US8646380B2 - Multi-path valve arrangement in a beverage making unit - Google Patents

Multi-path valve arrangement in a beverage making unit Download PDF

Info

Publication number
US8646380B2
US8646380B2 US12/653,353 US65335309A US8646380B2 US 8646380 B2 US8646380 B2 US 8646380B2 US 65335309 A US65335309 A US 65335309A US 8646380 B2 US8646380 B2 US 8646380B2
Authority
US
United States
Prior art keywords
valve
milk
path
outlet
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/653,353
Other versions
US20100147158A1 (en
Inventor
Thomas Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eugster Frismag AG
Original Assignee
Eugster Frismag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eugster Frismag AG filed Critical Eugster Frismag AG
Assigned to EUGSTER/FRISMAG AG reassignment EUGSTER/FRISMAG AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUELLER, THOMAS
Publication of US20100147158A1 publication Critical patent/US20100147158A1/en
Application granted granted Critical
Publication of US8646380B2 publication Critical patent/US8646380B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4485Nozzles dispensing heated and foamed milk, i.e. milk is sucked from a milk container, heated and foamed inside the device, and subsequently dispensed from the nozzle
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/46Dispensing spouts, pumps, drain valves or like liquid transporting devices
    • A47J31/461Valves, e.g. drain valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86389Programmer or timer

