherein the top conductor adjoins the top surface of MTJ 1 .
  • the top conductor process typically produces a plurality of top conductor lines formed in a parallel array but only one top conductor is shown to simplify the drawing.
  • MTJ A and B Two MTJ elements hereafter referred to as MTJ A and B and shown in Table 1 were fabricated with a seed layer/AP2/NM1/AP1/MgO/FL1/FL2/capping layer configuration.
  • MTJ A includes a high boron content alloy (Fe 70 B 30 ) in both of the AP1 layer and FL1 layer according to an embodiment of the present disclosure while MTJ B is formed according to a process of record (POR) practiced by the inventors and has the high boron content alloy only in FL1.
  • POR process of record
  • Defect rate Defect rate: AP1 layer Free layer (FL1/FL2) 330° C., 30 min. 400° C., 30 min. MTJ composition composition anneal anneal A Co 20 Fe 60 B 20 /Fe 70 B 30 Fe 70 B 30 /Co 20 Fe 60 B 20 10 ppm 10 ppm B Co 20 Fe 60 B 20 Fe 70 B 30 /Co 20 Fe 60 B 20 10 ppm 30 ppm
  • MTJ configuration (A and B) shown in Table 1, a MTJ stack of layers was patterned into 100 nm circular devices. Defect rates were obtained by measuring test chips containing 8 Mb (8,388,608) devices per chip. The results from hundreds of test chips were averaged to provide the data shown in Table 1. Although the defect rate of MTJ A and MTJ B were both 10 ppm after a 330° C. anneal for 30 minutes, we observed a significant advantage with MTJ A following a 400° C. anneal since the MTJ A defect rate was maintained at 10 ppm. However, the defect rate for MTJ B increased threefold to 30 ppm after a 400° C., 30 minute annealing process.
  • the reference layer/tunnel barrier/free layer stack of the present disclosure may also be incorporated in magnetic tunnel junction that is used as a sensor in a read head, for instance.
  • the MTJ element is formed between a bottom shield and a top shield in the read head.
  • the magnetic layers disclosed in the embodiments found herein, and in particular the boron containing alloys, may be fabricated without additional cost since no new sputtering targets or sputter chambers are required. No change in process flow is needed in current manufacturing schemes in order to implement one or more magnetic layers with a boron content as high as 50 atomic %. It should also be understood that one may also implement a MTJ formed according to an embodiment of the present disclosure in domain wall motion devices and in MRAM devices having more than one MgO tunnel barrier such as those devices with two tunnel barriers, and three terminals.

Abstract

A magnetic tunnel junction is disclosed wherein the reference layer and free layer each comprise one layer having a boron content from 25 to 50 atomic %, and an adjoining second layer with a boron content from 1 to 20 atomic %. One of the first and second layers in each of the free layer and reference layer contacts the tunnel barrier. Each boron containing layer has a thickness of 1 to 10 Angstroms and may include one or more B layers and one or more Co, Fe, CoFe, or CoFeB layers. As a result, migration of non-magnetic metals along crystalline boundaries to the tunnel barrier is prevented, and the MTJ has a low defect count of around 10 ppm while maintaining an acceptable TMR ratio following annealing to temperatures of about 400° C. The boron containing layers are selected from CoB, FeB, CoFeB and alloys thereof including CoFeNiB.

