US9001584B2 - Sub-block decoding in 3D memory - Google Patents

Sub-block decoding in 3D memory Download PDF

Info

Publication number
US9001584B2
US9001584B2 US13/781,016 US201313781016A US9001584B2 US 9001584 B2 US9001584 B2 US 9001584B2 US 201313781016 A US201313781016 A US 201313781016A US 9001584 B2 US9001584 B2 US 9001584B2
Authority
US
United States
Prior art keywords
block
sub
memory cells
transistor
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/781,016
Other versions
US20140241060A1 (en
Inventor
Chang Wan Ha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Bank NA
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US13/781,016 priority Critical patent/US9001584B2/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HA, CHANG WAN
Priority to TW103105953A priority patent/TWI496162B/en
Priority to KR1020157026355A priority patent/KR101681859B1/en
Priority to CN201480010165.5A priority patent/CN105009220B/en
Priority to PCT/US2014/019065 priority patent/WO2014134325A1/en
Publication of US20140241060A1 publication Critical patent/US20140241060A1/en
Publication of US9001584B2 publication Critical patent/US9001584B2/en
Application granted granted Critical
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT PATENT SECURITY AGREEMENT Assignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST. Assignors: MICRON TECHNOLOGY, INC.
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON SEMICONDUCTOR PRODUCTS, INC., MICRON TECHNOLOGY, INC.
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC., MICRON SEMICONDUCTOR PRODUCTS, INC. reassignment MICRON TECHNOLOGY, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits

Definitions

  • Memory devices such as flash memory, are widely used in computers and many electronic items. Some memory devices may include memory cells stacked vertically to form three-dimensional (3D) blocks of memory components. As larger numbers of memory cells are vertically stacked, it may become increasingly difficult to couple (e.g., electrically connect) the stacks to two-dimensional devices. Block size may be made relatively large to allow more space for routing and improved connectivity. However, increasing block size may lead to increased memory erase time and increased memory fragmentation.
  • FIG. 1 is an electrical schematic diagram of an apparatus in the form of one or more blocks of vertical strings of memory cells in accordance with some embodiments
  • FIG. 2 is a cross-sectional view of a semiconductor construction of a vertical string in accordance with some embodiments
  • FIG. 3 is a block diagram of drain select gate (SGD) connections according to various embodiments of the invention.
  • FIGS. 4A and 4B are schematic diagrams of implementations for sub-block and block select and deselect transistors in accordance with some embodiments
  • FIG. 5 is a block diagram of a memory system in accordance with some embodiments.
  • FIG. 6 is a block diagram of an apparatus in the form of a memory device in accordance with some embodiments.
  • FIG. 7-8 are flow diagrams of methods in accordance with some embodiments.
  • a block of memory cells such as those comprising charge storage devices, resistance variable devices, or other devices which can be programmed to store data and/or from which data can be read, according to various embodiments of the invention may function as a block of memory cells in a memory device such as a NOT AND (NAND) memory device.
  • Memory cells may be arranged in a three-dimensional manner.
  • FIG. 1 shows a block diagram of an apparatus in the form of a memory device 100 .
  • the memory device 100 may include two or more blocks 110 - 1 through 110 - n .
  • Each block 110 - 1 through 110 - n may include two or more sub-blocks 120 - 1 through 120 - n .
  • the two or more sub-blocks 120 - 1 through 120 - n may each comprise a vertical string 130 .
  • the vertical string 130 may include a number of memory cells 132 - 0 through 132 - 15 .
  • the vertical string 130 includes 16 memory cells. However, it will be understood that the vertical string 130 may include any number of memory cells.
  • the memory cells 132 - 0 through 132 - 15 may be coupled in series.
  • the vertical string 130 may include a source select gate (SGS) transistor 140 - 1 , which is sometimes also referred to herein as a “source select transistor”.
  • the SGS transistor 140 - 1 may be an n-channel transistor coupled between one of the memory cells 132 - 0 at one end of the vertical string 130 and a common source 145 .
  • the common source 145 may comprise, for example, a slot of commonly doped semiconductor material and/or other conductive material.
  • a drain select gate (SGD) transistor 150 - 1 which is sometimes also referred to herein as a “drain select transistor”, may be an n-channel transistor coupled between one of the memory cells 132 - 15 and a data line (e.g., bit line) 155 .
  • Lines 160 - 0 through 160 - 15 can form part of access lines (e.g., word lines) of the memory device 100 .
  • Word lines 160 - 0 through 160 - 15 may be shared across corresponding memory cells in corresponding sub-blocks of a block.
  • word line 160 - 15 may be shared by memory cells 132 - 15 of sub-block 120 - 1 , 134 - 15 of sub-block 120 - 2 , and 136 - 15 of sub-block 120 - 3 .
  • word line 160 - 14 may be shared by memory cells 132 - 14 of sub-block 120 - 1 , 134 - 14 of sub-blocks 120 - 2 and 136 - 14 of sub-block 120 - 3 .
  • the common source 145 can be selectively coupled to a reference voltage Vss (e.g., ground voltage) or a voltage source (e.g., a charge pump circuit, not shown).
  • Vss e.g., ground voltage
  • a voltage source e.g., a charge pump circuit, not shown.
  • Two elements are coupled directly when they are in direct electrical contact with each other, or indirectly when they are separated by one or more conductors, semiconductors or other elements that enable conduction of a current between the indirectly coupled elements.
  • two elements in direct electrical contact with each other might be in physical contact at a junction (e.g., a p-n junction) that enables a flow of electrons or holes across the junction, without intervening conductive elements.
  • Each memory cell 132 - 0 through 132 - 15 may comprise, for example, a floating gate transistor or a charge trap transistor and may be a single level memory cell or a multilevel memory cell.
  • the memory cells 132 - 0 through 132 - 15 , the SGS transistor 140 - 1 , and the SGD transistor 150 - 1 are controlled by signals on their respective control gates.
  • the SGS transistor 140 - 1 receives a signal that controls the SGS transistor 140 - 1 to control conduction between the vertical string 130 and the common source 145 .
  • the SGD transistor 150 - 1 receives a signal that controls the SGD transistor 150 - 1 , so that the SGD transistor 150 - 1 can be used to select or deselect the vertical string 100 .
  • the vertical string 100 can be one of multiple vertical strings of memory cells in a block 110 - 1 in a memory device 11 , such as a NAND memory device.
  • Each block 110 - 1 through 110 - n may include a source select line 170 - 1 through 170 - n , respectively.
  • a first source select line 170 - 1 may couple to the SGS transistor 140 - 1 in the first sub-block 120 - 1 , to the SGS transistor 140 - 2 in the second sub-block 120 - 2 , and to each other SGS transistor in the first block 110 - 1 .
  • a second source select line 170 - 2 may couple to the SGS 140 - 4 transistor in the first sub-block 120 - 4 , to the SGS transistor 140 - 5 in the second sub-block 120 - 5 , and to each other SGS transistor in the second block 110 - 2 .
  • FIG. 2 is a cross-sectional view of a semiconductor construction of a vertical string 130 of the two or more vertical strings 130 shown in FIG. 1 according to various embodiments.
  • the memory cells 132 - 0 through 132 - 15 , the SGS transistor 140 - 1 and the SGD transistor 150 - 1 at least partially surround (e.g., completely surround or partially surround) a pillar 210 of semiconductor material.
  • the pillar 210 can comprise p type polysilicon and is a channel for the memory cells 132 - 0 through 132 - 15 , the SGS transistor 140 - 1 and the SGD transistor 150 - 1 .
  • the memory cells 132 - 0 through 132 - 15 , the SGS transistor 120 and the SGD transistor 150 - 1 are associated with the pillar 210 .
  • the pillar 210 extends between a source cap 220 comprising n+ type polysilicon and a drain cap 230 comprising n+ type polysilicon.
  • the memory cells 132 - 0 through 132 - 15 of the vertical string 100 are located in different tiers of the semiconductor construction along a vertical extent of the pillar 210 , thus forming the vertical string 130 as a “vertical” string of memory cells.
  • the source cap 220 is in electrical contact with the pillar 210 and forms a p-n junction with the pillar 210 .
  • the drain cap 230 is in electrical contact with the pillar 210 and forms a p-n junction with the pillar 210 .
  • the source cap 220 is a source for the pillar 210 and the drain cap 230 is a drain for the pillar 210 .
  • the source cap 220 is coupled to the common source 145 .
  • the drain cap 230 is coupled to the data line 155 .
  • word lines 160 - 1 through 160 - 15 in 3D devices are vertically stacked, it may become increasing difficult to couple the word lines to planar, e.g., two-dimensional (2D), silicon devices. For example, it may be difficult to couple the word lines to string drivers (not shown) that are used to access memory cells.
  • planar e.g., two-dimensional (2D), silicon devices.
  • string drivers not shown
  • the sub-blocks of a block may share the same group of word lines, the same source select (SGS) line, and the same data line and common source.
  • the sub-blocks of a block may each have separate drain select (SGD) lines (where the SGD transistors of a particular sub-block are coupled to a respective one of the SGD lines).
  • SGD drain select
  • Many embodiments serve to reduce the number of routings used in the memory device 100 . Rather than increasing available layout space by increasing the number of sub-blocks, many embodiments maintain the same number of sub-blocks in the 3D memory device 100 . In some embodiments, therefore, the number of sub-blocks may be kept relatively low. Memory devices 100 according to most embodiments may therefore provide reduced block erase times, and reduced memory fragmentation.
  • Example embodiments may reduce the number of routings by reducing the number of separate SGD lines.
  • Some two-dimensional (2D) memory systems may reduce the number of separate SGD lines to reduce overall chip size.
  • example embodiments for 3D memory systems may reduce the number of separate SGD lines so that small block sizes may be maintained.
  • drain select (SGD) lines 165 - 0 through 165 - n may be coupled to the SGD transistor 150 - 1 in the first sub-block 120 - 1 of the first block 110 - 1 , to the SGD transistor 152 - 1 of the first sub-block 120 - 4 of the second block 110 - 2 , and to the SGD transistor 154 - 1 of the first sub-block 120 - 7 of the n-th block 110 - n , as well as to the SGD transistors of other first sub-blocks of any blocks (not shown) between the second block 110 - 2 and the n-th block 110 - n .
  • SGD drain select
  • a second drain select line 165 - 1 may be coupled to the SGD transistor 150 - 2 of the second sub-block 120 - 2 of the first block 110 - 1 , to the SGD transistor 152 - 2 of the second sub-block 120 - 5 of the second block 110 - 2 , and to the SGD transistor 154 - 2 of the second sub-block 120 - 8 of the n-th block 110 - n , as well as to the SGD transistors of other second sub-blocks of any blocks (not shown) between the second block 110 - 2 and the n-th block 110 - n .
  • a drain select line may couple SGD transistors of corresponding sub-blocks in each block in a group of blocks of a memory device.