Definitions

  • the present invention relates to a multi-path valve arrangement in a beverage making unit, particularly an espresso machine by which optionally various beverages can be prepared.
  • Prior art multi-path valve arrangements in a beverage making unit which make possible in espresso machines an optionally alternate preparation of hot milk or milk froth and cold rinsing and aeration of the milk-conducting pipes may be realized by means of solenoid valves which are either controlled by manually actuated contacts or a set, program-controlled, into either a through-connecting position or a blocking position.
  • solenoid valves which are either controlled by manually actuated contacts or a set, program-controlled, into either a through-connecting position or a blocking position.
  • Such multi-part multi-path valve arrangements require a plurality of connections and connectors to the functional units controlled by them. Due to the system, the solenoid valves comprise movable mechanical elements disposed in the milk flow and hence are difficult to rinse.
  • the present invention relates to a multi-path valve arrangement in a beverage making unit, particularly an espresso machine by which optionally various beverages can be prepared and which includes at least one cold milk inlet, a cold water inlet, a valve outlet and at least one valve body via which the cold milk inlet or the cold water inlet may be connected with the valve outlet; and it is characterized in that the multi-path valve arrangement comprises a multi-path valve having a housing which includes the cold milk inlet, the cold water inlet, the valve outlet and an air opening and in which a valve body is suited to connect the cold milk inlet having an adjustable throttling with the valve outlet, that the valve body is adjustable by a step motor, and that the step motor is provided with a programmable control of the valve body position.
  • the compact multi-path valve of the present multi-path valve arrangement not only flow paths, particularly those of the cold milk for making hot milk or milk froth are switched over, the milk passage for both methods of preparation is rather dosed optimally in that the cold milk passage for hot milk preparation is throttled in relation to the hot milk passage for milk froth preparation so that for both preparation cases an identically small steam supply power for heating the milk is sufficient.
  • the multi-path valve has thus an additional function of throttling in addition to the basic function of selecting one of a plurality of passage paths or flow paths.
  • Throttling is effected by adjusting the valve body relative to the housing of the multi-path valve having openings which co-operate with flow paths of the valve body by means of a step motor which adjusts the valve body position according to a programmable control.
  • the different throttling, or non-throttled passage of the cold milk through the multi-path valve corresponds to the effective flow cross section at the junction between the cold milk inlet or the valve outlet, respectively, of the valve housing, on one hand, and to the flow path opening of the valve body each co-operating with the housing opening in the housing, on the other, which in each case is adjusted with respect to the housing opening.
  • the effective flow cross section therefore, depends on a shift of the housing opening at the milk inlet opposite the opening of the flow path of the valve body adjusted to the housing opening.
  • the milk passage cross section which controls the milk passage amount sucked in by a steam flow through the flow path of the multi-path valve.
  • the sucking-in steam flow is generated, in particular, in a frothing head of the espresso machine.
  • the fine adjustment referred to above can be made by the manufacturer, particularly to balance out manufacturing tolerances. Such fine adjustment may, however, also be made later on, if desired, by the user of the beverage making unit, particularly the espresso machine, or by means of a temperature sensor detecting the milk temperature, together with a temperature control, in order to obtain, independently from the milk temperature, hot milk or milk froth heated to a desired temperature.
  • the multi-path valve arrangement according to the invention permits, by means of the multi-path valve, to set adjustments of cold water rinsing of the milk-conducting pipes, or flow paths, or aeration, respectively, i.e. an emptying of these paths, particularly from the cold water used for rinsing, without providing particular solenoid valves for this purpose in the milk conducting pipes.
  • the respective function is in this respect selected by means of a selection group and a program storage and control unit which are part of the programmable control.
  • the essential alternative basic functions of the multi-path arrangement are that in a first valve body position controlled by the programmable control, the cold milk inlet is connected non-throttled or minimally throttled, respectively, with the valve outlet, and in a second valve body position controlled by the programmable control, is connected, throttled, with the valve outlet, that in a third valve body position controlled by the programmable control, the cold water inlet is connected, non-throttled, with the valve outlet, and that in a fourth valve body position controlled by the programmable control, the air opening is connected with the valve outlet.
  • the cold milk inlet at the housing of the multi-path valve in a first valve body position controlled by the programmable control, is connected, non-throttled or minimally throttled, respectively, with the valve outlet or, in a second valve body position controlled by the programmable control, is connected, throttled, with the valve outlet.
  • the valve body is shaped as a tap having a plurality of valve paths
  • the valve body may be shaped as a tap having a plurality of valve paths, which in order to adjust for a desired through-connection path can be rotated, if required with throttling, within the housing, the housing comprising an outer cylinder around the cylindrical tap, or an inner cylinder as valve body, respectively.
  • the flow paths extend in particular in a plane of cross section radially within the inner cylinder.
  • the openings of the cold water inlet, of the cold milk inlet and the air opening are arranged in circumferential direction of the outer cylinder or housing. Throttling is obtained in this case by a small angular adjustment of the rotational position of the inner cylinder or tap relative to a full go-through position.
  • valve body of the multi-path valve may be made as a slider or piston movable in the housing, or an outer cylinder, respectively. At least one section of the flow path of the piston or slider may extend vertically to a plane of cross section of the piston to selectively connect a valve outlet with a cold milk inlet, a cold water inlet or an air opening. Throttling is obtained in this case by fine displacement of the piston or slider.
  • the multi-path valve is arranged in the beverage making unit, particularly an espresso machine, so that a frothing head is in flow connection with the valve outlet of the multi-path valve and an air solenoid valve. If and when the air solenoid valve passes air, milk froth is generated in the frothing head; in the other case, if the air solenoid valve does not pass air, hot milk is produced. In each case, cold milk is sucked in by the frothing head through the multi-path valve. Moreover, if the multi-path valve is correspondingly adjusted, the milk pipe may be rinsed by sucked-in cold water to remove the cold water from the milk pipe prior to the next milk passing process, and be aerated.
  • the foregoing arrangement may suitably be specified so that the frothing head is connected, via a milk pipe into which opens the air solenoid valve, to the valve outlet of the multi-path valve.
  • the same functions are performed like in the structure of the present invention that a frothing head is in flow connection with the valve outlet of the multi-path valve and an air solenoid valve.
  • FIG. 1 a shows a first embodiment of the multi-path valve connected via a milk pipe with a frothing head in a first valve body position wherein the multi-path valve and part of the milk pipe are depicted in longitudinal cross section,
  • FIG. 1 b shows the first embodiment as in FIG. 1 a but in a second valve body position
  • FIG. 1 c shows the first embodiment of the multi-path valve as in FIGS. 1 a and 1 b but in a third valve body position
  • FIG. 1 d shows the first embodiment of the multi-path valve as in FIGS. 1 a through 1 c but in a fourth valve body position
  • FIG. 2 shows a fluid diagram of an espresso machine based on the first embodiment of the multi-path valve
  • FIG. 3 a shows a second embodiment of the multi-path valve connected via a milk pipe with a frothing head in a first valve body position wherein the multi-path valve and part of the milk pipe are depicted in longitudinal cross section,
  • FIG. 3 b shows the second embodiment of the multi-path valve as in FIG. 3 a but in a second valve body position
  • FIG. 3 c shows the second embodiment of the multi-path valve as in FIGS. 3 a and 3 b but in a third valve body position
  • FIG. 3 d shows the second embodiment of the multi-path valve as in FIGS. 3 a through 3 c but in a fourth valve body position
  • FIG. 4 shows a fluid diagram of an espresso machine based on the second embodiment of the multi-path valve
  • a multi-path valve in a first embodiment is designated by 1 which has, as a housing, a substantially closed outer cylinder 2 and, as a slider, a piston 3 .
  • the piston can linearly be moved via a step motor 4 .
  • the housing or outer cylinder 2 includes a valve inlet 5 , which is a milk inlet, as well as a valve outlet 6 . Further above, milk inlet 5 has more exactly been referred to as cold milk inlet.
  • a cold water inlet and an air opening 9 are disposed above the valve inlet 5 , on the outer cylinder 2 .
  • a milk pipe 10 connects the valve outlet 6 with a frothing head 22 .
  • Into the milk pipe 10 there opens an air duct 15 in which a solenoid valve 14 is arranged.
  • FIG. 2 essential components of an espresso machine as a beverage making unit are diagrammatically shown in which the multi-path valve is disposed as in accordance with FIG. 1 a.
  • a water container 16 opens, via a cold water pipe 17 , a pump 18 , a continuous-flow heater 19 , a solenoid valve 20 and a steam pipe 21 , into a frothing head 22 .
  • a receiving vessel below an outlet 37 of the frothing head 22 , may be provided.
  • FIG. 2 refers to the preparation of hot milk or milk froth.
  • the brewing head 32 is connected with the hot water container 16 via a cold water pipe 25 , a flow meter 26 , a pump 27 , a continuous flow heater 28 , a two-way solenoid valve 29 and a hot water pipe 31 in which a stop valve 30 is disposed.
  • a hot water pipe 33 is branched off which leads to a hot water outlet 34 .
  • a rinsing water pipe 24 leads via a solenoid valve 23 to the cold water inlet 7 of the multi-path valve 1 .
  • the milk inlet 5 of the multi-path valve 1 is, moreover, connected via a milk supply pipe 12 with a milk container 13 .
  • a programmable control comprising a selection group 38 and a program storage and control unit 39 is diagrammatically indicated.
  • Non-designated outlets of the program storage and control unit 39 lead to the elements of the espresso machine which correspond to the position reference numerals provided on the respective outlets.
  • the abbreviation “SP” means “Rinsing”