Description

RELATED PATENT APPLICATIONS
This application is related to the following: U.S. Pat. No. 8,059,374; and U.S. Pat. No. 8,946,834; both assigned to a common assignee, and which are herein incorporated by reference in their entirety.
TECHNICAL FIELD
The present disclosure relates to magnetic random access memory (MRAM), spin-torque MRAM, and other spintronic devices having a magnetic tunnel junction (MTJ) wherein magnetic layers are designed to prevent diffusion of non-magnetic elements into a tunnel barrier layer between two magnetic layers thereby providing a low defect rate after high temperature annealing around 400° C.
BACKGROUND
A MTJ is a key component in MRAM, spin-torque MRAM, and other spintronic devices and comprises a tunnel barrier layer such as a metal oxide formed between two magnetic layers that together generate a tunneling magnetoresistance (TMR) effect. One of the magnetic layers is a free layer and serves as a sensing layer by switching the direction of its magnetic moment in response to external fields (media field) while the second magnetic layer has a magnetic moment that is fixed and functions as a reference layer. The electrical resistance through the tunnel barrier layer (insulator layer) varies with the relative orientation of the free layer moment compared with the reference layer moment and thereby provides an electrical signal that is representative of a magnetic state in the free layer. In a MRAM, the MTJ is formed between a top conductor and bottom conductor. When a current is passed through the MTJ, a lower resistance is detected when the magnetization directions of the free and reference layers are in a parallel state (“0” memory state) and a higher resistance is noted when they are in an anti-parallel state or “1” memory state. The tunnel barrier is typically about 10 Angstroms thick so that a current through the tunnel barrier can be established by a quantum mechanical tunneling of conduction electrons.
Both of the reference layer and free layer may have a synthetic anti-ferromagnetic (SyAF) configuration in which an outer layer is anti-ferromagnetically coupled through a non-magnetic coupling layer to an inner layer that contacts the tunnel barrier. MgO is often preferred as the tunnel barrier and provides a high TMR ratio when adjoining a CoFe or Fe inner magnetic layer. The TMR ratio is known as dR/R where R is the minimum resistance of the MTJ, and dR is the change in resistance observed by changing the magnetic state of the free layer. A higher TMR ratio improves the readout speed. Moreover, a high performance MTJ requires a low areal resistance RA (area×resistance) value of about 1 ohm-um2, a free layer with low magnetostriction (λ) between −5×10−6 and 5×10−6, low coercivity (Hc), and low interlayer coupling (Hin) between the free layer and reference layer through the tunnel barrier layer.
A high TMR ratio is obtained when the MTJ stack forms a face centered cubic (fcc) crystal structure. However, naturally deposited CoFe or Fe tends to form a body centered cubic (bcc) crystal orientation that prevents formation of the fcc structure for a CoFe/MgO/CoFe stack. A popular solution to this problem is to deposit amorphous CoFeB or FeB rather than CoFe or Fe. As a result, there is no template for crystal structure growth until annealing when B tends to diffuse away from the tunnel barrier to leave a CoFe or Fe interface with the metal oxide tunnel barrier. Meanwhile, MgO forms a fcc structure that induces fcc crystal growth in the adjoining magnetic layers. The boron content in the CoFeB and FeB layers is about 20% or less since B needs to diffuse away from the interfaces with the tunnel barrier layer to achieve high TMR ratio.
In order to realize a smaller He but still maintain a high TMR ratio, the industry tends to use CoFeB as the free layer in a TMR sensor. Unfortunately, the magnetostriction (λ) of a CoFeB free layer is considerably greater than the maximum acceptable value of about 5×10−6 for high density memory applications. Furthermore, a free layer may include a non-magnetic insertion layer (INS) in a FL1/INS/FL2 stack, for example, where the insertion layer is sandwiched between two ferromagnetic layers (FL1, FL2) to provide anti-ferromagnetic coupling or a moment diluting effect. However, the non-magnetic materials do not bind well with CoFeB and tend to diffuse at elevated temperatures along grain boundaries in crystalline magnetic layers. As a result, non-magnetic metals may diffuse through a free layer or reference layer into the tunnel barrier during or after annealing, and disrupt the insulation property of the barrier thereby causing a device defect. This type of diffusion is even more pronounced in semiconductor devices wherein MRAM devices are integrated (embedded) with complementary metal-oxide-semiconductor (CMOS) units that are processed at temperatures as high as 400° C. Thus, an improved free layer (or reference layer) design is needed to reduce non-magnetic metal diffusion into a tunnel barrier layer while maintaining other MTJ properties such as low Hc, and Hin, and high TMR ratio following process temperatures as high as 400° C.
SUMMARY
One objective of the present disclosure is to provide a magnetic layer structure that can serve as one or both of a free layer or reference layer in a MTJ, and maintain a defect level of <50 ppm therein after high temperature annealing by inhibiting the migration of non-magnetic metals toward an interface with an adjoining tunnel barrier.
A second objective of the present disclosure is to provide a MTJ with a magnetic layer structure according to the first objective that also has acceptable A, Hc, Hin, and TMR ratio values.
A further objective is to provide a method of forming a MTJ with a magnetic layer structure according to the first and second objectives that can be readily implemented in a manufacturing process and is cost effective.
According to one embodiment of the present disclosure, these objectives are achieved with a bottom spin valve configuration when forming a MTJ on a suitable substrate such as a bottom conductor in a MRAM device. A seed layer and an optional antiferromagnetic (AFM) pinning layer may be sequentially formed on the bottom conductor. In a preferred embodiment, a reference layer/tunnel barrier/free layer stack of layers is formed on the seed layer or AFM layer. The reference layer may have an AP2/NM1/AP1 configuration wherein an “outer” AP2 ferromagnetic layer contacts the seed layer or AFM layer, NM1 is a first non-magnetic metal or alloy layer used for an antiferromagnetic coupling or moment diluting effect, and AP1 is an inner ferromagnetic layer that contacts the tunnel barrier at a first surface. AP1 comprises a first layer with a B content of 25-50 atomic %, and a second layer having a B content from about 1-20 atomic %. The first and second AP1 layers form an interface with each other, and one of the two AP1 layers contacts the tunnel barrier. There may be a third AP1 layer that is formed a greater distance from the tunnel barrier than the first and second layers such that the third AP1 layer adjoins the NM1 layer. The tunnel barrier is preferably MgO although other metal oxides, metal nitrides, or metal oxynitrides may be used. The free layer stack has first magnetic layer with a high B content of 25-50 atomic %, and a second magnetic layer with a B content from 1-20 atomic %. The first and second magnetic layers form an interface with each other and one of the two magnetic layers contacts the tunnel barrier on a surface that is opposite the first surface.
In some embodiments, the free layer stack has a FL1/FL2/NM2/FL3 where FL1 and FL2 are the first and second magnetic layers, NM2 is a second non-magnetic metal or alloy, and FL3 is a third magnetic layer. The B containing layers with elevated B content in the AP1 reference layer and free layer stack are advantageously employed to substantially reduce the migration of non-magnetic metals in NM1 and NM2, respectively, to the tunnel barrier.
The FL1, FL2, and first and second AP1 layers have a composition that is selected from CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ where Q is one of Zr, Hf, Nb, Mo, Ta, and W. In some embodiments, one or more of FL2 and the AP1 layers may be made of a different alloy than the FL1 alloy. For example, FL1 may be CoB while one or more of FL2 and the AP1 layers are one of FeB, CoFeB, CoFeNiB, or CoFeBQ. Each of the B containing layers has a thickness of 1 to 10 Angstroms. In some embodiments, a boron containing layer such as CoFeB may comprise a bilayer that is CoFe/B or B/CoFe. In other embodiments, the boron containing layer may be a multilayer structure with one or more B layers and one or more layers of Co, Fe, CoFe, CoFeB, CoFeNi, or CoFeQ. NM1 and NM2 are selected from a metal M that is Ru, Rh, Ir, Ta, W, Mo, Cr, and Mg, or may be an alloy including one of the M metals and one of Ni, Fe, or Co. Preferably, the FL1/FL2 stack and the AP1 layer each have a total thickness less than about 20 Angstroms to promote perpendicular magnetic anisotropy in the free layer and reference layer, respectively.
In an alternative embodiment, the MTJ may have a top spin valve structure where the free layer, tunnel barrier, and reference layer are sequentially formed on the seed layer or AFM layer. In this case, the free layer has a FL3/NM2/FL2/FL1 stack where FL3 contacts the seed layer or AFM layer, and FL1 contacts a bottom surface of the tunnel barrier. The reference layer may have an AP1/NM1/AP2 configuration wherein the AP1 layer contacts a top surface of the tunnel barrier.