  • Other or subsequent groups of blocks in the memory device 100 may similarly share drain select lines, as described below with respect to FIG. 3 .
  • FIG. 3 is a block diagram of groups 310 - 1 through 310 - n of blocks sharing drain select lines as described above and in accordance with example embodiments.
  • Blocks 320 - 1 through 320 - n in group 310 - 1 share drain select lines 300 - 1 .
  • Blocks 322 - 1 through 322 - n in group 310 - 2 share drain select lines 300 - 2 .
  • blocks 324 - 1 through 324 - n in group 310 - n share drain select lines 300 - n.
  • two transistors may be associated with each SGD line shared by a group of blocks and two transistors may be associated with each block in the group of blocks.
  • a sub-block select transistor blken may be energized to select a corresponding SGD line shared by a group of blocks, to bias the SGD line to a bias voltage of the blken transistor.
  • a sub-block deselect transistor blken — may be energized to deselect the corresponding SGD line shared by the group of blocks.
  • a deselected SGD line may be biased to ground.
  • a block select transistor blken for a first block may be energized to select the SGS line of the first block, thereby biasing the SGS line of the first block to a bias voltage of the blken and the block deselect transistors blken — for other blocks may be energized to deselect the other blocks.
  • the deselected SGS lines may be biased to an unselect bias, as shown in FIG. 4B .
  • the deselected SGS lines may be biased to ground similarly to the case of the deselected SGD lines shown in FIG. 4A .
  • the deselected SGD lines may be biased to an unselect bias, similar to the case of the deselected SGS lines shown in FIG. 4B .
  • the overall number of transistors used in example embodiments may be reduced relative to the overall number of transistors used in such conventional systems.
  • drain select lines for selecting SGDs may be shared between four blocks, where the four blocks comprise a group of blocks.
  • one set of sub-block select and deselect transistors (blken and blken_, FIG. 4A ) may be used to select and deselect multiple corresponding SGDs of corresponding multiple sub-blocks.
  • the number of sub-block select transistors and/or the number of sub-block deselect transistors is reduced by a factor of four relative to conventional systems.
  • Other example embodiments may group blocks into groups of two, eight, or sixteen blocks, for example. The number of sub-block select transistors and/or the number of sub-block deselect transistors therefore would be reduced by a factor of two, eight, and sixteen, respectively, in these example embodiments.
  • FIG. 5 is a block diagram of an apparatus in the form of a memory device 500 according to various embodiments of the invention.
  • the memory device 500 may be coupled to a control bus 504 to receive multiple control signals over control signal lines 505 .
  • the memory device 500 may be further coupled to an address bus 506 to receive address signals A 0 -Ax on address signal lines 507 and to a data bus 508 to transmit and receive data signals. Although depicted as being received on separate physical busses, the data signals may also be multiplexed and received on the same physical bus.
  • the memory device 500 may be coupled to a processor (not shown) in a system.
  • the memory device 500 may include one or more arrays 510 of memory cells that may be arranged in rows and in columns.
  • the memory cells of the array 510 may comprise non-volatile memory cells (e.g., charge storage devices, such as floating gate transistors or charge trap transistors) according to various embodiments of the invention.
  • the memory device 500 may be a NAND memory device.
  • the memory device may be a 3D NAND memory device.
  • the array 510 may include multiple banks and blocks of memory cells residing on a single die or on multiple dice as part of the memory device 500 .
  • the array 510 may include one or more of the blocks 110 - 1 through 110 - n ( FIG. 1 ) according to various embodiments of the invention.
  • the array 510 may include two or more groups of blocks 110 - 1 through 110 - n.
  • a data input and output (I/O) circuit 526 may implement bi-directional data communication over external (e.g., data I/O) nodes 528 coupled to the data bus 508 .
  • the I/O circuit 526 may include N driver and receiver circuits 540 according to various embodiments.
  • the memory device 500 may include a controller that is configured to support operations of the memory device 500 , such as writing data to and/or erasing data from the array 510 .
  • the controller may comprise, for example, control circuitry 542 (e.g., configured to implement a state machine) on a same or different die than that which includes the array 510 and/or any or all of the other components of the memory device 500 .
  • the controller may comprise the control circuitry 542 , firmware, software or combinations of any or all of the foregoing. Data may be transferred between the sense/cache circuit 522 and the I/O circuit 526 over N signal lines 546 . Operations using the memory device may be implemented using the controller.
  • a memory system 600 may include a plurality of blocks of memory cells.
  • the memory system 600 includes two blocks of memory cells 610 - 0 and 610 - 1 .
  • the memory system 600 further includes a block select switch 620 , and global word lines GWL 0 _ 0 , GWL 2 _ 0 , GWL 0 _ 1 , GWL 2 _ 1 , GWL 0 _ 15 , GWL 2 _ 15 , GWL 1 _ 0 , GWL 3 _ 0 , GWL 1 _ 1 , GWL 3 _ 1 , G 2 L 1 _ 15 and GWL 3 _ 15 coupled to corresponding memory cells.
  • the global word lines may be coupled to local word lines in each block 610 - 0 and 610 - 1 .
  • each block 610 - 0 and 610 - 1 may include 16 local word lines LWL 0 through LWL 15 .
  • the memory system 600 may comprise additional components, for example components illustrated in the memory system 100 ( FIG. 1 ), which are omitted in FIG. 6 in the interest of brevity and clarity.
  • FIG. 7 illustrates a method for accessing a memory cell in accordance with example embodiments.
  • a first voltage is provided to the block select switch 620 for a group of blocks including the memory cell to be accessed.
  • a second voltage is provided to block select switches for other groups of blocks. The second voltage may be about 0 volts.
  • a third voltage is provided to at least one word line of a first set of global word lines.
  • the first set of global word lines may correspond to the memory cell to be accessed and/or the block that includes the memory cell to be accessed.
  • a fourth voltage is provided to a second set of global word lines.
  • the second set of global word lines may correspond to unselected blocks in a group of blocks.
  • Source select transistors ( FIG. 1 ) of each of the sub-blocks of a memory block that includes the memory cell to be accessed can be energized via a corresponding source select line ( FIG. 1 ).
  • the drain select transistor ( FIG. 1 ) of a sub-block that includes the memory cell to be accessed can be energized via a corresponding drain select line ( FIG. 1 ).
  • a voltage V pgm — sw can be provided 800 to a block select switch 620 for the group of blocks including the memory cell to be programmed.
  • a second voltage e.g., about 0 volts
  • a V pgm voltage can be provided to a global word line corresponding to the memory cell to be programmed.
  • a V pass voltage can be provided to other global word lines of the block including the memory cell to be programmed.
  • about 0 volts may be provided to global word lines for blocks in the group that do not include the memory cell to be programmed.
  • the V pgm voltage and the V pass voltage are different in at least one embodiment.
  • the drain select line ( FIG. 1 ) corresponding to the sub-block including the memory cell to be programmed can be selected by energizing the sub-block select transistor ( FIG. 4A ) corresponding to that sub-block.
  • the sub-block deselect transistors for drain lines corresponding to sub-blocks that do not include the memory cell to be programmed can be energized.
  • the source select line ( FIG. 1 ) corresponding to the block including the memory cell to be programmed may be selected by energizing the block select transistor for the respective SGS.
  • the source select lines corresponding to other blocks that do not include the memory cell to be programmed may be deselected by energizing the block deselect transistors for the respective source select lines.
  • a voltage V pass — sw may be provided to a block select switch 620 for the group of blocks including the memory cell to be read. About 0 volts may be provided to the other block select switches corresponding to other groups of blocks that do not include the memory cell to be read.
  • the drain select line ( FIG. 1 ) corresponding to the sub-block including the memory cell to be read can be selected by energizing the sub-block select transistor ( FIG. 4A ) corresponding to that sub-block.
  • the sub-block deselect transistors for drain lines corresponding to sub-blocks that do not include the memory cell to be read can be energized.
  • a V wlrv voltage can be provided to a global word line corresponding to the memory cell to be read, and a V pass voltage can be provided to other global word lines of the block including the memory cell to be read. About 0 volts can be provided to global word lines for blocks in the group that do not include the memory cell to be read.
  • the V wlrv voltage and the V pass voltage are different in at least one embodiment.
  • an erasing voltage (for example, 3-4 volts) can be provided to a block select switch 620 for the group of blocks including the memory cell to be erased. About 0 volts can be provided to the other block select switches 645 corresponding to other groups of blocks that do not include the memory cell to be erased.
  • An erase voltage can be provided to the common source 145 ( FIG. 1 ) for the blocks including the block to be erased. About 0 volts can be provided to global word lines coupled to the block to be erased, while the global word lines coupled to other blocks in the group can be allowed to float.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Abstract