  • the abbreviation “BEL” means “Aeration”.
  • the selection group which activates a program portion corresponding to the beverage selected in the program and control unit 39 for the control of step motor 4 , the abbreviations have the following meanings:
  • the milk froth may be added to the brewed coffee which leaves the brewing head outlet 35 or 36 , respectively, to prepare cappuccino or latte macchiato.
  • cold water from the water container 16 is pumped via the cold water pipe 17 by means of the pump 18 through the continuous flow heater 19 , in which the cold water is heated to become steam.
  • the steam flows via the through-connected solenoid valve 20 and the steam pipe 21 into the frothing head 22 .
  • a Venturi tube disposed in the frothing head 22 an under pressure is generated by the passing steam, which as can be taken in detail from FIG.
  • the milk flowing through the milk pipe 10 , downstream of the multi-path valve 1 sucks in, via the air pipe 15 and the through-connected solenoid valve 14 , air which serves for frothing up the milk in the frothing head 22 .
  • the milk froth produced therein exits through the outlet 37 of the frothing head 22 , for instance into a receiving vessel.
  • the effective flow or passage cross section of the valve inlet 5 and of the valve outlet 6 of the multi-path valve 1 is reduced in that by means of the step motor 4 , the piston or slider 3 of the multi-path valve 1 is shifted so that, compare FIG. 1 b , the valve path 11 of the piston is only partially aligned with the inlet 5 and the outlet 6 of the outer cylinder or housing 2 .
  • the step motor driving the piston or slider 3 has been selected to correspond to the particular use for throttling the passage through the multi-path valve 1 .
  • the step motor 1 proceeds in small steps to perform a fine adjustment of the milk passage cross section which controls the passage of the milk, or amount of milk, respectively, sucked in by the frothing head 22 .
  • fine adjustment may either be performed by the manufacturer in order to balance out manufacturing tolerances or may, subjectively, be selected by the user or, automatically, by means of a temperature sensor and temperature control which adjusts the milk temperature to a predetermined temperature.
  • cold water from water container 16 is pumped via the cold water pipe 17 through the pump 18 through the continuous flow heater 19 in which the cold water is heated to become steam which is pumped through the through-connected solenoid valve 20 and the steam pipe 21 into the frothing head 22 .
  • the Venturi tube disposed in the frothing head 22 an under pressure is generated by the passing steam which sucks milk from the milk container 13 , via the milk supply pipe 12 , the valve inlet or milk inlet 5 of the outer cylinder or housing 2 , the valve path 11 of the piston or slider 3 , as can be taken from FIG.
  • Cold rinsing of the milk pipe 10 , of the frothing head 22 and of the valve path 11 of the piston or slider 3 is automatically controlled by he control unit and program storage 39 when the predetermined conditions, for instance a number of hot milk or milk froth preparation processes have been fulfilled.
  • the rinsing process has been provided for hygienic reasons and is performed by means of cold water since a rinsing process with hot water or hot steam could lead to clogging or burning of milk residues.
  • the piston or slider 3 is positioned, as can be taken from FIG. 1 c , so that the valve path 11 connects the valve inlet or cold water inlet 7 with the valve outlet 6 , with maximum passage without throttling.
  • cold water is pumped from the cold water container 16 via the cold water pipe 25 by means of pump 27 , via the rinsing water pipe 24 , the through-connected solenoid valve 23 and the cold water valve inlet 7 of the multi-path valve 1 , via the valve path 11 of the piston or slider 3 and the outlet 6 of the multi-path valve 1 through the milk-loaded milk pipe 10 and the frothing head 22 .
  • Aeration of the milk pipe 10 and of the flow path 11 of the multi-path valve 1 is necessary to allow them to become empty before renewed hot milk or milk froth preparation process can start.
  • the piston or slider 3 is adjusted by means of the step motor 4 to the position according to FIG. 1 d , i.e. lowered that far so that the air opening in the outer cylinder or housing 2 is connected via the valve path 11 with the outlet 6 of the multi-path valve.
  • that section of the valve path, perpendicular in the drawing is partly used which in case of cold water rinsing according to FIG. 1 c is completely flown through and in case of the hot milk preparation according to FIG. 1 b is flown through for a small part, not however in case of milk froth preparation according to FIG. 1 a.
  • espresso machine By means of the espresso machine shown in FIG. 2 , it is possible to make espresso as usual.
  • cold water is pumped from the cold water container 16 via the cold water pipe 25 , further by the pump 27 , via the cold water pipe 25 a through the continuous flow heater 28 in which the cold water is heated to become hot water.
  • the hot water flows via the valve position indicated in FIG. 2 of the two-way solenoid valve further via the stop valve 30 into the brewing head 32 .
  • the stop valve prevents in particular phases of the coffee stock preparation a return flow sucking from the brewing head.
  • the brewed coffee exits via the brewing head outlets 36 and 37 into a receiving vessel.
  • the amount of water required for coffee preparation is limited by means of the above-referenced flow meter 26 .
  • the cold water flows, as in the case of espresso preparation, if necessary in a differently dimensioned amount determined by the flow meter 26 , for heating through the continuous flow heater 28 and subsequently via the two-way solenoid valve 29 switched to the hot water pipe 33 , the switch-over position being indicated by a broken line in FIG. 2 .
  • the hot water arrives via the hot water pipe 33 into the hot water outlet 34 from which it can be recovered for the preparation of a different beverage.
  • the second embodiment of the espresso machine as a beverage making unit according to FIG. 4 differs from the one according to FIG. 2 essentially by a different embodiment of the multi-path valve which in this case is designed with a valve body as a tap having a plurality of valve paths depicted in detail in FIGS. 3 a through 3 d .
  • the step motor 49 and the program storage and control unit 39 ′ are adapted to the embodiment of the multi-path valve having a rotating tap which is hence arranged rotating by the step motor 49 as an inner cylinder in a housing formed as an outer cylinder.
  • the housing 41 shaped as an outer cylinder shows a valve inlet 42 as milk inlet or cold milk inlet, a valve inlet 44 as cold water inlet, a valve outlet 43 and an air opening 45 which as shown in FIGS. 3 a through 3 d , are staggered relative to each other in peripheral direction of the outer cylinder or housing 41 .
  • valve paths 47 a , 47 b and 48 have been formed out staggered in the inner cylinder or tap 46 of the multi-path valve 40 in peripheral direction of the inner cylinder 46 , as can in detail be taken from FIGS. 3 a through 3 d.
  • the inner cylinder or tap 46 is rotated according to FIG. 3 a by means of the step motor 49 so that the valve path 47 a is in alignment with the valve inlet or milk inlet 42 and the valve path 47 b following valve path 47 a is in alignment with valve outlet 43 .
  • cold water is pumped from the cold water container 16 via the cold water pipe 17 by means of pump 18 through the continuous flow heater 19 in which the cold water is heated to become steam.
  • the steam emerging from the continuous flow heater is further supplied, via the through-connected solenoid valve 20 and the steam pipe 21 to the frothing head 22 .
  • the Venturi tube not shown in FIG.
  • the frothing head 22 arranged in the frothing head 22 , generates, by the passing steam an under pressure which, via the milk supply pipe 12 , the valve inlet as milk inlet 42 of the multi-path valve 42 , the valve flow paths 47 a and 47 b of the inner cylinder or tap 46 , the valve outlet 43 of the multi-path valve 40 and the milk pipe 10 , sucks milk from the milk container 13 up to the frothing head 22 .
  • the milk flowing through the milk pipe 10 sucks in, via the air pipe 15 and the through-connected solenoid valve 14 , air which serves for frothing up in the frothing head 22 .
  • the milk froth produced exits through the outlet 37 of the frothing head into a receiving vessel.
  • the espresso machine according to FIGS. 3 a and 4 performs the same functions as in connection with the preparation of milk froth, save for the exceptions discussed in the following:
  • the passage cross section or flow cross section of the valve inlet as milk inlet 42 and of the valve outlet 43 in the multi-path valve 40 is reduced as compared to the situation in case of milk froth production in order to reduce the milk flow sucked in, in that the inner cylinder or tap 46 of the multi-path valve is rotated by means of the step motor 49 so that the valve paths 47 a , 47 b of the inner cylinder or tap 46 are not completely in alignment with the valve inlet as milk inlet 42 and the outlet 43 , respectively, of the multi-path valve 40 .
  • the step motor 49 driving the inner cylinder or tap 46 which is suited to perform small steps adapted to the use in question, can moreover perform a fine adjustment of the flow cross section or passage cross section for the milk flow sucked in by the frothing head 22 .
  • the fine adjustment may be performed, as mentioned, by the manufacturer in order to balance out manufacturing tolerances, or may from case to case be selected by the user of the espresso machine, or a predetermined temperature of the milk may automatically be regulated by means of a temperature sensor and a temperature control.
  • the inner cylinder or tap 46 is rotated by the step motor 49 so that the valve path 47 a is in alignment with the valve inlet as cold water inlet 44 of the multi-path valve 10 and the valve path 48 is in alignment with the outlet 43 of the multi-path valve 40 .
  • cold water may, subsequently, be pumped via the cold water pipe 25 by means of the pump 27 via the rinsing water pipe 24 , the through-connected solenoid valve 23 and the valve inlet as cold water inlet 44 of the multi-path valve 40 through the valve paths 47 a and 48 of the inner cylinder or tap 46 and the valve outlet 43 of the multi-path valve 40 through the milk-loaded milk pipe 10 and the frothing head 22 .
  • the inner cylinder or tap 46 of the multi-path valve 40 is rotated, according to FIG. 3 d , by means of step motor 49 —compare also FIGS. 3 a and 4 —so that the air opening 45 of the outer cylinder or housing 41 is in alignment with the valve path 47 b and the valve outlet 43 of the multi-path valve 40 is in alignment with the valve path 47 a immediately following the valve path 47 b .
  • step motor 49 compare also FIGS. 3 a and 4 —so that the air opening 45 of the outer cylinder or housing 41 is in alignment with the valve path 47 b and the valve outlet 43 of the multi-path valve 40 is in alignment with the valve path 47 a immediately following the valve path 47 b .
  • An espresso preparation and an alternative hot water preparation may be effected by means of the second embodiment of the espresso machine according to FIG. 4 as described in connection with the first embodiment based on FIG. 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Apparatus For Making Beverages (AREA)