All of the MTJ layers may be deposited in the same sputter chamber. Magnetic layers may be deposited at room temperature or up to 400° C. The tunnel barrier is typically formed by first depositing a metal layer such as Mg on the AP1 reference layer, performing a natural oxidation or radical oxidation step, and then depositing a second metal layer on the oxidized first metal layer. The metal deposition and oxidation sequence may be repeated before an upper metal layer is deposited on the tunnel barrier stack. After all layers in the MTJ are laid down, a high temperature anneal up to 400° C. is performed to transform the tunnel barrier stack into a substantially uniform metal oxide layer wherein the upper metal layer becomes oxidized. Thereafter, the MTJ stack is patterned to form a plurality of MTJ elements. A dielectric layer is deposited to fill the gaps between adjacent MTJ elements prior to forming a top electrode thereon.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1a-1b are cross-sectional views showing a MTJ stack of layers in a bottom spin valve configuration according to an embodiment of the present disclosure.
FIGS. 2a-2b are cross-sectional views that depict a MTJ stack of layers in a top spin valve configuration according to another embodiment of the present disclosure.
FIG. 3 is a cross-sectional view of a MTJ stack of layers with a bottom spin valve configuration according to a third embodiment of the present disclosure.
FIG. 4 is a cross-sectional view of a MTJ stack of layers with a top spin valve configuration according to a fourth embodiment of the present disclosure.
FIG. 5 is a cross-sectional view of a MTJ stack having a bottom spin valve configuration formed according to a fifth embodiment of the present disclosure.
FIG. 6 is a cross-sectional view of a MTJ stack having a bottom spin valve configuration formed according to a sixth embodiment of the present disclosure.
FIGS. 7-9 depict cross-sectional views and show a sequence of steps for forming a MRAM device that comprises a MTJ element according to an embodiment of the present disclosure.
DETAILED DESCRIPTION
The present disclosure relates to a MTJ element wherein each of a reference layer and free layer are multilayer structures including a first layer with high B content of 25-50 atomic %, and a second layer with a low boron content from 1-20 atomic %. The high B content layers prevent non-magnetic metals in other portions of the MTJ from migrating into the tunnel barrier during annealing and other processes with temperatures proximate to 400° C. thereby enabling devices with low defect counts around 10 ppm. The MTJ may have a bottom spin valve, top spin valve, or dual spin value configuration as appreciated by those skilled in the art. The MTJ element may be implemented in a variety of memory devices including but not limited to MRAM, embedded MRAM, spin-torque MRAM, and other spintronic devices such as a spin torque oscillator (STO).
As mentioned previously, many memory devices including embedded MRAM are now incorporated into CMOS platforms to provide higher performance. However, we have observed a substantially higher defect rate when conventional MTJ elements annealed in the range of 300-330° C. are subsequently exposed to temperatures around 400° C. that are required in CMOS processing. Thus, we were motivated to redesign the typical reference layer/tunnel barrier/free layer stack in a MTJ to be compatible with CMOS fabrication by modifying each of the free layer and reference layer to enable a low defect rate of <50 ppm (defects per million parts), and preferably about 10 ppm, after 400° C. annealing.
Although not bound by theory, it is our belief that a means of preventing non-metal migration into a tunnel barrier layer is to disrupt crystal formation in at least a portion of the free layer and/or reference layer that is proximate to the tunnel barrier. Non-magnetic metals such as Ru, Rh, or Ir that are employed as antiferromagnetic coupling agents in a reference layer, or Ta, Mo, W, Mg, Cr, and the like that are used for a moment diluting effect in a free layer do not bind well with magnetic layers including CoFeB or the like. Thus, when CoFeB with low B content below 20 atomic % begins to crystallize at annealing temperatures between 300° C. and 400° C., pathways are created at grain boundaries and become channels for non-magnetic metal migration from within the free layer or reference layer to the tunnel barrier. We have discovered that by increasing the amorphous character of a reference layer and free layer in a portion thereof proximate to the tunnel barrier, crystal formation in said region is disrupted or delayed to an extent that considerably slows movement of non-magnetic metals to the tunnel barrier. As a result, low defect levels that are 10 ppm, for example, after conventional annealing at 330° C. may also be achieved after elevated annealing temperatures of about 400° C. Here, the term “about 400° C.” is defined to mean temperatures that may in some embodiments reach 410-420° C. for 30 minutes or less.
Referring to FIGS. 1a-1b , a first embodiment of the present disclosure is shown wherein a MTJ stack 1 is depicted from a cross-sectional view. The MTJ stack of layers in a bottom spin valve configuration may be formed on a bottom conductor (not shown) in a MRAM device, for example. The bottom layer 10 in the MTJ stack may be a seed layer such as NiCr, NiFeCr, or other materials used in the art to promote the desired crystal structure in overlying layers. In other embodiments, the bottom layer may be a stack including a plurality of seed layers selected from Ta, Ru, NiCr, Cr, NiFeCr, Zr, Hf, Nb, Mg, Ti, and the like. An optional antiferromagnetic (AFM) pinning layer 34 that is one of IrMn, PtMn, NiMn, OsMn, RuMn, RhMn, PdMn, RuRhMn, or MnPtPd may be employed between the bottom layer and the AP2 magnetic layer 11 in order to pin the magnetic moment in the overlying AP2 magnetic layer. The AP2 magnetic layer is part of a reference layer 15 a 1 (FIG. 1a ) or 15 b 1 (FIG. 1b ) having an AP2/NM1/AP1 configuration where NM1 is a first non-magnetic layer.
When the optional AFM layer is inserted between the bottom layer 10 and the AP2 layer 11, the AP2 layer may also be referred to as a pinned layer having a magnetic moment 11 a that is fixed an in-plane direction (FIG. 1a ). In an alternative embodiment where the magnetic moment 11 b is fixed in a perpendicular-to-plane direction (FIG. 1b ), an AFM layer is not required. In FIG. 1b , the AP2 layer is said to have perpendicular magnetic anisotropy (PMA) where the shape anisotropy that promotes magnetization in an in-plane direction is less than the magnitude of the PMA component. Preferably, when the AP2 layer has PMA, the AP1 layer 17 that is comprised of lower magnetic layer 13 and upper magnetic layer 14 also has PMA. The AP1 layer may further comprise an optional magnetic layer 16 made of Co, Fe, CoFe, or alloys thereof with Ni, B, or other metals that is understood to have a magnetic moment in the same direction as layers 13, 14.
In FIG. 1a where the NM1 layer 12 is an antiferromagnetic coupling layer such as Ru, Rh, or Ir, AP1 layers 13, 14 have a magnetic moment 13 a, 14 a, respectively, in a direction opposite to that of magnetic moment 11 a in the AP2 layer. Thus, the reference layer is said to have a synthetic anti-parallel (SyAP) configuration that is beneficial in balancing the bipolar field and writing symmetry. In one aspect, at least the upper AP1 layer 14 is amorphous when deposited in order to provide a more uniform surface on which to form the tunnel barrier 20.
In a preferred embodiment shown in FIG. 1b , AP1 layers 13, 14 have a magnetic moment 13 b, 14 b, respectively, opposite to the magnetic moment 11 b for the AP2 layer, and all AP1, AP2 layers have PMA. The PMA configuration in FIG. 1b is typically favored over the in-plane embodiment since PMA provides higher thermal stability for reference layer 15 b 1 (and free layer 35-1) as the MTJ in-plane dimensions are scaled down to provide higher density memory devices.
In alternative embodiments (not shown) where the NM1 layer 12 is a moment diluting layer that is a made of an element M selected from Ru, Ta, Ti, W, Zr, Hf, Nb, Mo, V, Mg, and Cr, or is an alloy which includes a magnetic element (Fe, Co, or Ni) and a non-magnetic element M, the magnetic moments of all three layers 11, 13, 14 are aligned in the same direction. The NM1 layer is preferably amorphous to block the growth of a crystalline AP1 layer until a subsequent anneal step. In some embodiments, all magnetic moments are in-plane while in other embodiments where all AP1 and AP2 layers have PMA, all magnetic moments in the reference layer 15 b 1 are in a perpendicular-to-plane direction when NM1 is a moment diluting layer. A moment diluting material in this context is defined as a non-magnetic metal or alloy that is employed to replace a portion of the magnetic material in a reference (or free) layer thereby decreasing the overall magnetic moment for the reference layer or free layer while maintaining essentially a constant reference layer or free layer thickness. It should be understood that when NM1 is an alloy, increasing the content of the magnetic element in the alloy will increase the coupling strength between the AP1 and AP2 layers but may lower the TMR ratio. Furthermore, the thickness of the NM1 layer may vary from about 1 to 10 Angstroms in order to adjust the TMR ratio, magnetostriction (λ), and coupling strength (Hin) between the AP1 and AP2 layers.