Some embodiments relate to apparatuses and methods associated with blocks of memory cells. The blocks of memory cells may include two or more sub-blocks of memory cells. Sub-blocks may comprise a vertical string of memory cells including a source select transistor and a drain select transistor. An apparatus may include two or more drain select lines, of which a first drain select line is coupled to a drain select transistor in a first sub-block of a first block and to a drain select transistor in a first sub-block of a second block. A second drain select line in the apparatus may be coupled to a drain select transistor in a second sub-block of the first block and to a drain select transistor in a second sub-block of the second block. Other apparatuses and methods are described.

Description

BACKGROUND
Memory devices, such as flash memory, are widely used in computers and many electronic items. Some memory devices may include memory cells stacked vertically to form three-dimensional (3D) blocks of memory components. As larger numbers of memory cells are vertically stacked, it may become increasingly difficult to couple (e.g., electrically connect) the stacks to two-dimensional devices. Block size may be made relatively large to allow more space for routing and improved connectivity. However, increasing block size may lead to increased memory erase time and increased memory fragmentation.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings in which:
FIG. 1 is an electrical schematic diagram of an apparatus in the form of one or more blocks of vertical strings of memory cells in accordance with some embodiments;
FIG. 2 is a cross-sectional view of a semiconductor construction of a vertical string in accordance with some embodiments;
FIG. 3 is a block diagram of drain select gate (SGD) connections according to various embodiments of the invention;
FIGS. 4A and 4B are schematic diagrams of implementations for sub-block and block select and deselect transistors in accordance with some embodiments;
FIG. 5 is a block diagram of a memory system in accordance with some embodiments;
FIG. 6 is a block diagram of an apparatus in the form of a memory device in accordance with some embodiments; and
FIG. 7-8 are flow diagrams of methods in accordance with some embodiments.
DETAILED DESCRIPTION
A block of memory cells, such as those comprising charge storage devices, resistance variable devices, or other devices which can be programmed to store data and/or from which data can be read, according to various embodiments of the invention may function as a block of memory cells in a memory device such as a NOT AND (NAND) memory device. Memory cells may be arranged in a three-dimensional manner.
FIG. 1 shows a block diagram of an apparatus in the form of a memory device 100. The memory device 100 may include two or more blocks 110-1 through 110-n. Each block 110-1 through 110-n may include two or more sub-blocks 120-1 through 120-n. The two or more sub-blocks 120-1 through 120-n may each comprise a vertical string 130. The vertical string 130 may include a number of memory cells 132-0 through 132-15. In the illustrative example, the vertical string 130 includes 16 memory cells. However, it will be understood that the vertical string 130 may include any number of memory cells. The memory cells 132-0 through 132-15 may be coupled in series.
The vertical string 130 may include a source select gate (SGS) transistor 140-1, which is sometimes also referred to herein as a “source select transistor”. The SGS transistor 140-1 may be an n-channel transistor coupled between one of the memory cells 132-0 at one end of the vertical string 130 and a common source 145. The common source 145 may comprise, for example, a slot of commonly doped semiconductor material and/or other conductive material. At the other end of the vertical string 130, a drain select gate (SGD) transistor 150-1, which is sometimes also referred to herein as a “drain select transistor”, may be an n-channel transistor coupled between one of the memory cells 132-15 and a data line (e.g., bit line) 155.
Lines 160-0 through 160-15 can form part of access lines (e.g., word lines) of the memory device 100. Word lines 160-0 through 160-15 may be shared across corresponding memory cells in corresponding sub-blocks of a block. For example, word line 160-15 may be shared by memory cells 132-15 of sub-block 120-1, 134-15 of sub-block 120-2, and 136-15 of sub-block 120-3. Similarly, word line 160-14 may be shared by memory cells 132-14 of sub-block 120-1, 134-14 of sub-blocks 120-2 and 136-14 of sub-block 120-3.
The common source 145 can be selectively coupled to a reference voltage Vss (e.g., ground voltage) or a voltage source (e.g., a charge pump circuit, not shown). Two elements are coupled directly when they are in direct electrical contact with each other, or indirectly when they are separated by one or more conductors, semiconductors or other elements that enable conduction of a current between the indirectly coupled elements. For example, two elements in direct electrical contact with each other might be in physical contact at a junction (e.g., a p-n junction) that enables a flow of electrons or holes across the junction, without intervening conductive elements.
Each memory cell 132-0 through 132-15 may comprise, for example, a floating gate transistor or a charge trap transistor and may be a single level memory cell or a multilevel memory cell. The memory cells 132-0 through 132-15, the SGS transistor 140-1, and the SGD transistor 150-1 are controlled by signals on their respective control gates.
The SGS transistor 140-1 receives a signal that controls the SGS transistor 140-1 to control conduction between the vertical string 130 and the common source 145. The SGD transistor 150-1 receives a signal that controls the SGD transistor 150-1, so that the SGD transistor 150-1 can be used to select or deselect the vertical string 100. The vertical string 100 can be one of multiple vertical strings of memory cells in a block 110-1 in a memory device 11, such as a NAND memory device.
Each block 110-1 through 110-n may include a source select line 170-1 through 170-n, respectively. A first source select line 170-1 may couple to the SGS transistor 140-1 in the first sub-block 120-1, to the SGS transistor 140-2 in the second sub-block 120-2, and to each other SGS transistor in the first block 110-1. Similarly, a second source select line 170-2 may couple to the SGS 140-4 transistor in the first sub-block 120-4, to the SGS transistor 140-5 in the second sub-block 120-5, and to each other SGS transistor in the second block 110-2.
FIG. 2 is a cross-sectional view of a semiconductor construction of a vertical string 130 of the two or more vertical strings 130 shown in FIG. 1 according to various embodiments. The memory cells 132-0 through 132-15, the SGS transistor 140-1 and the SGD transistor 150-1 at least partially surround (e.g., completely surround or partially surround) a pillar 210 of semiconductor material. The pillar 210 can comprise p type polysilicon and is a channel for the memory cells 132-0 through 132-15, the SGS transistor 140-1 and the SGD transistor 150-1. The memory cells 132-0 through 132-15, the SGS transistor 120 and the SGD transistor 150-1 are associated with the pillar 210. The pillar 210 extends between a source cap 220 comprising n+ type polysilicon and a drain cap 230 comprising n+ type polysilicon. The memory cells 132-0 through 132-15 of the vertical string 100 are located in different tiers of the semiconductor construction along a vertical extent of the pillar 210, thus forming the vertical string 130 as a “vertical” string of memory cells. The source cap 220 is in electrical contact with the pillar 210 and forms a p-n junction with the pillar 210. The drain cap 230 is in electrical contact with the pillar 210 and forms a p-n junction with the pillar 210. The source cap 220 is a source for the pillar 210 and the drain cap 230 is a drain for the pillar 210. The source cap 220 is coupled to the common source 145. The drain cap 230 is coupled to the data line 155.
As word lines 160-1 through 160-15 (for example) in 3D devices are vertically stacked, it may become increasing difficult to couple the word lines to planar, e.g., two-dimensional (2D), silicon devices. For example, it may be difficult to couple the word lines to string drivers (not shown) that are used to access memory cells.
In some conventional 3D memory systems, in order to increase available layout space to provide for increased routings and increased connections to, for example, a string driver, multiple sub-blocks are introduced. The sub-blocks of a block may share the same group of word lines, the same source select (SGS) line, and the same data line and common source. The sub-blocks of a block may each have separate drain select (SGD) lines (where the SGD transistors of a particular sub-block are coupled to a respective one of the SGD lines). However, by increasing the number of sub-blocks, block size may be increased. Accordingly, the time to erase blocks may be increased. Furthermore, memory may become fragmented more readily with increased block size.
Many embodiments serve to reduce the number of routings used in the memory device 100. Rather than increasing available layout space by increasing the number of sub-blocks, many embodiments maintain the same number of sub-blocks in the 3D memory device 100. In some embodiments, therefore, the number of sub-blocks may be kept relatively low. Memory devices 100 according to most embodiments may therefore provide reduced block erase times, and reduced memory fragmentation.
Example embodiments may reduce the number of routings by reducing the number of separate SGD lines. Some two-dimensional (2D) memory systems may reduce the number of separate SGD lines to reduce overall chip size. However, in contrast, example embodiments for 3D memory systems may reduce the number of separate SGD lines so that small block sizes may be maintained.
Referring again to FIG. 1, it can be seen that some embodiments provide drain select (SGD) lines 165-0 through 165-n. The drain select line 165-0 may be coupled to the SGD transistor 150-1 in the first sub-block 120-1 of the first block 110-1, to the SGD transistor 152-1 of the first sub-block 120-4 of the second block 110-2, and to the SGD transistor 154-1 of the first sub-block 120-7 of the n-th block 110-n, as well as to the SGD transistors of other first sub-blocks of any blocks (not shown) between the second block 110-2 and the n-th block 110-n. Similarly, a second drain select line 165-1 may be coupled to the SGD transistor 150-2 of the second sub-block 120-2 of the first block 110-1, to the SGD transistor 152-2 of the second sub-block 120-5 of the second block 110-2, and to the SGD transistor 154-2 of the second sub-block 120-8 of the n-th block 110-n, as well as to the SGD transistors of other second sub-blocks of any blocks (not shown) between the second block 110-2 and the n-th block 110-n. In other words, a drain select line may couple SGD transistors of corresponding sub-blocks in each block in a group of blocks of a memory device. Other or subsequent groups of blocks in the memory device 100 may similarly share drain select lines, as described below with respect to FIG. 3.