Abstract

A multi-path valve arrangement in a beverage making unit by which, optionally, various beverages can be prepared. The multi-path valve arrangement includes a multi-path valve with a housing provided with a cold milk inlet, a cold water inlet, a valve outlet and an air opening. A valve body in the housing is suited to connect the cold milk inlet having an adjustable throttling with the valve outlet. The valve body is set by a step motor which is connected with a programmable control of the valve body position.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a multi-path valve arrangement in a beverage making unit, particularly an espresso machine by which optionally various beverages can be prepared.
2. Description of the Related Art
Prior art multi-path valve arrangements in a beverage making unit which make possible in espresso machines an optionally alternate preparation of hot milk or milk froth and cold rinsing and aeration of the milk-conducting pipes may be realized by means of solenoid valves which are either controlled by manually actuated contacts or a set, program-controlled, into either a through-connecting position or a blocking position. Such multi-part multi-path valve arrangements require a plurality of connections and connectors to the functional units controlled by them. Due to the system, the solenoid valves comprise movable mechanical elements disposed in the milk flow and hence are difficult to rinse. In view of their type of construction and the cross sections of the pipes preset by the design which can be switched to either completely through-connecting or blocked only, these solenoid magnets conduct, with identical suction power sucking the milk, always the same milk flow, unless blocked, independently from whether the milk flow is required for hot milk preparation or for milk froth preparation. Since for the preparation of hot milk a larger amount of steam, or energy, for heating the milk is required than for milk froth preparation, it is necessary that in beverage making units, particularly espresso machines, in which such a multi-path valve arrangement comprising multi-path valves has been provided, a larger amount of steam, or energy, respectively, has to be provided for heating the milk than for preparing the milk froth, which causes increased production costs. Moreover, since always the same amount of milk is heated by the steam flow which is supplied for heating during a given time but which may have different temperatures, the milk temperature will not always obtain the desired value but will be either too high or too low.
Further prior art multi-path valve arrangements each including a mechanical hand-actuated multi-path valve, as compared thereto, may be realized in a more compact structure with less terminals; as a rule, however, they permit restricted functions only, without cold rinsing and aeration of milk-conducting pipes so that undesired milk residues may remain in them.
BRIEF SUMMARY OF THE INVENTION
It is therefore an object of the invention to selectively supply, in a beverage making machine, particularly an espresso machine, by means of a compact multi-path valve arrangement, milk in optimally dosed amount, or corresponding mass flow, respectively, for hot milk preparation or milk froth preparation, and to also perform, alternatively, by means of this multi-path valve arrangement automated, efficient cleaning of the milk-conducting pipes or flow paths.
The present invention, relates to a multi-path valve arrangement in a beverage making unit, particularly an espresso machine by which optionally various beverages can be prepared and which includes at least one cold milk inlet, a cold water inlet, a valve outlet and at least one valve body via which the cold milk inlet or the cold water inlet may be connected with the valve outlet; and it is characterized in that the multi-path valve arrangement comprises a multi-path valve having a housing which includes the cold milk inlet, the cold water inlet, the valve outlet and an air opening and in which a valve body is suited to connect the cold milk inlet having an adjustable throttling with the valve outlet, that the valve body is adjustable by a step motor, and that the step motor is provided with a programmable control of the valve body position.
By the compact multi-path valve of the present multi-path valve arrangement not only flow paths, particularly those of the cold milk for making hot milk or milk froth are switched over, the milk passage for both methods of preparation is rather dosed optimally in that the cold milk passage for hot milk preparation is throttled in relation to the hot milk passage for milk froth preparation so that for both preparation cases an identically small steam supply power for heating the milk is sufficient. The multi-path valve has thus an additional function of throttling in addition to the basic function of selecting one of a plurality of passage paths or flow paths.
Throttling is effected by adjusting the valve body relative to the housing of the multi-path valve having openings which co-operate with flow paths of the valve body by means of a step motor which adjusts the valve body position according to a programmable control.
The different throttling, or non-throttled passage of the cold milk through the multi-path valve corresponds to the effective flow cross section at the junction between the cold milk inlet or the valve outlet, respectively, of the valve housing, on one hand, and to the flow path opening of the valve body each co-operating with the housing opening in the housing, on the other, which in each case is adjusted with respect to the housing opening. The effective flow cross section, therefore, depends on a shift of the housing opening at the milk inlet opposite the opening of the flow path of the valve body adjusted to the housing opening.
In this way, it is also possible to perform a fine adjustment of the milk passage cross section which controls the milk passage amount sucked in by a steam flow through the flow path of the multi-path valve. The sucking-in steam flow is generated, in particular, in a frothing head of the espresso machine. The fine adjustment referred to above can be made by the manufacturer, particularly to balance out manufacturing tolerances. Such fine adjustment may, however, also be made later on, if desired, by the user of the beverage making unit, particularly the espresso machine, or by means of a temperature sensor detecting the milk temperature, together with a temperature control, in order to obtain, independently from the milk temperature, hot milk or milk froth heated to a desired temperature.
The multi-path valve arrangement according to the invention, moreover, permits, by means of the multi-path valve, to set adjustments of cold water rinsing of the milk-conducting pipes, or flow paths, or aeration, respectively, i.e. an emptying of these paths, particularly from the cold water used for rinsing, without providing particular solenoid valves for this purpose in the milk conducting pipes.
By driving the valve body of the multi-path valve by means of the step motor controlled by the programmable control, through-connecting positions of the multi-path valve, throttled if required, are automatically adjusted for the various functional operations. i.e. milk froth preparation or hot milk preparation, cold water rinsing of the milk paths and aeration of the milk paths in the correct sequence.
The respective function is in this respect selected by means of a selection group and a program storage and control unit which are part of the programmable control.
The essential alternative basic functions of the multi-path arrangement are that in a first valve body position controlled by the programmable control, the cold milk inlet is connected non-throttled or minimally throttled, respectively, with the valve outlet, and in a second valve body position controlled by the programmable control, is connected, throttled, with the valve outlet, that in a third valve body position controlled by the programmable control, the cold water inlet is connected, non-throttled, with the valve outlet, and that in a fourth valve body position controlled by the programmable control, the air opening is connected with the valve outlet. According to this structure, the cold milk inlet at the housing of the multi-path valve, in a first valve body position controlled by the programmable control, is connected, non-throttled or minimally throttled, respectively, with the valve outlet or, in a second valve body position controlled by the programmable control, is connected, throttled, with the valve outlet. The advantage reached of the sufficient relatively small heating power supply, or steam supply, respectively, when heating the cold milk to the respective desired temperature for hot milk or milk froth has been explained further above. By means of this multi-path valve, moreover, it is possible to rinse, in a third controlled valve body position, the milk-soiled pipe, or flow paths, respectively, and to aerate them in a fourth valve body position.
Various embodiments are possible to realize a multi-path valve suitable for performing the multi-path arrangement according to the present invention:
According to the present invention, the valve body is shaped as a tap having a plurality of valve paths, the valve body may be shaped as a tap having a plurality of valve paths, which in order to adjust for a desired through-connection path can be rotated, if required with throttling, within the housing, the housing comprising an outer cylinder around the cylindrical tap, or an inner cylinder as valve body, respectively. The flow paths extend in particular in a plane of cross section radially within the inner cylinder. In the case of the present multi-path valve, the openings of the cold water inlet, of the cold milk inlet and the air opening are arranged in circumferential direction of the outer cylinder or housing. Throttling is obtained in this case by a small angular adjustment of the rotational position of the inner cylinder or tap relative to a full go-through position.