Returning to FIG. 1a or FIG. 1b , the lower AP1 layer 13 is a first boron containing alloy wherein the B content is from 25-50 atomic %, and the upper AP1 layer 14 is a second boron containing alloy wherein the B content is from 1 to 20 atomic %. In related U.S. Pat. No. 8,059,374 and U.S. Pat. No. 8,946,834, we disclosed an upper limit to B content of 40 atomic % in a magnetic alloy in a magnetic layer. However, we have surprisingly discovered that the B content may be raised to 50 atomic % in the first boron containing alloy in AP1 layer 13 and in the subsequently deposited FL1 layer 30 without substantially affecting MTJ performance including TMR ratio. As mentioned earlier, boron tends to migrate away from the tunnel barrier during annealing to leave a region of free layer (and reference layer) adjacent to the tunnel barrier that is substantially free of boron. A high TMR ratio is thereby achieved with the resulting reference layer/tunnel barrier/free layer stack.
The first and second boron containing layers are not necessarily formed from the same elements. Each of the AP1 layers 13, 14 has a composition that is selected from one of CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ where Q is one of Zr, Hf, Nb, Ta, Mo, or W. Preferably, each of AP1 layer 13 and AP1 layer 14 has a thickness from 1 to 10 Angstroms. Furthermore, one or both of the AP1 layers may be comprised of a bilayer configuration such as 13-1/13-2 (and 14-1/14-2) as depicted in FIG. 1c wherein a first layer is Co, Fe, CoFe, CoFeNi, CoFeQ, or CoFeB, and the second layer is B. For example, instead of a CoFeB alloy, one or both of the AP1 layers 13, 14 may be represented by a CoFe/B or B/CoFe configuration. In yet another embodiment shown in FIG. 1d , one or both of the AP1 layers may have a multilayer configuration such as 13-1/13-2/13-3 (and 14-1/14-2/14-3) including one or more boron layers, and one or more layers selected from Co, Fe, CoFe, CoFeB, CoFeNi, and CoFeQ in order to adjust the boron content in an AP1 layer.
Tunnel barrier 20 contacts a top surface of AP1 layer 14. The tunnel barrier may be an oxide, oxynitride, or nitride of Mg, Ti, AlTi, MgZn, Al, Zn, Zr, Ta, or Hf, or a native CoFeB, CoB, or FeB oxide. In other embodiments, the tunnel barrier may be a laminated stack of one or more of the aforementioned materials. The tunnel barrier is typically around 10 Angstroms thick but the thickness may be adjusted to tune the resistance×area (RA) value. As the tunnel barrier thickness increases or the degree of oxidation of the metal or alloy in the tunnel barrier increases, the RA value also becomes greater.
In the most general embodiment, the free layer stack 35-1 in FIG. 1a and FIG. 1b has only two magnetic layers 30, 31 where a first free layer (FL1) 30 contacts a top surface of the tunnel barrier 20 and has a high boron content of 25-50 atomic %, and a second free layer (FL2) 31 has a low boron content from 1-20 atomic % and forms an interface with the first free layer. The FL1 and FL2 layers may have different compositions. However, both layers 30, 31 have a composition that is selected from CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ described previously. Also, the present disclosure encompasses an embodiment depicted in FIG. 1e wherein the alloy in one or both FL1, FL2 layers is replaced by a bilayer 30-1/30-2 (and 31-1/31-2) that includes a boron layer, and a layer of Co, Fe, CoFe, CoFeNi, or CoFeQ. For example, a CoFeB alloy layer may be replaced by a bilayer represented by CoFe/B or B/CoFe. Moreover, one or both of FL1 and FL2 may have a multilayer configuration 30-1/30-2/30-3 (or 31-1/31-2/31-3) comprised of one or more B layers and one or more layers selected from Co, Fe, CoFe, CoFeB, CoFeNi, and CoFeQ as shown in FIG. 1f . Each of the FL1 and FL2 layers preferably has a thickness from 1 to 10 Angstroms.
In some embodiments, optional layers 32, 33 are included. Second non-magnetic (NM2) layer 32 is one of Ru, Rh, or Ir and functions as an anti-ferromagnetic coupling layer thereby causing the magnetic moments (not shown) of the FL1, FL2 layers to be aligned in an opposite direction to the magnetic moment of a third free layer (FL3) 33. Similar to NM1 functionality, the NM2 layer may be employed to balance dipolar field and writing symmetry in the MTJ.
In other embodiments, NM2 layer 32 is a moment diluting layer with a composition that is an element M selected from Ru, Ta, Ti, W, Zr, Hf, Nb, Mo, V, Mg, and Cr, or is an alloy which includes a magnetic element (Fe, Co, or Ni) and a non-magnetic element M as described earlier with regard to NM1 12. As a result, the magnetic moments of layers 30, 31, 33 are aligned in the same direction and crystalline character in the subsequently deposited FL3 layer is blocked until an annealing step is performed following deposition of all MTJ layers. The thickness of the NM2 layer may vary between 1 and 10 Angstroms to adjust the coupling strength between FL2 31 and FL3 33, the TMR ratio, and magnetostriction (λ). A strong coupling (Hcp) between the FL2 and FL3 layers is desirable in order to minimize noise in the MTJ and improve the signal to noise (SNR) ratio. Moreover, magnetic stability improves as Hcp increases. FL3 layer 33 may be comprised of any magnetic material including Co, Fe, CoFe, and alloys thereof with Ni, B, or other metals. The FL3 layer may be a laminate of Co or CoFe, with Ni or NiCo. The thickness of the FL1/FL2 stack is preferably less than or equal to about 20 Angstroms to promote PMA in the FL1 and FL2 layers.
In yet another embodiment (not shown), the NM2 layer may be omitted to give a free layer stack that is a trilayer represented by a FL1/FL2/FL3 configuration.
Note that depending on the magnetic memory state “0” or “1” in MTJ 1, the magnetic moments (not shown) of FL1 30 and FL2 31 may be aligned either in the same direction or in the opposite direction with respect to magnetic moment 14 a in FIG. 1a , or with respect to magnetic moment 14 b in FIG. 1b . Moreover, the magnetization in the FL1 and FL2 layers is always in the same direction.
In all embodiments, the uppermost layer in the MTJ is a capping layer 40 that may be Ru, Ta, or a combination thereof. In other embodiments, the capping layer may comprise a metal oxide that interfaces with the free layer stack 35-1 to promote or enhance PMA in the adjoining free layer.
In FIG. 2a , another embodiment of the present disclosure is depicted where the MTJ 2 has a top spin valve configuration. The composition of layers is retained from FIG. 1a but the ordering of layers in the MTJ stack is modified. In particular, free layer stack 35-1 is switched with reference layer 15 a 1, and the ordering of layers within each stack 15 a 1, 35-1 is reversed such that FL3 now contacts the bottom layer 10, and AP1 layer 14 contacts a top surface of tunnel barrier 20. In other words, the free layer may have a FL2/FL1 structure or an optional FL3/NM2/FL2/FL1 configuration with the FL1 layer contacting a bottom surface of the tunnel barrier while the reference layer has an AP1/NM1/AP2 configuration in which a lower AP1 layer 14 has a boron content of 1-20 atomic % and an upper AP1 layer 13 has a boron content of 25-50 atomic %. When a third AP1 layer 16 is included, layer 16 is the uppermost AP1 layer. In some embodiments, an optional AFM layer 34 is provided between AP2 layer 11 and capping layer 40. FIG. 2a indicates reference layers 11, 13, 14 have in-plane magnetization 11 a, 13 a, 14 a.
In a preferred top spin valve configuration illustrated in FIG. 2b , each of the AP1 layers 13, 14, and AP2 layer 11 has PMA as indicated by magnetic moment directions 13 b, 14 b, 11 b, respectively. Similar to FIG. 2a , the free layer may have a FL3/FL2/NM2/FL1 configuration where FL3 33 contacts bottom layer 10, and FL1 30 contacts a bottom surface of tunnel barrier 20. Furthermore, AP1 layer 14 adjoins a top surface of the tunnel barrier, and the AP2 layer contacts the capping layer 40. When NM2 is a moment diluting layer, the magnetic moments (not shown) of the FL1, FL2, FL3 layers may either be aligned in the same direction as AP1 magnetization 14 b, or all may be aligned opposite to the AP1 layer magnetization 13 b, 14 b direction depending on the memory state of MTJ 2. Optional AP1 layer 16 has a magnetization in the same direction as the other AP1 layers.
In an alternative bottom spin valve embodiment depicted as MTJ 3 in FIG. 3, the positions of FL1 30 and FL2 31 in FIG. 1b may be switched so that the FL2 layer contacts a top surface of the tunnel barrier 20 while FL1 adjoins the NM2 layer 32 to give a FL2/FL1/NM2/FL3 configuration for free layer 35-2. In alternative embodiments, the NM2 layer may be omitted to give a FL2/FL1/FL3 configuration, or both NM2 and FL3 are omitted to provide a FL2/FL1 free layer stack. Furthermore, AP1 layers 13, 14 may be switched in the reference layer stack 15 b 2 to give a composite AP1 layer 18 wherein AP1 layer 13 with 25-50 atomic % boron contacts a bottom surface of the tunnel barrier, and AP1 layer 14 adjoins a top surface of NM1 layer 12. When optional AP1 layer 16 is inserted in the AP1 stack 18, layer 16 is located a greater distance from the tunnel barrier than layers 13, 14. The reference layer 18 has an AP2 layer 11 formed on the bottom layer 10 and NM1 is an anti-ferromagnetic coupling layer, or a moment diluting layer. In the exemplary embodiment representing a SyAP configuration with perpendicular magnetic anisotropy, the AP2 layer has a magnetic moment 11 b aligned opposite to the direction of magnetic moments 13 b, 14 b for the AP1 layers, and NM1 is an anti-ferromagnetic coupling layer.