FIG. 3 is a block diagram of groups 310-1 through 310-n of blocks sharing drain select lines as described above and in accordance with example embodiments. Blocks 320-1 through 320-n in group 310-1 share drain select lines 300-1. Blocks 322-1 through 322-n in group 310-2 share drain select lines 300-2. Similarly, blocks 324-1 through 324-n in group 310-n share drain select lines 300-n.
As shown in FIGS. 4A and 4B, in an example embodiment, two transistors may be associated with each SGD line shared by a group of blocks and two transistors may be associated with each block in the group of blocks. For example, in FIG. 4A, a sub-block select transistor blken may be energized to select a corresponding SGD line shared by a group of blocks, to bias the SGD line to a bias voltage of the blken transistor. A sub-block deselect transistor blkenmay be energized to deselect the corresponding SGD line shared by the group of blocks. In the illustrative example, a deselected SGD line may be biased to ground.
Similarly, in FIG. 4B, a block select transistor blken for a first block may be energized to select the SGS line of the first block, thereby biasing the SGS line of the first block to a bias voltage of the blken and the block deselect transistors blkenfor other blocks may be energized to deselect the other blocks. The deselected SGS lines may be biased to an unselect bias, as shown in FIG. 4B. Alternatively, the deselected SGS lines may be biased to ground similarly to the case of the deselected SGD lines shown in FIG. 4A. Further, the deselected SGD lines may be biased to an unselect bias, similar to the case of the deselected SGS lines shown in FIG. 4B.
The overall number of transistors used in example embodiments may be reduced relative to the overall number of transistors used in such conventional systems. For example, in at least one embodiment, drain select lines for selecting SGDs may be shared between four blocks, where the four blocks comprise a group of blocks. Accordingly, one set of sub-block select and deselect transistors (blken and blken_, FIG. 4A) may be used to select and deselect multiple corresponding SGDs of corresponding multiple sub-blocks. In the illustrative example, therefore, the number of sub-block select transistors and/or the number of sub-block deselect transistors is reduced by a factor of four relative to conventional systems. Other example embodiments may group blocks into groups of two, eight, or sixteen blocks, for example. The number of sub-block select transistors and/or the number of sub-block deselect transistors therefore would be reduced by a factor of two, eight, and sixteen, respectively, in these example embodiments.
FIG. 5 is a block diagram of an apparatus in the form of a memory device 500 according to various embodiments of the invention. The memory device 500 may be coupled to a control bus 504 to receive multiple control signals over control signal lines 505. The memory device 500 may be further coupled to an address bus 506 to receive address signals A0-Ax on address signal lines 507 and to a data bus 508 to transmit and receive data signals. Although depicted as being received on separate physical busses, the data signals may also be multiplexed and received on the same physical bus. The memory device 500 may be coupled to a processor (not shown) in a system.
The memory device 500 may include one or more arrays 510 of memory cells that may be arranged in rows and in columns. The memory cells of the array 510 may comprise non-volatile memory cells (e.g., charge storage devices, such as floating gate transistors or charge trap transistors) according to various embodiments of the invention. The memory device 500 may be a NAND memory device. The memory device may be a 3D NAND memory device. The array 510 may include multiple banks and blocks of memory cells residing on a single die or on multiple dice as part of the memory device 500. The array 510 may include one or more of the blocks 110-1 through 110-n (FIG. 1) according to various embodiments of the invention. The array 510 may include two or more groups of blocks 110-1 through 110-n.
A data input and output (I/O) circuit 526 may implement bi-directional data communication over external (e.g., data I/O) nodes 528 coupled to the data bus 508. The I/O circuit 526 may include N driver and receiver circuits 540 according to various embodiments. The memory device 500 may include a controller that is configured to support operations of the memory device 500, such as writing data to and/or erasing data from the array 510. The controller may comprise, for example, control circuitry 542 (e.g., configured to implement a state machine) on a same or different die than that which includes the array 510 and/or any or all of the other components of the memory device 500. The controller may comprise the control circuitry 542, firmware, software or combinations of any or all of the foregoing. Data may be transferred between the sense/cache circuit 522 and the I/O circuit 526 over N signal lines 546. Operations using the memory device may be implemented using the controller.
Operations using apparatuses according to example embodiments are illustrated with reference to FIG. 6-8. Referring to FIG. 6, a memory system 600 may include a plurality of blocks of memory cells. In the illustrative example, the memory system 600 includes two blocks of memory cells 610-0 and 610-1. The memory system 600 further includes a block select switch 620, and global word lines GWL0_0, GWL2_0, GWL0_1, GWL2_1, GWL0_15, GWL2_15, GWL1_0, GWL3_0, GWL1_1, GWL3_1, G2L1_15 and GWL3_15 coupled to corresponding memory cells. The global word lines may be coupled to local word lines in each block 610-0 and 610-1. In the illustrative example, each block 610-0 and 610-1 may include 16 local word lines LWL0 through LWL15. The memory system 600 may comprise additional components, for example components illustrated in the memory system 100 (FIG. 1), which are omitted in FIG. 6 in the interest of brevity and clarity.
FIG. 7 illustrates a method for accessing a memory cell in accordance with example embodiments. In operation 700, a first voltage is provided to the block select switch 620 for a group of blocks including the memory cell to be accessed. In operation 710 a second voltage is provided to block select switches for other groups of blocks. The second voltage may be about 0 volts. In operation 720, a third voltage is provided to at least one word line of a first set of global word lines. The first set of global word lines may correspond to the memory cell to be accessed and/or the block that includes the memory cell to be accessed. In operation 730, a fourth voltage is provided to a second set of global word lines. The second set of global word lines may correspond to unselected blocks in a group of blocks.
Source select transistors (FIG. 1) of each of the sub-blocks of a memory block that includes the memory cell to be accessed can be energized via a corresponding source select line (FIG. 1). The drain select transistor (FIG. 1) of a sub-block that includes the memory cell to be accessed can be energized via a corresponding drain select line (FIG. 1).
Further details on implementation of read, write, and erase operations in accordance with various embodiments are provided below.
Referring to FIG. 8, in operations to program memory cells, a voltage Vpgm sw can be provided 800 to a block select switch 620 for the group of blocks including the memory cell to be programmed. In operation 810, a second voltage (e.g., about 0 volts) can be provided to other block select switches 645 corresponding to other groups of blocks that do not include the memory cell to be programmed. In operation 820, a Vpgm voltage can be provided to a global word line corresponding to the memory cell to be programmed. In operation 830, a Vpass voltage can be provided to other global word lines of the block including the memory cell to be programmed. In operation 840, about 0 volts may be provided to global word lines for blocks in the group that do not include the memory cell to be programmed. The Vpgm voltage and the Vpass voltage are different in at least one embodiment.
The drain select line (FIG. 1) corresponding to the sub-block including the memory cell to be programmed can be selected by energizing the sub-block select transistor (FIG. 4A) corresponding to that sub-block. The sub-block deselect transistors for drain lines corresponding to sub-blocks that do not include the memory cell to be programmed can be energized. The source select line (FIG. 1) corresponding to the block including the memory cell to be programmed may be selected by energizing the block select transistor for the respective SGS. The source select lines corresponding to other blocks that do not include the memory cell to be programmed may be deselected by energizing the block deselect transistors for the respective source select lines.
In operations to read memory cells, a voltage Vpass sw may be provided to a block select switch 620 for the group of blocks including the memory cell to be read. About 0 volts may be provided to the other block select switches corresponding to other groups of blocks that do not include the memory cell to be read. The drain select line (FIG. 1) corresponding to the sub-block including the memory cell to be read can be selected by energizing the sub-block select transistor (FIG. 4A) corresponding to that sub-block. The sub-block deselect transistors for drain lines corresponding to sub-blocks that do not include the memory cell to be read can be energized. The source select line (FIG. 1) corresponding to the block including the memory cell to be read may be selected by energizing the block select transistor for the respective SGS. The source select lines corresponding to other blocks that do not include the memory cell to be read may be deselected by energizing the block deselect transistors for the respective source select lines. A Vwlrv voltage can be provided to a global word line corresponding to the memory cell to be read, and a Vpass voltage can be provided to other global word lines of the block including the memory cell to be read. About 0 volts can be provided to global word lines for blocks in the group that do not include the memory cell to be read. The Vwlrv voltage and the Vpass voltage are different in at least one embodiment.
In operations to erase memory cells, an erasing voltage (for example, 3-4 volts) can be provided to a block select switch 620 for the group of blocks including the memory cell to be erased. About 0 volts can be provided to the other block select switches 645 corresponding to other groups of blocks that do not include the memory cell to be erased. An erase voltage can be provided to the common source 145 (FIG. 1) for the blocks including the block to be erased. About 0 volts can be provided to global word lines coupled to the block to be erased, while the global word lines coupled to other blocks in the group can be allowed to float.
Example structures and methods of operating blocks of vertical strings of memory cells have been described as specific embodiments, but it will be evident to those of ordinary skill in the art, after reading and understanding the content of this disclosure, that various modifications and changes may be made. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. §1.72(b), requiring an abstract that allows the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the claims. In addition, in the foregoing Detailed Description, it may be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as limiting the claims. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (25)