Alternatively, the valve body of the multi-path valve may be made as a slider or piston movable in the housing, or an outer cylinder, respectively. At least one section of the flow path of the piston or slider may extend vertically to a plane of cross section of the piston to selectively connect a valve outlet with a cold milk inlet, a cold water inlet or an air opening. Throttling is obtained in this case by fine displacement of the piston or slider.
Suitably, the multi-path valve is arranged in the beverage making unit, particularly an espresso machine, so that a frothing head is in flow connection with the valve outlet of the multi-path valve and an air solenoid valve. If and when the air solenoid valve passes air, milk froth is generated in the frothing head; in the other case, if the air solenoid valve does not pass air, hot milk is produced. In each case, cold milk is sucked in by the frothing head through the multi-path valve. Moreover, if the multi-path valve is correspondingly adjusted, the milk pipe may be rinsed by sucked-in cold water to remove the cold water from the milk pipe prior to the next milk passing process, and be aerated.
The foregoing arrangement may suitably be specified so that the frothing head is connected, via a milk pipe into which opens the air solenoid valve, to the valve outlet of the multi-path valve. The same functions are performed like in the structure of the present invention that a frothing head is in flow connection with the valve outlet of the multi-path valve and an air solenoid valve.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
FIG. 1 a shows a first embodiment of the multi-path valve connected via a milk pipe with a frothing head in a first valve body position wherein the multi-path valve and part of the milk pipe are depicted in longitudinal cross section,
FIG. 1 b shows the first embodiment as in FIG. 1 a but in a second valve body position,
FIG. 1 c shows the first embodiment of the multi-path valve as in FIGS. 1 a and 1 b but in a third valve body position,
FIG. 1 d shows the first embodiment of the multi-path valve as in FIGS. 1 a through 1 c but in a fourth valve body position,
FIG. 2 shows a fluid diagram of an espresso machine based on the first embodiment of the multi-path valve,
FIG. 3 a shows a second embodiment of the multi-path valve connected via a milk pipe with a frothing head in a first valve body position wherein the multi-path valve and part of the milk pipe are depicted in longitudinal cross section,
FIG. 3 b shows the second embodiment of the multi-path valve as in FIG. 3 a but in a second valve body position,
FIG. 3 c shows the second embodiment of the multi-path valve as in FIGS. 3 a and 3 b but in a third valve body position,
FIG. 3 d shows the second embodiment of the multi-path valve as in FIGS. 3 a through 3 c but in a fourth valve body position, and
FIG. 4 shows a fluid diagram of an espresso machine based on the second embodiment of the multi-path valve
DETAILED DESCRIPTION OF THE INVENTION
In the following, exemplified embodiments will be explained based on a drawing comprising ten figures from which further advantageous details of the invention can be taken.
In FIG. 1, a multi-path valve in a first embodiment is designated by 1 which has, as a housing, a substantially closed outer cylinder 2 and, as a slider, a piston 3. The piston can linearly be moved via a step motor 4. The housing or outer cylinder 2 includes a valve inlet 5, which is a milk inlet, as well as a valve outlet 6. Further above, milk inlet 5 has more exactly been referred to as cold milk inlet. Above the valve inlet 5, on the outer cylinder 2, as a further valve inlet 7, a cold water inlet and an air opening 9 are disposed.
A milk pipe 10 connects the valve outlet 6 with a frothing head 22. Into the milk pipe 10, there opens an air duct 15 in which a solenoid valve 14 is arranged.
In FIG. 2, essential components of an espresso machine as a beverage making unit are diagrammatically shown in which the multi-path valve is disposed as in accordance with FIG. 1 a.
From FIG. 2 it can be taken that a water container 16 opens, via a cold water pipe 17, a pump 18, a continuous-flow heater 19, a solenoid valve 20 and a steam pipe 21, into a frothing head 22. Below an outlet 37 of the frothing head 22, a receiving vessel, not shown, may be provided.
The above-described components of FIG. 2 refer to the preparation of hot milk or milk froth.
In order to perform the primary espresso machine functions, i.e. those of espresso and coffee preparation by means of a brewing head 32 having two brewing head outlets 35 and 36, the brewing head 32 is connected with the hot water container 16 via a cold water pipe 25, a flow meter 26, a pump 27, a continuous flow heater 28, a two-way solenoid valve 29 and a hot water pipe 31 in which a stop valve 30 is disposed. From the two-way solenoid valve 29, furthermore, a hot water pipe 33 is branched off which leads to a hot water outlet 34.
From FIG. 2, it can, furthermore, be taken that downstream of the pump 27, branched off from cold water pipe 25 a, a rinsing water pipe 24 leads via a solenoid valve 23 to the cold water inlet 7 of the multi-path valve 1. The milk inlet 5 of the multi-path valve 1 is, moreover, connected via a milk supply pipe 12 with a milk container 13.
In FIG. 2, additionally, a programmable control comprising a selection group 38 and a program storage and control unit 39 is diagrammatically indicated. Non-designated outlets of the program storage and control unit 39 lead to the elements of the espresso machine which correspond to the position reference numerals provided on the respective outlets. The abbreviation “SP” means “Rinsing”, and the abbreviation “BEL” means “Aeration”. In the selection group which activates a program portion corresponding to the beverage selected in the program and control unit 39 for the control of step motor 4, the abbreviations have the following meanings:
    • E=Espresso
    • C=Cappuccino
    • L=Hot milk
    • LM=Latte Macchiato
    • HW=Hot water
The functions “Rinsing” and “Aeration” are not included in the selection group because they are automatically activated.
In the following, to start with, milk froth preparation will be discussed.
For the preparation of a beverage selected by means of the selection group 38 in FIG. 2, the milk froth may be added to the brewed coffee which leaves the brewing head outlet 35 or 36, respectively, to prepare cappuccino or latte macchiato.
For milk froth preparation, cold water from the water container 16 is pumped via the cold water pipe 17 by means of the pump 18 through the continuous flow heater 19, in which the cold water is heated to become steam. The steam flows via the through-connected solenoid valve 20 and the steam pipe 21 into the frothing head 22. By means of a Venturi tube, not shown in the drawing, disposed in the frothing head 22 an under pressure is generated by the passing steam, which as can be taken in detail from FIG. 1 a, sucks milk from the milk container 13, via the milk pipe 10, the milk inlet 5 in the housing or outer cylinder 2 of the multi-path valve 1, a valve path 11 of the piston or slider 3, the valve outlet 6 and the milk pipe 12, into the frothing head 22. The milk flowing through the milk pipe 10, downstream of the multi-path valve 1, sucks in, via the air pipe 15 and the through-connected solenoid valve 14, air which serves for frothing up the milk in the frothing head 22. The milk froth produced therein exits through the outlet 37 of the frothing head 22, for instance into a receiving vessel.
For alternative hot milk preparation, after respective actuation of the selection group 38, in order to reduce the sucked-in amount of milk, the effective flow or passage cross section of the valve inlet 5 and of the valve outlet 6 of the multi-path valve 1 is reduced in that by means of the step motor 4, the piston or slider 3 of the multi-path valve 1 is shifted so that, compare FIG. 1 b, the valve path 11 of the piston is only partially aligned with the inlet 5 and the outlet 6 of the outer cylinder or housing 2. By the reduction obtained in operation of the amount of milk sucked-in, it is taken into consideration that in household espresso machines there is not normally sufficient heat energy available in order to heat, by means of the amount of steam generated in the continuous flow heater 19, a large amount of milk as a continuous flow or a larger milk flow.
The step motor driving the piston or slider 3 has been selected to correspond to the particular use for throttling the passage through the multi-path valve 1. In particular, the step motor 1 proceeds in small steps to perform a fine adjustment of the milk passage cross section which controls the passage of the milk, or amount of milk, respectively, sucked in by the frothing head 22. As referred to above, such fine adjustment may either be performed by the manufacturer in order to balance out manufacturing tolerances or may, subjectively, be selected by the user or, automatically, by means of a temperature sensor and temperature control which adjusts the milk temperature to a predetermined temperature.
As with reference to FIG. 2, for hot milk preparation, cold water from water container 16 is pumped via the cold water pipe 17 through the pump 18 through the continuous flow heater 19 in which the cold water is heated to become steam which is pumped through the through-connected solenoid valve 20 and the steam pipe 21 into the frothing head 22. By means of the Venturi tube disposed in the frothing head 22, an under pressure is generated by the passing steam which sucks milk from the milk container 13, via the milk supply pipe 12, the valve inlet or milk inlet 5 of the outer cylinder or housing 2, the valve path 11 of the piston or slider 3, as can be taken from FIG. 1 b, the valve outlet 6 of the outer cylinder or housing 2 and the milk pipe 3, into the frothing head 22. Since during the course of this process, the solenoid valve 14 is not through-connected, no air will be added to the milk flowing through the milk pipe 10. The milk arriving in the frothing head 22 is heated during the course of the passage through the frothing head by the steam which is supplied via the steam pipe 21 into the frothing head. The heated milk exits through the outlet 37 of the frothing head 22 into a receiving vessel.