Referring to FIG. 4, an alternative top spin valve embodiment is shown in MTJ 4 wherein the positions of free layer 35-2 and reference layer 15 b 2 in FIG. 3 are switched. In addition, the ordering of layers within the free layer and reference layer are reversed. In particular, AP1 layer 13 contacts a top surface of tunnel barrier 20 and AP1 layer 14 is formed on the AP1 layer with high B content while AP2 layer 11 interfaces with a bottom surface of capping layer 40. Also, FL2 31 contacts a bottom surface of the tunnel barrier, and FL3 33 interfaces with a top surface of bottom layer 10. Otherwise, all the properties and compositions of each of the layers in MTJ 3 and 4 are retained from previous embodiments. The NM2 layer 32 when present may either enable anti-ferromagnetic coupling between FL1 and FL3 layers in FIGS. 3-4, or provide a moment diluting effect within the free layer.
In yet another embodiment depicted in FIG. 5, AP1 layer 17 in the FIG. 1b embodiment is replaced by AP1 layer 18 to give a reference layer 15 b 2 configuration as depicted earlier. Meanwhile, the free layer stack 35-1 is retained from FIG. 1b such that high boron content FL1 layer 30 contacts a top surface of the tunnel barrier 20. High boron content AP1 layer 13 adjoins a bottom surface of the tunnel barrier. The present disclosure also anticipates a top spin valve design (not shown) where placement of free layer stack 35-1 and reference layer 15 b 2 is switched.
Referring to FIG. 6, another embodiment of the present disclosure is illustrated where the free layer stack 35-1 in FIG. 1b is replaced by free layer stack 35-2. Meanwhile, reference layer 15 b 1 is retained such that low boron content AP1 layer 14 contacts a bottom surface of tunnel barrier 20. Low boron content FL2 31 adjoins a top surface of the tunnel barrier. It should be understood that the positions of reference layer 15 b 1 and free layer stack 35-2 may be switched to provide a top spin valve version (not shown) of the MTJ stack found in FIG. 6.
The present disclosure also encompasses a method of fabricating a MTJ in a magnetic memory element as illustrated in FIGS. 7-9. According to one embodiment, a MTJ stack of layers is formed on a bottom conductor 8 depicted in FIG. 7. All layers in the MTJ stack may be deposited in a DC sputtering chamber of a sputtering system such as an Anelva C-7100 sputter deposition system that includes ultra high vacuum DC magnetron sputter chambers with multiple targets and at least one oxidation chamber. Typically, the sputter deposition process involves an inert gas such as Ar and a base pressure between 5×10−8 and 5×10−9 torr. A lower pressure enables more uniform films to be deposited. The temperature in the sputter deposition chamber during deposition processes may vary from room temperature to 400° C.
The fabrication process according to one embodiment involves depositing a seed layer and then a reference layer 15 b 1 or 15 b 2 as previously described. A first Mg, metal, or alloy layer having a thickness between 4 and 8 Angstroms is deposited on an uppermost AP1 layer which is layer 13 or 14 in a bottom spin valve embodiment, or on FL1 30 or FL2 31 in a top spin valve structure. Thereafter, the fabrication sequence involves oxidizing the first Mg, metal, or alloy layer with a natural oxidation (NOX) process, and then depositing a second Mg, metal, or alloy layer with a thickness of 2 to 4 Angstroms on the oxidized first Mg, metal, or alloy layer. The second Mg (or metal or alloy) layer serves to protect the subsequently deposited free layer from oxidation. In a bottom spin valve embodiment, the free layer stack is deposited followed by the capping layer. During an annealing step that follows deposition of the uppermost layer in the MTJ stack of layers, oxygen tends to diffuse from the lower metal oxide layer into the second metal or alloy layer thereby oxidizing the latter to form a tunnel barrier that is substantially oxidized throughout.
The NOX process may be performed in an oxidation chamber within the sputter deposition system by applying an oxygen pressure of 0.1 mTorr to 1 Torr for about 15 to 300 seconds. Oxygen pressure between 10−6 and 1 Torr is preferred for an oxidation time mentioned above when a resistance×area (RA) value is desired from about 0.5 to 5 ohm-um2. A mixture of O2 with other inert gases such as Ar, Kr, or Xe may also be used for better control of the oxidation process. In alternative embodiments, the process to form a metal oxide or metal oxynitride tunnel barrier may comprise one or both of a natural oxidation and a conventional radical oxidation (ROX) process as appreciated by those skilled in the art.
Once all layers in the MTJ stack are formed, the MTJ stack is annealed in a vacuum oven between 330° C. to about 400° C. for about 1 to 5 hours to enhance PMA in one or both of the reference layer and free layer, increase coercivity (Hc) and the uniaxial magnetic anisotropy field (Hk), and promote crystallinity in the AP1 layer/tunnel barrier/FL1/FL2 stack of layers.
Next, a photoresist layer is coated on a top surface of the MTJ stack and is then patternwise exposed and developed to provide a photoresist mask 55. Thereafter, a conventional ion beam etch (IBE) or reactive ion etch (RIE) process is employed to remove unprotected portions of the MTJ stack and generate MTJ element 1 with sidewalls Is that extend to a top surface 8 t of the bottom conductor. The sidewalls may be perpendicular to the bottom conductor top surface, but are often non-vertical because of the nature of the etching process employed for the sidewall formation process. Openings 40 are formed on each side of the MTJ element. It should be understood that the photoresist patterning and etching sequence forms a plurality of MTJ elements typically arrayed in rows and columns on a plurality of bottom conductors. However, only one MTJ and one bottom conductor are shown in order to simplify the drawing.
Referring to FIG. 8, a first insulation layer 50 is deposited along sidewalls 1 s and fills openings 40 between adjacent MTJ elements. Thereafter, a well known chemical mechanical polish (CMP) process may be performed to remove the photoresist mask and form a top surface 50 t on the insulation layer that is coplanar with a top surface 1 t of MTJ 1.
Referring to FIG. 9, a conventional sequence of steps that includes photoresist patterning and etch processes is used to form a top conductor 60 within a second insulation layer 70 wherein the top conductor adjoins the top surface of MTJ 1. The top conductor process typically produces a plurality of top conductor lines formed in a parallel array but only one top conductor is shown to simplify the drawing.
An experiment was conducted to demonstrate the improved performance achieved by implementing a reference layer/tunnel barrier/free layer stack in a MTJ according to an embodiment of the present disclosure. Two MTJ elements hereafter referred to as MTJ A and B and shown in Table 1 were fabricated with a seed layer/AP2/NM1/AP1/MgO/FL1/FL2/capping layer configuration. The key difference is that MTJ A includes a high boron content alloy (Fe70B30) in both of the AP1 layer and FL1 layer according to an embodiment of the present disclosure while MTJ B is formed according to a process of record (POR) practiced by the inventors and has the high boron content alloy only in FL1.
TABLE 1
Defect rate comparison for MTJ elements with AP1/MgO/FL1/FL2 bottom spin valve
configurations
Defect rate: Defect rate:
AP1 layer Free layer (FL1/FL2) 330° C., 30 min. 400° C., 30 min.
MTJ composition composition anneal anneal
A Co20Fe60B20/Fe70B30 Fe70B30/Co20Fe60B20 10 ppm 10 ppm
B Co20Fe60B20 Fe70B30/Co20Fe60B20 10 ppm 30 ppm
For each MTJ configuration (A and B) shown in Table 1, a MTJ stack of layers was patterned into 100 nm circular devices. Defect rates were obtained by measuring test chips containing 8 Mb (8,388,608) devices per chip. The results from hundreds of test chips were averaged to provide the data shown in Table 1. Although the defect rate of MTJ A and MTJ B were both 10 ppm after a 330° C. anneal for 30 minutes, we observed a significant advantage with MTJ A following a 400° C. anneal since the MTJ A defect rate was maintained at 10 ppm. However, the defect rate for MTJ B increased threefold to 30 ppm after a 400° C., 30 minute annealing process.
It should be noted that the reference layer/tunnel barrier/free layer stack of the present disclosure may also be incorporated in magnetic tunnel junction that is used as a sensor in a read head, for instance. In this case, the MTJ element is formed between a bottom shield and a top shield in the read head.
The magnetic layers disclosed in the embodiments found herein, and in particular the boron containing alloys, may be fabricated without additional cost since no new sputtering targets or sputter chambers are required. No change in process flow is needed in current manufacturing schemes in order to implement one or more magnetic layers with a boron content as high as 50 atomic %. It should also be understood that one may also implement a MTJ formed according to an embodiment of the present disclosure in domain wall motion devices and in MRAM devices having more than one MgO tunnel barrier such as those devices with two tunnel barriers, and three terminals.
While this disclosure has been particularly shown and described with reference to, the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of this disclosure.