What is claimed is:
1. An apparatus comprising:
a plurality of blocks of memory cells, including a first block and a second block, wherein a block includes two or more sub-blocks, including a first sub-block and a second sub-block, a sub-block including a vertical string of memory cells including a respective plurality of memory cells, a respective source select transistor, and a respective drain select transistor;
two or more drain select lines, including a first drain select line and a second drain select line, the first drain select line being coupled to the drain select transistor in the first sub-block of the first block and the first drain select line being coupled to the drain select transistor in the first sub-block of the second block, and the second drain select line being coupled to the drain select transistor in the second sub-block of the first block and the second drain select line being coupled to the drain select transistor in the second sub-block of the second block; and
a plurality of transistors comprising select transistors and deselect transistors wherein a first select transistor and a first deselect transistor are coupled to the first drain select line and a second select transistor and a second deselect transistor are coupled to the second drain select line wherein the first select transistor is configured to couple a select bias to the first drain select line at a first time, the second select transistor is configured to couple the select bias to the second drain select line at a second time, different from the first time, the first deselect transistor is configured to couple a deselect bias to the first drain select line at the second time, and the second deselect transistor is configured to couple the deselect bias to the second drain line at the first time.
2. The apparatus of claim 1, further comprising:
two or more source select lines, including a first source select line and a second source select line, the first source select line being coupled to the source select transistors in the first sub-block and the second sub-block of the first block of memory cells and the second source select line being coupled to the source select transistors in the first sub-block and the second sub-block of the second block of memory cells.
3. The apparatus of claim 1, wherein the memory cells of each vertical string are associated with a respective pillar comprising semiconductor material.
4. The apparatus of claim 1, wherein each block of memory cells is associated with at least four access lines, each of the at least four access lines being located in a different tier of a semiconductor construction.
5. The apparatus of claim 4, wherein, for each block
each vertical string in the first sub-block is coupled to a first access line located in a first tier and to a second access line located in a second tier, and
each vertical string in the second sub-block is coupled to the first access line and to the second access line.
6. The apparatus of claim 1, further comprising a common source coupled to each vertical string of each of the plurality of blocks.
7. An apparatus comprising:
a plurality of blocks of memory cells, including a first block of memory cells and a second block of memory cells;
two or more source select lines;
two or more drain select lines;
a block select switch,
each block of the plurality of blocks including two or more sub-blocks, the two or more sub-blocks including a first sub-block and a second sub-block, each sub-block including
a vertical string of memory cells, each vertical string including a respective plurality of memory cells, a respective source select transistor and a respective drain select transistor,
the two or more drain select lines including a first drain select line and a second drain select line, the first drain select line being coupled to the drain select transistor in the first sub-block of each block of memory cells of the plurality of blocks of memory cells and the second drain select line being coupled to the drain select transistor in the second sub-block of each block of memory cells of the plurality of blocks of memory cells; and
a plurality of transistors comprising select transistors and deselect transistors wherein a first select transistor and a first deselect transistor are coupled to the first drain select line and a second select transistor and a second deselect transistor are coupled to the second drain select line wherein the first select transistor is configured to couple a select bias to the first drain select line at a first time, the second select transistor is configured to couple the select bias to the second drain select line at a second time, different from the first time, the first deselect transistor is configured to couple a deselect bias to the first drain select line at the second time, and the second deselect transistor is configured to couple the deselect bias to the second drain line at the first time.
8. The apparatus of claim 7, further comprising:
a first set of access lines coupled to corresponding memory cells in each vertical string of memory cells in the first block; and
a second set of access lines coupled to corresponding memory cells in each vertical string of memory cells in the second block.
9. The apparatus of claim 8, wherein each of the access lines of the first set of access lines is located in a different tier of a semiconductor construction and each of the access lines of the second set of access lines is located in a different tier of the semiconductor construction.
10. The apparatus of claim 8, wherein the memory cells of each vertical string are associated with a respective pillar comprising semiconductor material.
11. The apparatus of claim 7, wherein
the plurality of blocks of memory cells comprises a first group of blocks;
the block select switch is coupled to the first group of blocks; and
the apparatus further comprises a second block select switch coupled to a second group of blocks.
12. The apparatus of claim 7, further comprising:
two or more source select lines, including a first source select line and a second source select line, the first source select line being coupled to the source select transistors in the first block of memory cells and the second source select line being coupled to the source select transistors in the second block of memory cells.
13. The apparatus of claim 7, further comprising a common source coupled to each vertical string of each of the plurality of blocks.
14. An apparatus comprising:
a plurality of tiers of access lines associated with two or more vertical strings of memory cells of a first memory block, a sub-block of the first memory block including a vertical string of memory cells comprising a source select transistor and a drain select transistor;
a drain select line, coupled to the drain select transistor of the sub-block of the first memory block, the drain select line being further coupled to a drain select transistor associated with a sub-block of a second memory block, the first memory block and the second memory block comprising a group of memory blocks; and
a plurality of transistors comprising a sub-block select transistor and a sub-block deselect transistor coupled to the drain select line wherein the sub-block select transistor is configured to couple a select bias to the drain select line at a first time and the sub-block deselect transistor is configured to couple a deselect bias to the drain select line at a second time, different from the first time.
15. The apparatus of claim 14, wherein the sub-block select and deselect transistors are shared by the first and second blocks.
16. The apparatus of claim 14, wherein the group of memory blocks comprises a first group of memory blocks and the drain select line comprises a first drain select line, the apparatus further comprising:
a second group of memory blocks including a third memory block and a fourth memory block, a sub-block of the third memory block including a vertical string of memory cells comprising a source select transistor and a drain select transistor; and
a second drain select line different from the first drain select line, the second drain select line coupled to the drain select transistor of the sub-block of the third memory block and further coupled to a drain select transistor associated with a sub-block of the fourth memory block.
17. The apparatus of claim 14, wherein the apparatus comprises a memory device.
18. The apparatus of claim 17, wherein the apparatus comprises a NOT AND (NAND) memory device.
19. The apparatus of claim 14, wherein each of the plurality of tiers of access lines associated with one vertical string of memory cells is located in a different tier of a semiconductor construction.
20. The apparatus of claim 14, further comprising:
two or more source select lines, including a first source select line and a second source select line, the first source select line being coupled to the source select transistor of the sub-block of the first block of memory cells and the second source select line being coupled to a source select transistor of the sub-block of the second block of memory cells.
21. The apparatus of claim 14, wherein the memory cells of each vertical string are associated with a respective pillar comprising semiconductor material.
22. A method of accessing a memory cell of a first block of memory cells in an apparatus comprising a plurality of blocks of memory cells including the first block and a second block of memory cells, the first block and the second block included in a first group of blocks, the first group of blocks having an associated first block select switch, the apparatus further comprising a first set of global access lines coupled to the first block and a second set of global access lines coupled to the second block, the apparatus further comprising a second group of blocks, the second group of blocks having an associated second block select switch, the method comprising:
providing a first voltage to the first block select switch;
providing a second voltage to the second block select switch;
providing a third voltage to at least one of the first set of global access lines that are coupled to first local access lines;
providing a fourth voltage to the second set of global access lines that are coupled to second local access lines;
energizing, via a source select line, source select transistors of the first block of memory cells; and
energizing, via a drain select line, a drain select transistor of a first sub-block of the first block to which the memory cell belongs, the drain select line further arranged to energize a drain select transistor of a corresponding first sub-block in the second block of memory cells; and
energizing a deselect transistor of a second sub-block of the first block and a corresponding second sub-block of the second block substantially simultaneously with energizing the drain select transistor of the first sub-block.
23. The method of claim 22, wherein providing the third voltage to at least one of the first set of global access lines comprises providing a program voltage to one of the first set of global access lines.
24. The method of claim 23, further comprising providing a pass voltage, as the fourth voltage, to the other global access lines, of the first set of global access lines.
25. The method of claim 24, further comprising providing a fifth voltage to the second set of global access lines that comprises providing about 0 volts to the second set of global access lines.
US13/781,016 2013-02-28 2013-02-28 Sub-block decoding in 3D memory Active US9001584B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/781,016 US9001584B2 (en) 2013-02-28 2013-02-28 Sub-block decoding in 3D memory
TW103105953A TWI496162B (en) 2013-02-28 2014-02-21 Sub-block decoding in 3d memory
KR1020157026355A KR101681859B1 (en) 2013-02-28 2014-02-27 Sub-block decoding in 3d memory
CN201480010165.5A CN105009220B (en) 2013-02-28 2014-02-27 Sub-block decoding in 3D memories
PCT/US2014/019065 WO2014134325A1 (en) 2013-02-28 2014-02-27 Sub-block decoding in 3d memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/781,016 US9001584B2 (en) 2013-02-28 2013-02-28 Sub-block decoding in 3D memory