Cold rinsing of the milk pipe 10, of the frothing head 22 and of the valve path 11 of the piston or slider 3 is automatically controlled by he control unit and program storage 39 when the predetermined conditions, for instance a number of hot milk or milk froth preparation processes have been fulfilled. The rinsing process has been provided for hygienic reasons and is performed by means of cold water since a rinsing process with hot water or hot steam could lead to clogging or burning of milk residues.
For the rinsing process, the piston or slider 3 is positioned, as can be taken from FIG. 1 c, so that the valve path 11 connects the valve inlet or cold water inlet 7 with the valve outlet 6, with maximum passage without throttling. In this way, also with reference to FIG. 2, cold water is pumped from the cold water container 16 via the cold water pipe 25 by means of pump 27, via the rinsing water pipe 24, the through-connected solenoid valve 23 and the cold water valve inlet 7 of the multi-path valve 1, via the valve path 11 of the piston or slider 3 and the outlet 6 of the multi-path valve 1 through the milk-loaded milk pipe 10 and the frothing head 22.
Aeration of the milk pipe 10 and of the flow path 11 of the multi-path valve 1 is necessary to allow them to become empty before renewed hot milk or milk froth preparation process can start. For aeration, the piston or slider 3 is adjusted by means of the step motor 4 to the position according to FIG. 1 d, i.e. lowered that far so that the air opening in the outer cylinder or housing 2 is connected via the valve path 11 with the outlet 6 of the multi-path valve. To this end, that section of the valve path, perpendicular in the drawing, is partly used which in case of cold water rinsing according to FIG. 1 c is completely flown through and in case of the hot milk preparation according to FIG. 1 b is flown through for a small part, not however in case of milk froth preparation according to FIG. 1 a.
Therefore, in the position of the piston or slider 3, aeration and thus emptying of the valve path 11, of the milk pipe 10 and also of the frothing head 22 can be performed.
By means of the espresso machine shown in FIG. 2, it is possible to make espresso as usual. To this end, cold water is pumped from the cold water container 16 via the cold water pipe 25, further by the pump 27, via the cold water pipe 25 a through the continuous flow heater 28 in which the cold water is heated to become hot water. The hot water flows via the valve position indicated in FIG. 2 of the two-way solenoid valve further via the stop valve 30 into the brewing head 32. The stop valve prevents in particular phases of the coffee stock preparation a return flow sucking from the brewing head. The brewed coffee exits via the brewing head outlets 36 and 37 into a receiving vessel. The amount of water required for coffee preparation is limited by means of the above-referenced flow meter 26.
For an alternatively possible preparation of hot water, the cold water flows, as in the case of espresso preparation, if necessary in a differently dimensioned amount determined by the flow meter 26, for heating through the continuous flow heater 28 and subsequently via the two-way solenoid valve 29 switched to the hot water pipe 33, the switch-over position being indicated by a broken line in FIG. 2. The hot water arrives via the hot water pipe 33 into the hot water outlet 34 from which it can be recovered for the preparation of a different beverage.
The second embodiment of the espresso machine as a beverage making unit according to FIG. 4 differs from the one according to FIG. 2 essentially by a different embodiment of the multi-path valve which in this case is designed with a valve body as a tap having a plurality of valve paths depicted in detail in FIGS. 3 a through 3 d. The step motor 49 and the program storage and control unit 39′ are adapted to the embodiment of the multi-path valve having a rotating tap which is hence arranged rotating by the step motor 49 as an inner cylinder in a housing formed as an outer cylinder. The housing 41 shaped as an outer cylinder, on the other hand, shows a valve inlet 42 as milk inlet or cold milk inlet, a valve inlet 44 as cold water inlet, a valve outlet 43 and an air opening 45 which as shown in FIGS. 3 a through 3 d, are staggered relative to each other in peripheral direction of the outer cylinder or housing 41. For alternative complete or throttled connection of the valve inlet as milk inlet 42, of the valve inlet as cold water inlet 44 or of the air inlet 45, valve paths 47 a, 47 b and 48 have been formed out staggered in the inner cylinder or tap 46 of the multi-path valve 40 in peripheral direction of the inner cylinder 46, as can in detail be taken from FIGS. 3 a through 3 d.
It should be noted that in the exemplified embodiments according to FIGS. 3 a through 3 d and 4, reference numerals corresponding to those of the first exemplified embodiment have been used.
For milk froth preparation, the inner cylinder or tap 46 is rotated according to FIG. 3 a by means of the step motor 49 so that the valve path 47 a is in alignment with the valve inlet or milk inlet 42 and the valve path 47 b following valve path 47 a is in alignment with valve outlet 43.
In this position of the multi-path valve 40, referring now to FIG. 4, cold water is pumped from the cold water container 16 via the cold water pipe 17 by means of pump 18 through the continuous flow heater 19 in which the cold water is heated to become steam. The steam emerging from the continuous flow heater is further supplied, via the through-connected solenoid valve 20 and the steam pipe 21 to the frothing head 22. The Venturi tube, not shown in FIG. 4, arranged in the frothing head 22, generates, by the passing steam an under pressure which, via the milk supply pipe 12, the valve inlet as milk inlet 42 of the multi-path valve 42, the valve flow paths 47 a and 47 b of the inner cylinder or tap 46, the valve outlet 43 of the multi-path valve 40 and the milk pipe 10, sucks milk from the milk container 13 up to the frothing head 22. The milk flowing through the milk pipe 10 sucks in, via the air pipe 15 and the through-connected solenoid valve 14, air which serves for frothing up in the frothing head 22. The milk froth produced exits through the outlet 37 of the frothing head into a receiving vessel.
In connection with hot milk preparation, the espresso machine according to FIGS. 3 a and 4 performs the same functions as in connection with the preparation of milk froth, save for the exceptions discussed in the following:
In order to take into account the low-limited heat efficiency normally available in household espresso machines and in order to heat by the amount of steam correspondingly generated a larger amount of milk to pass through, the passage cross section or flow cross section of the valve inlet as milk inlet 42 and of the valve outlet 43 in the multi-path valve 40 is reduced as compared to the situation in case of milk froth production in order to reduce the milk flow sucked in, in that the inner cylinder or tap 46 of the multi-path valve is rotated by means of the step motor 49 so that the valve paths 47 a, 47 b of the inner cylinder or tap 46 are not completely in alignment with the valve inlet as milk inlet 42 and the outlet 43, respectively, of the multi-path valve 40.
The step motor 49 driving the inner cylinder or tap 46 which is suited to perform small steps adapted to the use in question, can moreover perform a fine adjustment of the flow cross section or passage cross section for the milk flow sucked in by the frothing head 22. The fine adjustment may be performed, as mentioned, by the manufacturer in order to balance out manufacturing tolerances, or may from case to case be selected by the user of the espresso machine, or a predetermined temperature of the milk may automatically be regulated by means of a temperature sensor and a temperature control.
The remaining processes for hot milk preparation proceed in the same manner as in the exemplified embodiment described further above.
For cold rinsing of the valve paths 47 a and 47 b of the inner cylinder or tap 46 of the milk-loaded milk pipe 10 and of the frothing head 22, the inner cylinder or tap 46 is rotated by the step motor 49 so that the valve path 47 a is in alignment with the valve inlet as cold water inlet 44 of the multi-path valve 10 and the valve path 48 is in alignment with the outlet 43 of the multi-path valve 40. From the cold water container 16 cold water may, subsequently, be pumped via the cold water pipe 25 by means of the pump 27 via the rinsing water pipe 24, the through-connected solenoid valve 23 and the valve inlet as cold water inlet 44 of the multi-path valve 40 through the valve paths 47 a and 48 of the inner cylinder or tap 46 and the valve outlet 43 of the multi-path valve 40 through the milk-loaded milk pipe 10 and the frothing head 22.
For aeration of the milk-loaded flow paths in order to empty them, the inner cylinder or tap 46 of the multi-path valve 40 is rotated, according to FIG. 3 d, by means of step motor 49—compare also FIGS. 3 a and 4—so that the air opening 45 of the outer cylinder or housing 41 is in alignment with the valve path 47 b and the valve outlet 43 of the multi-path valve 40 is in alignment with the valve path 47 a immediately following the valve path 47 b. In this way, aeration and emptying of the valve paths 47 a and 47 b and of the milk pipe 10 and of the frothing head 22 is achieved.
An espresso preparation and an alternative hot water preparation may be effected by means of the second embodiment of the espresso machine according to FIG. 4 as described in connection with the first embodiment based on FIG. 2.