Claims (11)

We claim:
1. A magnetic tunnel junction (MTJ) element in a magnetic device, comprising:
(a) a reference layer with an AP2/NM1/AP1 configuration wherein AP2 is a first magnetic layer, AP1 is a second magnetic layer that adjoins a tunnel barrier along a first surface, and NM1 is a first non-magnetic layer that enables anti-ferromagnetic coupling between AP1 and AP2, or provides a moment diluting effect in the reference layer, the AP1 layer is comprised of a first layer with a boron content between 25 and 50 atomic %, and a second layer with a low boron content between 1 and 20 atomic % and the second layer is amorphous that contacts the tunnel barrier;
(b) the tunnel barrier; and
(c) a free magnetic layer stack comprised of a first free magnetic layer with a boron content between 25 and 50 atomic %, and a second free magnetic layer with a low boron content between 1 and 20 atomic %, the first free magnetic layer forms an interface with the second free magnetic layer, and contacts a surface of the tunnel barrier that is opposite to the first surface, and wherein one or both of the first and second free layers have a multilayer configuration comprised of one or more layers consisting of B, and one or more layers selected from Co, Fe, CoFe, CoFeNi, CoFeB, and CoFeQ wherein Q is one of Zr, Hf, Nb, Ta, Mo, and W.
2. The MTJ element of claim 1 wherein each of the first and second layers in the AP1 layer have a composition that is selected from CoB, FeB, CoFeB, CoFeNiB, or CoFeBQ wherein Q is one of Zr, Hf, Nb, Ta, Mo, and W.
3. The MTJ element of claim 1 wherein each of the first and second layers in the AP1 layer has a thickness from about 1 to 10 Angstroms.
4. The MTJ element of claim 1 wherein each of the first free magnetic layer and second free magnetic layer has a thickness from about 1 to 10 Angstroms.
5. The MTJ element of claim 2 wherein one or both of the first and second layers in the AP1 layer are comprised of a bilayer configuration wherein one layer is Co, Fe, CoFe, CoFeNi, CoFeB, or CoFeQ, and a second layer is B.
6. The MTJ element of claim 2 wherein one or both of the first and second layers in the AP1 layer have a multilayer configuration comprised of one or more layers of B, and one or more layers selected from Co, Fe, CoFe, CoFeNi, CoFeB, and CoFeQ.
7. The MTJ element of claim 1 wherein the tunnel barrier is an oxide, oxynitride, or nitride of Mg, Ti, AlTi, MgZn, Al, Zn, Zr, Ta, or Hf, or is a native oxide of CoFeB, CoB, or FeB, or is a laminated stack of one or more of the aforementioned materials.
8. The MTJ element of claim 1 wherein NM1 is one of Ru, Rh, and Ir to give a synthetic anti-parallel (SyAP) configuration for the reference layer.
9. The MTJ element of claim 1 wherein the free magnetic layer stack has a FL1/FL2/NM2/FL3 configuration wherein FL1 is one of the first or second free magnetic layers, FL2 is the other of the first or second free magnetic layers, FL3 is a third free magnetic layer, and NM2 is a second non-magnetic layer that enables anti-ferromagnetic coupling between FL2 and FL3, or provides a moment diluting effect in the free magnetic layer stack.
10. The MTJ element of claim 1 wherein the magnetic device is a magnetoresistive random access memory (MRAM), spin-torque MRAM, embedded MRAM, or a spintronic device, or is a sensor in a read head.
11. A magnetic tunnel junction (MTJ) element in a magnetic device, comprising:
(a) a reference layer with an AP2/NM1/AP1 configuration wherein AP2 is a first magnetic layer, AP1 is a second magnetic layer that adjoins a tunnel barrier along a first surface, and NM1 is a first non-magnetic layer that enables anti-ferromagnetic coupling between AP1 and AP2, or provides a moment diluting effect in the reference layer, the AP1 layer is comprised of a first layer with a boron content between 25 and 50 atomic %, and a second layer with a low boron content between 1 and 20 atomic % and the second layer is amorphous that contacts the tunnel barrier, and wherein one or both of the first and second layers in the AP1 layer have a multilayer configuration comprised of one or more layers consisting of B, and one or more layers selected from Co, Fe, CoFe, CoFeNi, CoFeB, and CoFeQ wherein Q is one of Zr, Hf, Nb, Ta, Mo, and W;
(b) the tunnel barrier; and
(c) a free magnetic layer stack comprised of a first free magnetic layer with a boron content between 25 and 50 atomic %, and a second free magnetic layer that is one of CoB, FeB, or CoFeB with a low boron content between 1 and 20 atomic %, the first free magnetic layer forms an interface with the second free magnetic layer, and contacts a surface of the tunnel barrier that is opposite to the first surface, and wherein both of the first and second free magnetic layers have a multilayer configuration comprised of one or more layers of B, and one or more layers selected from Co, Fe, CoFe, CoFeNi, CoFeB, and CoFeQ.
US14/803,111 2015-07-20 2015-07-20 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications Active US9842988B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/803,111 US9842988B2 (en) 2015-07-20 2015-07-20 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
EP16741836.7A EP3326217B1 (en) 2015-07-20 2016-07-19 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
CN201680052700.2A CN108028315B (en) 2015-07-20 2016-07-19 Magnetic tunnel junction with low defect rate after high temperature annealing for magnetic devices
PCT/US2016/042985 WO2017015294A1 (en) 2015-07-20 2016-07-19 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US15/835,592 US10763428B2 (en) 2015-07-20 2017-12-08 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/008,277 US11309489B2 (en) 2015-07-20 2020-08-31 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/722,511 US20220238798A1 (en) 2015-07-20 2022-04-18 Magnetic Tunnel Junction with Low Defect Rate after High Temperature Anneal for Magnetic Device Applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/803,111 US9842988B2 (en) 2015-07-20 2015-07-20 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/835,592 Division US10763428B2 (en) 2015-07-20 2017-12-08 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications

Publications (2)

Publication Number Publication Date
US20170025602A1 US20170025602A1 (en) 2017-01-26
US9842988B2 true US9842988B2 (en) 2017-12-12

Family

ID=56507914

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/803,111 Active US9842988B2 (en) 2015-07-20 2015-07-20 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US15/835,592 Active US10763428B2 (en) 2015-07-20 2017-12-08 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/008,277 Active 2035-09-10 US11309489B2 (en) 2015-07-20 2020-08-31 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/722,511 Pending US20220238798A1 (en) 2015-07-20 2022-04-18 Magnetic Tunnel Junction with Low Defect Rate after High Temperature Anneal for Magnetic Device Applications

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/835,592 Active US10763428B2 (en) 2015-07-20 2017-12-08 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/008,277 Active 2035-09-10 US11309489B2 (en) 2015-07-20 2020-08-31 Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US17/722,511 Pending US20220238798A1 (en) 2015-07-20 2022-04-18 Magnetic Tunnel Junction with Low Defect Rate after High Temperature Anneal for Magnetic Device Applications

Country Status (4)

Country Link
US (4) US9842988B2 (en)
EP (1) EP3326217B1 (en)
CN (1) CN108028315B (en)
WO (1) WO2017015294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950260B1 (en) * 2020-04-17 2021-03-16 Western Digital Technologies, Inc. Magnetoresistive sensor with improved magnetic properties and magnetostriction control
US11309489B2 (en) 2015-07-20 2022-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
EP4120376A3 (en) * 2021-07-15 2023-02-01 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3123537A4 (en) * 2014-03-25 2018-02-14 Intel Corporation Magnetic domain wall logic devices and interconnect
US10128309B2 (en) * 2015-03-27 2018-11-13 Globalfoundries Singapore Pte. Ltd. Storage layer for magnetic memory with high thermal stability
KR20170037707A (en) * 2015-09-25 2017-04-05 삼성전자주식회사 Magnetic memory device and method for manufacturing the same
US10297745B2 (en) 2015-11-02 2019-05-21 Globalfoundries Singapore Pte. Ltd. Composite spacer layer for magnetoresistive memory
US20170263679A1 (en) * 2016-03-11 2017-09-14 Kabushiki Kaisha Toshiba Magnetic memory device
KR102566954B1 (en) * 2016-08-04 2023-08-16 삼성전자주식회사 Magnetic memory device and method for manufacturing the same
US9966529B1 (en) * 2017-03-17 2018-05-08 Headway Technologies, Inc. MgO insertion into free layer for magnetic memory applications
WO2018182650A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced stability and methods to form same
WO2018182642A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Spintronic memory with low resistance cap layer
US10038138B1 (en) 2017-10-10 2018-07-31 Headway Technologies, Inc. High temperature volatilization of sidewall materials from patterned magnetic tunnel junctions
EP3979345B1 (en) * 2017-11-29 2023-11-01 Everspin Technologies, Inc. Magnetoresistive stack
JP7239578B2 (en) * 2018-06-19 2023-03-14 ソニーセミコンダクタソリューションズ株式会社 Magnetic memory element, magnetic head, magnetic memory device, electronic device, and method for manufacturing magnetic memory element
EP3830880A1 (en) * 2018-07-30 2021-06-09 Everspin Technologies, Inc. Magnetic tunnel junction magnetoresistive device
JP2020043133A (en) * 2018-09-06 2020-03-19 キオクシア株式会社 Magnetic storage device
CN111613720B (en) * 2019-02-25 2022-09-09 上海磁宇信息科技有限公司 Magnetic random access memory storage unit and magnetic random access memory
JP2020155442A (en) * 2019-03-18 2020-09-24 キオクシア株式会社 Magnetic device
US10916696B2 (en) * 2019-05-01 2021-02-09 Spin Memory, Inc. Method for manufacturing magnetic memory element with post pillar formation annealing
US11264560B2 (en) * 2019-06-21 2022-03-01 Headway Technologies, Inc. Minimal thickness, low switching voltage magnetic free layers using an oxidation control layer and magnetic moment tuning layer for spintronic applications
US11264566B2 (en) 2019-06-21 2022-03-01 Headway Technologies, Inc. Magnetic element with perpendicular magnetic anisotropy (PMA) and improved coercivity field (Hc)/switching current ratio
CN112289922B (en) * 2019-07-22 2023-05-30 中电海康集团有限公司 Magnetic sensor and method for manufacturing the same
CN112310277A (en) * 2019-07-31 2021-02-02 中电海康集团有限公司 Preparation method of magnetic tunnel junction
KR102632986B1 (en) * 2019-10-01 2024-02-05 에스케이하이닉스 주식회사 Electronic device
CN112736191A (en) * 2019-10-14 2021-04-30 上海磁宇信息科技有限公司 Magnetic tunnel junction structure with symmetrical structure and magnetic random access memory
CN113013323A (en) * 2019-12-19 2021-06-22 中芯国际集成电路制造(上海)有限公司 Semiconductor structure, forming method thereof and semiconductor device
CN113130735B (en) * 2019-12-31 2023-08-04 浙江驰拓科技有限公司 Preparation method of barrier layer in magnetic tunnel junction, magnetic tunnel junction and preparation method thereof
US11200934B2 (en) * 2020-04-20 2021-12-14 Western Digital Technologies, Inc. Tunneling metamagnetic resistance memory device and methods of operating the same
US11152048B1 (en) * 2020-04-20 2021-10-19 Western Digital Technologies, Inc. Tunneling metamagnetic resistance memory device and methods of operating the same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1903623A2 (en) 2006-09-21 2008-03-26 Alps Electric Co., Ltd. Tunnel type magnetic sensor having fixed magnetic layer of composite structure containing CoFeB film and method for manufacturing the same
US20090091864A1 (en) * 2007-10-04 2009-04-09 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (cpp) magnetoresistive sensor with antiparallel-pinned layer containing silicon
US20100033878A1 (en) * 2007-06-19 2010-02-11 Canon Anelva Corporation Tunnel magnetoresistive thin film and magnetic multilayer formation apparatus
WO2010026703A1 (en) 2008-09-02 2010-03-11 キヤノンアネルバ株式会社 Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
US20100073827A1 (en) * 2008-09-22 2010-03-25 Headway Technologies, Inc. TMR device with novel free layer structure
US20100072524A1 (en) * 2005-09-20 2010-03-25 Yiming Huai Magnetic Devices Having Oxide Antiferromagnetic Layer Next To Free Ferromagnetic Layer
US20100177449A1 (en) * 2009-01-14 2010-07-15 Headway Technologies, Inc. TMR device with novel free layer stucture
US20120280336A1 (en) * 2011-05-04 2012-11-08 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US20130240963A1 (en) * 2012-03-16 2013-09-19 Headway Technologies, Inc. STT-MRAM Reference Layer Having Substantially Reduced Stray Field and Consisting of a Single Magnetic Domain
US8686484B2 (en) 2011-06-10 2014-04-01 Everspin Technologies, Inc. Spin-torque magnetoresistive memory element and method of fabricating same
US20140145792A1 (en) * 2012-11-27 2014-05-29 Headway Technologies, Inc. Free Layer with Out-of-Plane Anisotropy for Magnetic Device Applications
US8852762B2 (en) 2012-07-31 2014-10-07 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers and non-pinned reference layers
US8946834B2 (en) * 2012-03-01 2015-02-03 Headway Technologies, Inc. High thermal stability free layer with high out-of-plane anisotropy for magnetic device applications
US20150069553A1 (en) 2013-09-10 2015-03-12 Toshihiko Nagase Magnetic memory and method for manufacturing the same
WO2015040926A1 (en) 2013-09-19 2015-03-26 株式会社 東芝 Magnetoresistive element and magnetic memory
US9177575B1 (en) * 2014-12-05 2015-11-03 HGST Netherlands B.V. Tunneling magnetoresistive (TMR) read head with reduced gap thickness
US20160079520A1 (en) * 2014-09-12 2016-03-17 Sang Hwan Park Magnetic memory device and method for manufacturing the same