Publications (2)

Publication Number Publication Date
US20140241060A1 US20140241060A1 (en) 2014-08-28
US9001584B2 true US9001584B2 (en) 2015-04-07

Family

ID=51387978

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/781,016 Active US9001584B2 (en) 2013-02-28 2013-02-28 Sub-block decoding in 3D memory

Country Status (5)

Country Link
US (1) US9001584B2 (en)
KR (1) KR101681859B1 (en)
CN (1) CN105009220B (en)
TW (1) TWI496162B (en)
WO (1) WO2014134325A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9424936B1 (en) * 2015-03-23 2016-08-23 Intel Corporation Current leakage reduction in 3D NAND memory
US10381080B2 (en) * 2014-10-20 2019-08-13 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US10854301B2 (en) 2014-10-20 2020-12-01 Micron Technology, Inc. Apparatuses and methods for reducing read disturb
US11437318B2 (en) 2020-06-12 2022-09-06 Micron Technology, Inc. Microelectronic devices including staircase structures, and related memory devices and electronic systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698153B2 (en) * 2013-03-12 2017-07-04 Sandisk Technologies Llc Vertical NAND and method of making thereof using sequential stack etching and self-aligned landing pad
US10310734B2 (en) 2014-12-27 2019-06-04 Intel Corporation Tier mode for access operations to 3D memory
US9721668B2 (en) * 2015-08-06 2017-08-01 Macronix International Co., Ltd. 3D non-volatile memory array with sub-block erase architecture
US9837160B1 (en) * 2016-05-10 2017-12-05 SK Hynix Inc. Nonvolatile memory device including sub common sources
US10453533B2 (en) * 2017-11-17 2019-10-22 Micron Technology, Inc. Memory devices with distributed block select for a vertical string driver tile architecture
US10795746B2 (en) * 2018-12-13 2020-10-06 Micron Technology, Inc. Automated power down based on state of firmware
KR102646663B1 (en) * 2019-10-14 2024-03-13 양쯔 메모리 테크놀로지스 씨오., 엘티디. Cell current measurements for three-dimensional memory