Claims (3)

The invention claimed is:
1. Multi-path valve arrangement in a beverage making unit, particularly an espresso machine by which optionally various beverages can be prepared and which includes at least one cold milk inlet, a cold water inlet, a valve outlet and at least one valve body via which said cold milk inlet or said cold water inlet may be connected with said valve outlet, wherein
said multi-path valve arrangement comprises a multi-path valve having a housing which includes said cold milk inlet, said cold water inlet, said valve outlet and an air opening and in which a valve body is suited to connect said cold milk inlet having an adjustable throttling with said valve outlet,
said valve body is adjustable by a step motor,
said step motor is provided with a programmable control of the valve body position, and
a frothing head is in flow connection with said valve outlet of said multi-path valve and an air solenoid valve,
in a first valve body position controlled by said programmable control, said cold milk inlet is connected non-throttled or minimally throttled, respectively, with said valve outlet,
in a second valve body position controlled by said programmable control, said cold milk inlet is connected, throttled, with said valve outlet,
in a third valve body position controlled by said programmable control, said cold water inlet is connected, non-throttled, with said valve outlet,
in a fourth valve body position controlled by said programmable control, said air opening is connected with said valve outlet,
said valve body is either shaped as a tap having a plurality of valve paths, in which
for milk froth preparation, the tap is rotated by means of the step motor so that a first one of the valve paths is in alignment with the cold milk inlet and a second one of the valve paths following the first valve path is in alignment with the valve outlet, and
in order to heat milk, the tap is rotated by means of the step motor so that the first valve path and the second valve path are not completely in alignment with the cold milk inlet and the outlet,
or said valve body is shaped as a slider having at least one valve path, in which
in order to heat milk, the slider is shifted so that the valve path of the slider is only partially aligned with the inlet and the outlet of the housing.
2. Multi-path valve arrangement according to one of the foregoing claims, wherein said programmable control comprises a selection group and a program storage and control unit.
3. Multi-path valve arrangement according to claim 1, wherein said frothing head is connected, via a milk pipe into which opens an outlet of said air solenoid valve, to said valve outlet of said multi-path valve.
US12/653,353 2008-12-12 2009-12-11 Multi-path valve arrangement in a beverage making unit Active 2032-01-06 US8646380B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200820016400 DE202008016400U1 (en) 2008-12-12 2008-12-12 Multiway valve arrangement in a beverage preparation unit
DE202008016400.1 2008-12-12
DE202008016400U 2008-12-12

Publications (2)

Publication Number Publication Date
US20100147158A1 US20100147158A1 (en) 2010-06-17
US8646380B2 true US8646380B2 (en) 2014-02-11

Family

ID=40418662

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/653,353 Active 2032-01-06 US8646380B2 (en) 2008-12-12 2009-12-11 Multi-path valve arrangement in a beverage making unit

Country Status (4)