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807592B2 (en) 1999-06-24 2006-08-09 松下電器産業株式会社 Recording / reproducing head and recording / reproducing apparatus including the same
US20050259365A1 (en) 2002-03-08 2005-11-24 Seagate Technology Llc Magnetoresistive sensor with a specular scattering layer formed by deposition from an oxide target
US6841395B2 (en) 2002-11-25 2005-01-11 International Business Machines Corporation Method of forming a barrier layer of a tunneling magnetoresistive sensor
US7333306B2 (en) 2005-08-23 2008-02-19 Headway Technologies, Inc. Magnetoresistive spin valve sensor with tri-layer free layer
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7780820B2 (en) 2005-11-16 2010-08-24 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
US7800868B2 (en) 2005-12-16 2010-09-21 Seagate Technology Llc Magnetic sensing device including a sense enhancing layer
US7280389B2 (en) 2006-02-08 2007-10-09 Magic Technologies, Inc. Synthetic anti-ferromagnetic structure with non-magnetic spacer for MRAM applications
US7630177B2 (en) 2006-02-14 2009-12-08 Hitachi Global Storage Technologies Netherlands B.V. Tunnel MR head with closed-edge laminated free layer
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US8084835B2 (en) 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
JP2007287863A (en) 2006-04-14 2007-11-01 Tdk Corp Magnetoresistive element and manufacturing method thereof, magnetoresistive element assembly, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device
US7851840B2 (en) 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
US20080152834A1 (en) 2006-12-22 2008-06-26 Hitachi Global Storage Technologies Method for manufacturing a tunnel junction magnetic sensor using ion beam deposition
US7791845B2 (en) * 2006-12-26 2010-09-07 Hitachi Global Storage Technologies Netherlands B.V. Tunneling magnetoresistive sensor having a high iron concentration free layer and an oxides of magnesium barrier layer
JP2008252018A (en) 2007-03-30 2008-10-16 Toshiba Corp Magnetoresistance effect element, and magnetic random access memory using the same
US7602033B2 (en) * 2007-05-29 2009-10-13 Headway Technologies, Inc. Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
JP4738395B2 (en) 2007-09-25 2011-08-03 株式会社東芝 Magnetoresistive element and magnetic random access memory using the same
US20090122450A1 (en) * 2007-11-08 2009-05-14 Headway Technologies, Inc. TMR device with low magnetostriction free layer
JP2009152333A (en) 2007-12-20 2009-07-09 Fujitsu Ltd Ferromagnetic tunnel junction element, magnetic head, and magnetic storage
FR2925747B1 (en) * 2007-12-21 2010-04-09 Commissariat Energie Atomique MAGNETIC MEMORY WITH THERMALLY ASSISTED WRITING
US8747629B2 (en) * 2008-09-22 2014-06-10 Headway Technologies, Inc. TMR device with novel free layer
US7829964B2 (en) 2008-10-31 2010-11-09 Industrial Technology Research Institute Magnetic memory element utilizing spin transfer switching
US7834410B2 (en) * 2009-04-13 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Spin torque transfer magnetic tunnel junction structure
JP2011008861A (en) 2009-06-25 2011-01-13 Sony Corp Memory
US8183653B2 (en) * 2009-07-13 2012-05-22 Seagate Technology Llc Magnetic tunnel junction having coherent tunneling structure
US8422285B2 (en) 2009-10-30 2013-04-16 Grandis, Inc. Method and system for providing dual magnetic tunneling junctions usable in spin transfer torque magnetic memories
CN102074329B (en) * 2009-11-23 2012-04-18 中国科学院物理研究所 Magnetic multilayer film as well as magnetic logic element and magnetic random access memory thereof
US8908423B2 (en) * 2009-11-27 2014-12-09 Nec Corporation Magnetoresistive effect element, and magnetic random access memory
US8259420B2 (en) 2010-02-01 2012-09-04 Headway Technologies, Inc. TMR device with novel free layer structure
US8300356B2 (en) 2010-05-11 2012-10-30 Headway Technologies, Inc. CoFe/Ni Multilayer film with perpendicular anistropy for microwave assisted magnetic recording
US9019758B2 (en) * 2010-09-14 2015-04-28 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
US9024398B2 (en) * 2010-12-10 2015-05-05 Avalanche Technology, Inc. Perpendicular STTMRAM device with balanced reference layer
US8786036B2 (en) * 2011-01-19 2014-07-22 Headway Technologies, Inc. Magnetic tunnel junction for MRAM applications
US9006704B2 (en) * 2011-02-11 2015-04-14 Headway Technologies, Inc. Magnetic element with improved out-of-plane anisotropy for spintronic applications
US8790798B2 (en) * 2011-04-18 2014-07-29 Alexander Mikhailovich Shukh Magnetoresistive element and method of manufacturing the same
US8541855B2 (en) * 2011-05-10 2013-09-24 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8492169B2 (en) * 2011-08-15 2013-07-23 Magic Technologies, Inc. Magnetic tunnel junction for MRAM applications
JP5665707B2 (en) * 2011-09-21 2015-02-04 株式会社東芝 Magnetoresistive element, magnetic memory, and method of manufacturing magnetoresistive element
JP5856490B2 (en) * 2012-01-20 2016-02-09 ルネサスエレクトロニクス株式会社 Magnetoresistive element and magnetic memory
US8871365B2 (en) 2012-02-28 2014-10-28 Headway Technologies, Inc. High thermal stability reference structure with out-of-plane aniotropy to magnetic device applications
US8852760B2 (en) * 2012-04-17 2014-10-07 Headway Technologies, Inc. Free layer with high thermal stability for magnetic device applications by insertion of a boron dusting layer
JP2013235914A (en) * 2012-05-08 2013-11-21 Toshiba Corp Magnetoresistive element and magnetic memory
WO2014025838A1 (en) * 2012-08-06 2014-02-13 Cornell University Electrically gated three-terminal circuits and devices based on spin hall torque effects in magnetic nanostructures
US8860156B2 (en) * 2012-09-11 2014-10-14 Headway Technologies, Inc. Minimal thickness synthetic antiferromagnetic (SAF) structure with perpendicular magnetic anisotropy for STT-MRAM
US9490054B2 (en) * 2012-10-11 2016-11-08 Headway Technologies, Inc. Seed layer for multilayer magnetic materials
US9691458B2 (en) * 2013-10-18 2017-06-27 Cornell University Circuits and devices based on spin hall effect to apply a spin transfer torque with a component perpendicular to the plane of magnetic layers
EP2887410A1 (en) * 2013-12-18 2015-06-24 Imec Magnetic multilayer stack
US9184375B1 (en) * 2014-07-03 2015-11-10 Samsung Electronics Co., Ltd. Magnetic junctions using asymmetric free layers and suitable for use in spin transfer torque memories
US9502642B2 (en) * 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9842988B2 (en) 2015-07-20 2017-12-12 Headway Technologies, Inc. Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US10297745B2 (en) * 2015-11-02 2019-05-21 Globalfoundries Singapore Pte. Ltd. Composite spacer layer for magnetoresistive memory
US11031058B2 (en) * 2019-09-03 2021-06-08 Western Digital Technologies, Inc. Spin-transfer torque magnetoresistive memory device with a free layer stack including multiple spacers and methods of making the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100072524A1 (en) * 2005-09-20 2010-03-25 Yiming Huai Magnetic Devices Having Oxide Antiferromagnetic Layer Next To Free Ferromagnetic Layer
EP1903623A2 (en) 2006-09-21 2008-03-26 Alps Electric Co., Ltd. Tunnel type magnetic sensor having fixed magnetic layer of composite structure containing CoFeB film and method for manufacturing the same
US20100033878A1 (en) * 2007-06-19 2010-02-11 Canon Anelva Corporation Tunnel magnetoresistive thin film and magnetic multilayer formation apparatus
US20090091864A1 (en) * 2007-10-04 2009-04-09 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (cpp) magnetoresistive sensor with antiparallel-pinned layer containing silicon
WO2010026703A1 (en) 2008-09-02 2010-03-11 キヤノンアネルバ株式会社 Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
US20100073827A1 (en) * 2008-09-22 2010-03-25 Headway Technologies, Inc. TMR device with novel free layer structure
US20100177449A1 (en) * 2009-01-14 2010-07-15 Headway Technologies, Inc. TMR device with novel free layer stucture
US8059374B2 (en) 2009-01-14 2011-11-15 Headway Technologies, Inc. TMR device with novel free layer structure
US20120280336A1 (en) * 2011-05-04 2012-11-08 Magic Technologies, Inc. Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
US8686484B2 (en) 2011-06-10 2014-04-01 Everspin Technologies, Inc. Spin-torque magnetoresistive memory element and method of fabricating same
US8946834B2 (en) * 2012-03-01 2015-02-03 Headway Technologies, Inc. High thermal stability free layer with high out-of-plane anisotropy for magnetic device applications
US20130240963A1 (en) * 2012-03-16 2013-09-19 Headway Technologies, Inc. STT-MRAM Reference Layer Having Substantially Reduced Stray Field and Consisting of a Single Magnetic Domain
US8852762B2 (en) 2012-07-31 2014-10-07 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers and non-pinned reference layers
US20140145792A1 (en) * 2012-11-27 2014-05-29 Headway Technologies, Inc. Free Layer with Out-of-Plane Anisotropy for Magnetic Device Applications
US20150069553A1 (en) 2013-09-10 2015-03-12 Toshihiko Nagase Magnetic memory and method for manufacturing the same
WO2015040926A1 (en) 2013-09-19 2015-03-26 株式会社 東芝 Magnetoresistive element and magnetic memory
US20160197266A1 (en) * 2013-09-19 2016-07-07 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory
US20160079520A1 (en) * 2014-09-12 2016-03-17 Sang Hwan Park Magnetic memory device and method for manufacturing the same
US9177575B1 (en) * 2014-12-05 2015-11-03 HGST Netherlands B.V. Tunneling magnetoresistive (TMR) read head with reduced gap thickness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PCT Search Report, Application No. PCT/US2016/042985, Applicant: Headway Technologies, Inc., dated Oct. 24, 2016, 13 pgs.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309489B2 (en) 2015-07-20 2022-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US10950260B1 (en) * 2020-04-17 2021-03-16 Western Digital Technologies, Inc. Magnetoresistive sensor with improved magnetic properties and magnetostriction control
EP4120376A3 (en) * 2021-07-15 2023-02-01 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same
EP4271164A3 (en) * 2021-07-15 2023-12-13 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same
EP4250296A3 (en) * 2021-07-15 2023-12-20 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same

Also Published As

Publication number Publication date
CN108028315B (en) 2021-08-27
US20170025602A1 (en) 2017-01-26
US20180175287A1 (en) 2018-06-21
US20220238798A1 (en) 2022-07-28
EP3326217A1 (en) 2018-05-30
CN108028315A (en) 2018-05-11
US10763428B2 (en) 2020-09-01
WO2017015294A1 (en) 2017-01-26
US20200395534A1 (en) 2020-12-17
EP3326217B1 (en) 2021-05-19
US11309489B2 (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US11309489B2 (en) Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
US9577184B2 (en) TMR device with novel free layer structure
US9214170B2 (en) TMR device with low magnetostriction free layer
US9021685B2 (en) Two step annealing process for TMR device with amorphous free layer
US8059374B2 (en) TMR device with novel free layer structure
US9484049B2 (en) TMR device with novel free layer
US8337676B2 (en) Low resistance tunneling magnetoresistive sensor with natural oxidized double MgO barrier
US7602033B2 (en) Low resistance tunneling magnetoresistive sensor with composite inner pinned layer
US8456781B2 (en) TMR device with novel free layer structure
US8786036B2 (en) Magnetic tunnel junction for MRAM applications
US8289663B2 (en) Ultra low RA (resistance x area) sensors having a multilayer non-magnetic spacer between pinned and free layers

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEADWAY TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, HUANLONG;LEE, YUAN-JEN;ZHU, JIAN;AND OTHERS;REEL/FRAME:036573/0396

Effective date: 20150701

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEADWAY TECHNOLOGIES, INC.;REEL/FRAME:048692/0917

Effective date: 20190204

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEADWAY TECHNOLOGIES, INC.;REEL/FRAME:048692/0917

Effective date: 20190204

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4