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963475A (en) * 1996-12-14 1999-10-05 Samsung Electronics Co., Ltd. Advanced nonvolatile memories adaptable to dynamic random access memories and methods of operating therein
US20070070708A1 (en) 2003-02-05 2007-03-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory, fabrication method for the same, semiconductor integrated circuits and systems
US20070158736A1 (en) 2005-12-28 2007-07-12 Kabushiki Kaisha Toshiba Semiconductor memory device and method of fabricating the same
US20090251962A1 (en) * 2008-04-07 2009-10-08 Jong-In Yun Three-Dimensional Memory Device and Driving Method Thereof
US7633829B2 (en) 2004-12-30 2009-12-15 Sandisk 3D Llc Hierarchical decoding of dense memory arrays using multiple levels of multiple-headed decoders
US20100072538A1 (en) 2008-09-25 2010-03-25 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US20100090286A1 (en) 2008-10-09 2010-04-15 Seung-Jun Lee Vertical-type semiconductor device and method of manufacturing the same
WO2010047912A1 (en) 2008-10-26 2010-04-29 Sandisk 3D Llc Method for selectively retrieving column redundancy data in memory device
US20100322000A1 (en) 2009-06-19 2010-12-23 Samsung Electronics Co., Ltd. Programming methods for three-dimensional memory devices having multi-bit programming, and three-dimensional memory devices programmed thereby
US20110085377A1 (en) 2007-10-03 2011-04-14 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device, and method for controlling nonvolatile semiconductor storage device
US20110216603A1 (en) * 2010-03-04 2011-09-08 Samsung Electronics Co., Ltd. Non-Volatile Memory Device, Erasing Method Thereof, And Memory System Including The Same
US20110286269A1 (en) * 2005-04-11 2011-11-24 Luigi Pascucci Non-Volatile Electronic Memory Device With NAND Structure Being Monolithically Integrated On Semiconductor
US20110287597A1 (en) 2006-03-27 2011-11-24 Kabushiki Kaisha Toshiba Nonvolatile semicondutor memory device and manufacturing method thereof
US20110286283A1 (en) 2010-05-21 2011-11-24 Macronix International Co., Ltd. 3d two-bit-per-cell nand flash memory
US20120039130A1 (en) * 2010-08-11 2012-02-16 Samsung Electronics Co., Ltd. Nonvolatile Memory Devices, Channel Boosting Methods Thereof, Programming Methods Thereof, And Memory Systems Including The Same
US20120147644A1 (en) 2010-12-14 2012-06-14 Scheuerlein Roy E Continuous mesh three dimensional non-volatile storage with vertical select devices
US20120201080A1 (en) * 2011-02-09 2012-08-09 Samsung Electronics Co., Ltd. Nonvolatile Memory Devices And Driving Methods Thereof
US8274108B2 (en) 2009-02-16 2012-09-25 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
US20130051161A1 (en) * 2011-08-22 2013-02-28 Toru Tanzawa Apparatuses and methods including memory write operation
US20130258781A1 (en) * 2012-04-03 2013-10-03 Micron Technology, Inc. Memory devices and biasing methods for memory devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027194B2 (en) 1988-06-13 2011-09-27 Samsung Electronics Co., Ltd. Memory system and method of accessing a semiconductor memory device
JP4762986B2 (en) * 2005-06-30 2011-08-31 スパンション エルエルシー Nonvolatile memory device and control method of nonvolatile memory device
KR100851546B1 (en) * 2006-09-22 2008-08-11 삼성전자주식회사 Non-volatile memory device and method of operating the same
JP2009266946A (en) 2008-04-23 2009-11-12 Toshiba Corp Three-dimensional stacked nonvolatile semiconductor memory
US8542534B2 (en) 2010-04-08 2013-09-24 Micron Technology, Inc. Select gate programming in a memory device
KR20120078959A (en) 2011-01-03 2012-07-11 삼성전자주식회사 Nonvolatile memory device, erasing method thereof and memory system including the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963475A (en) * 1996-12-14 1999-10-05 Samsung Electronics Co., Ltd. Advanced nonvolatile memories adaptable to dynamic random access memories and methods of operating therein
US20070070708A1 (en) 2003-02-05 2007-03-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory, fabrication method for the same, semiconductor integrated circuits and systems
US7633829B2 (en) 2004-12-30 2009-12-15 Sandisk 3D Llc Hierarchical decoding of dense memory arrays using multiple levels of multiple-headed decoders
US20110286269A1 (en) * 2005-04-11 2011-11-24 Luigi Pascucci Non-Volatile Electronic Memory Device With NAND Structure Being Monolithically Integrated On Semiconductor
US20070158736A1 (en) 2005-12-28 2007-07-12 Kabushiki Kaisha Toshiba Semiconductor memory device and method of fabricating the same
US20110287597A1 (en) 2006-03-27 2011-11-24 Kabushiki Kaisha Toshiba Nonvolatile semicondutor memory device and manufacturing method thereof
US20110085377A1 (en) 2007-10-03 2011-04-14 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device, and method for controlling nonvolatile semiconductor storage device
US20090251962A1 (en) * 2008-04-07 2009-10-08 Jong-In Yun Three-Dimensional Memory Device and Driving Method Thereof
US20100072538A1 (en) 2008-09-25 2010-03-25 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US20100090286A1 (en) 2008-10-09 2010-04-15 Seung-Jun Lee Vertical-type semiconductor device and method of manufacturing the same
WO2010047912A1 (en) 2008-10-26 2010-04-29 Sandisk 3D Llc Method for selectively retrieving column redundancy data in memory device
US8274108B2 (en) 2009-02-16 2012-09-25 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing the same
US20100322000A1 (en) 2009-06-19 2010-12-23 Samsung Electronics Co., Ltd. Programming methods for three-dimensional memory devices having multi-bit programming, and three-dimensional memory devices programmed thereby
US20110216603A1 (en) * 2010-03-04 2011-09-08 Samsung Electronics Co., Ltd. Non-Volatile Memory Device, Erasing Method Thereof, And Memory System Including The Same
US20110286283A1 (en) 2010-05-21 2011-11-24 Macronix International Co., Ltd. 3d two-bit-per-cell nand flash memory
US20120039130A1 (en) * 2010-08-11 2012-02-16 Samsung Electronics Co., Ltd. Nonvolatile Memory Devices, Channel Boosting Methods Thereof, Programming Methods Thereof, And Memory Systems Including The Same
US20120147644A1 (en) 2010-12-14 2012-06-14 Scheuerlein Roy E Continuous mesh three dimensional non-volatile storage with vertical select devices
US20120201080A1 (en) * 2011-02-09 2012-08-09 Samsung Electronics Co., Ltd. Nonvolatile Memory Devices And Driving Methods Thereof
US20130051161A1 (en) * 2011-08-22 2013-02-28 Toru Tanzawa Apparatuses and methods including memory write operation
US20130258781A1 (en) * 2012-04-03 2013-10-03 Micron Technology, Inc. Memory devices and biasing methods for memory devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"International Application No. PCT/US2014/019065, International Search Report mailed Jun. 18, 2014", 3 pgs.
"International Application No. PCT/US2014/019065, Written Opinion mailed Jun. 18, 2014", 5 pgs.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381080B2 (en) * 2014-10-20 2019-08-13 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US10803945B2 (en) 2014-10-20 2020-10-13 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US10854301B2 (en) 2014-10-20 2020-12-01 Micron Technology, Inc. Apparatuses and methods for reducing read disturb
US11145370B2 (en) 2014-10-20 2021-10-12 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US9424936B1 (en) * 2015-03-23 2016-08-23 Intel Corporation Current leakage reduction in 3D NAND memory
KR101761652B1 (en) 2015-03-23 2017-07-28 인텔 코포레이션 Current leakage reduction in 3d nand memory
US11437318B2 (en) 2020-06-12 2022-09-06 Micron Technology, Inc. Microelectronic devices including staircase structures, and related memory devices and electronic systems

Also Published As

Publication number Publication date
KR20150125689A (en) 2015-11-09
CN105009220A (en) 2015-10-28
US20140241060A1 (en) 2014-08-28
TWI496162B (en) 2015-08-11
CN105009220B (en) 2017-10-20
WO2014134325A1 (en) 2014-09-04
KR101681859B1 (en) 2016-12-01
TW201447916A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
US9001584B2 (en) Sub-block decoding in 3D memory
US10354730B2 (en) Multi-deck memory device with access line and data line segregation between decks and method of operation thereof
US10643714B2 (en) Shielded vertically stacked data line architecture for memory
JP7112411B2 (en) Multi-gate induced drain leakage current generator
US9263111B2 (en) Sub-block disabling in 3D memory
US11075163B2 (en) Vertical NAND string multiple data line memory
US10998049B1 (en) Method of programming memory device and related memory device
US20140198576A1 (en) Programming technique for reducing program disturb in stacked memory structures
US9837160B1 (en) Nonvolatile memory device including sub common sources
US10042755B2 (en) 3D vertical NAND memory device including multiple select lines and control lines having different vertical spacing
KR20120091687A (en) Nonvolatile memory device
US11205485B2 (en) Three-dimensional NAND flash memory device having improved data reliability by varying program intervals, and method of operating the same
KR20120023194A (en) Nonvolatile memory device and memory system thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HA, CHANG WAN;REEL/FRAME:030932/0308

Effective date: 20130222

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date: 20160426

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date: 20160426

AS Assignment

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date: 20160426

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL

Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001

Effective date: 20180703

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date: 20180629

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date: 20190731

AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

Owner name: MICRON SEMICONDUCTOR PRODUCTS, INC., IDAHO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:051028/0001

Effective date: 20190731

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8