Country Link
US (1) US8646380B2 (en)
EP (1) EP2196118B1 (en)
DE (1) DE202008016400U1 (en)
ES (1) ES2391365T3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092131B2 (en) 2013-11-28 2018-10-09 Koninklijke Philips N.V. Beverage frothing device and jug comprising said device
US10591067B2 (en) * 2014-12-15 2020-03-17 Koninklijke Douwe Egberts B.V. Ceramic valve unit for a beverage machine
US10611620B2 (en) 2014-12-15 2020-04-07 Koninklijke Douwe Egberts B.V. Dosing pump device for dosing metered amounts of a liquid product
US10893773B2 (en) 2014-12-15 2021-01-19 Koninklijke Douwe Egberts B.V. Unit, device and system for preparing beverage consumptions
US11147412B2 (en) * 2016-02-29 2021-10-19 Tchibo (Schweiz) Ag Milk frother system and operating method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033506A1 (en) 2009-07-15 2011-01-27 Niro-Plan Ag Apparatus and method for frothing a liquid food, in particular milk
PL2345354T3 (en) * 2010-01-19 2013-02-28 Jura Elektroapparate Ag Dispensing device for dispensing coffee and/or milk and/or milk foam, beverage making machine with a dispensing device and method for assembling a dispensing device
DE102010007143B4 (en) 2010-02-05 2013-08-22 Eugster/Frismag Ag Coffee machine with a foaming device and means for cleaning the foaming device and a milk suction line and method for rinsing the milk suction line
ES2530260T3 (en) * 2010-10-29 2015-02-27 Gruppo Cimbali S.P.A. Replaceable terminal piece for a steam lance of a coffee machine
DE102010060348A1 (en) * 2010-11-04 2012-05-10 Wik Far East Ltd. A method of controlling the dispensing of at least one beverage ingredient of a coffee-milk mix beverage in a coffee machine
DE202011103272U1 (en) * 2011-07-11 2012-02-09 Eugster/Frismag Ag Espresso coffee machine with a brewing unit
EP2594174B1 (en) 2011-11-18 2013-10-30 Miele & Cie. KG Beverage preparation machine
SI2647320T1 (en) 2012-04-02 2014-06-30 Miele & Cie. Kg Beverage preparer with an insertable liquid container
DE102012214105A1 (en) * 2012-08-08 2014-02-13 BSH Bosch und Siemens Hausgeräte GmbH Coffee machine with milk frother
DE202012009075U1 (en) 2012-09-21 2012-11-16 Eugster/Frismag Ag Multi-way valve in a device for making milk foam
CN103767551B (en) * 2012-10-23 2017-12-15 苏州工业园区咖乐美电器有限公司 A kind of milk bubble machine cleaning structure for coffee machine
DE102012220991A1 (en) * 2012-11-16 2014-05-22 BSH Bosch und Siemens Hausgeräte GmbH Device for emulsifying a mixture of air, steam and milk
US8561970B1 (en) 2013-01-23 2013-10-22 Brookstone Purchasing, Inc. Aeration system
DE102013105402A1 (en) 2013-05-27 2014-12-11 Eugster/Frismag Ag Milk foaming device, coffee machine, system and cleaning process
DE102014108281A1 (en) * 2014-06-12 2015-12-17 Melitta Professional Coffee Solutions GmbH & Co. KG Flow measurement in a hot beverage machine, in particular a coffee machine
CN104305881B (en) * 2014-09-15 2017-06-13 宁波美侬咖啡机有限公司 A kind of embedded milk foam device
DE102015100489A1 (en) * 2015-01-14 2016-07-14 Eugster/Frismag Ag Beverage preparation device and operating method
DE102015100488A1 (en) 2015-01-14 2016-07-14 Eugster/Frismag Ag Beverage preparation device and operating method
US9795096B1 (en) * 2015-02-15 2017-10-24 Carl A. Giordano Sprinkler system
US9999181B1 (en) 2015-02-15 2018-06-19 Carl A. Giordano Sprinkler system
DE102015105184B4 (en) * 2015-04-02 2016-10-20 Eugster/Frismag Ag Beverage preparation device and operating method
DE102015105183B4 (en) 2015-04-02 2019-01-17 Eugster/Frismag Ag Beverage preparation device and operating method
CN104939682B (en) * 2015-05-21 2018-02-02 宁波全景电器技术有限公司 A kind of milk froth generation device
NL2016400B1 (en) 2016-03-09 2017-09-26 Douwe Egberts Bv Assembly and method for frothing milk.
NL2016403B1 (en) * 2016-03-09 2017-09-26 Douwe Egberts Bv Assembly and method for frothing fluid.
TWI757284B (en) * 2016-05-03 2022-03-11 義大利商瑞亞梵朵斯服務公司 Apparatus and method for preparing and dispensing beverages
IT201600096851A1 (en) * 2016-09-27 2018-03-27 De Longhi Appliances Srl DEVICE FOR EMULSION OF MILK WITH VENTURI EFFECT AND METHOD OF PRODUCTION OF HOT MILK WITH AND WITHOUT FOAM WITH SUCH A DEVICE
CN106923681A (en) * 2017-03-10 2017-07-07 上海洛瓷动力科技有限公司 Slurry diet product processing machine and slurry diet product processing method
DE102021101145A1 (en) 2021-01-20 2022-07-21 Melitta Professional Coffee Solutions GmbH & Co. KG Distributor valve for a coffee machine, coffee machine with such a distributor valve, and method for distributing media to consumption functionalities of a coffee machine
DE102021202788A1 (en) 2021-03-23 2022-09-29 BSH Hausgeräte GmbH Milk frother and hot drink preparation facility
DE102021202787A1 (en) * 2021-03-23 2022-09-29 BSH Hausgeräte GmbH Milk frother and hot drink preparation facility

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841551A (en) * 1971-09-28 1974-10-15 Nippon Denso Co Thermo-operation type transfer valve
US5313984A (en) * 1992-09-24 1994-05-24 Santa Barbara Research Center Multi-fluid, variable sequence, zero dead volume valve and system
US5498757A (en) * 1995-04-04 1996-03-12 Boyd Coffee Company Milk frothing and heating system
US5601651A (en) * 1992-09-17 1997-02-11 Fujitsu Limited Flow control valve for use in fabrication of semiconductor devices
US6561079B1 (en) * 1999-09-24 2003-05-13 Braun Gmbh Steam generating device for heating and/or frothing liquids
EP1374748A2 (en) 2002-06-18 2004-01-02 Roland B. Eckenhausen Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids
EP1519670A1 (en) 2002-07-09 2005-04-06 The Coca-Cola Company System and method for producing foamed and steamed milk for hot beverages
DE102004006095A1 (en) 2004-02-06 2005-09-01 Niro-Plan Ag Device for producing milk foam
WO2006050881A2 (en) 2004-11-11 2006-05-18 Nestec S.A. Self-cleaning mixing head for producing a milk-based mixture and beverage production machines comprising such a mixing head
US20090114099A1 (en) * 2005-07-29 2009-05-07 Frank Gotlenboth Beverage system
US7930972B2 (en) * 2004-06-25 2011-04-26 Nestec S.A. Method of improving the production of foam during the preparation of drinks from a cartridge and device for its implementation
US20120118164A1 (en) * 2008-10-15 2012-05-17 Koninklijke Philips Electronics N.V. Coffee machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959642B1 (en) * 2004-04-07 2005-11-01 Egro Ag Device for portioned delivery of milk, particularly for cappuccino machines

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841551A (en) * 1971-09-28 1974-10-15 Nippon Denso Co Thermo-operation type transfer valve
US5601651A (en) * 1992-09-17 1997-02-11 Fujitsu Limited Flow control valve for use in fabrication of semiconductor devices
US5313984A (en) * 1992-09-24 1994-05-24 Santa Barbara Research Center Multi-fluid, variable sequence, zero dead volume valve and system
US5498757A (en) * 1995-04-04 1996-03-12 Boyd Coffee Company Milk frothing and heating system
US6561079B1 (en) * 1999-09-24 2003-05-13 Braun Gmbh Steam generating device for heating and/or frothing liquids
EP1374748A2 (en) 2002-06-18 2004-01-02 Roland B. Eckenhausen Dairy-based beverage dispenser, method for dispensing hot, dairy-based beverages and disposable container for dairy-based liquids
EP1519670A1 (en) 2002-07-09 2005-04-06 The Coca-Cola Company System and method for producing foamed and steamed milk for hot beverages
DE102004006095A1 (en) 2004-02-06 2005-09-01 Niro-Plan Ag Device for producing milk foam
US7448314B2 (en) * 2004-02-06 2008-11-11 Niro-Plan Ag Device for producing milk foam
US7930972B2 (en) * 2004-06-25 2011-04-26 Nestec S.A. Method of improving the production of foam during the preparation of drinks from a cartridge and device for its implementation
WO2006050881A2 (en) 2004-11-11 2006-05-18 Nestec S.A. Self-cleaning mixing head for producing a milk-based mixture and beverage production machines comprising such a mixing head
US20090114099A1 (en) * 2005-07-29 2009-05-07 Frank Gotlenboth Beverage system
US20120118164A1 (en) * 2008-10-15 2012-05-17 Koninklijke Philips Electronics N.V. Coffee machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092131B2 (en) 2013-11-28 2018-10-09 Koninklijke Philips N.V. Beverage frothing device and jug comprising said device
US10591067B2 (en) * 2014-12-15 2020-03-17 Koninklijke Douwe Egberts B.V. Ceramic valve unit for a beverage machine
US10611620B2 (en) 2014-12-15 2020-04-07 Koninklijke Douwe Egberts B.V. Dosing pump device for dosing metered amounts of a liquid product
US10893773B2 (en) 2014-12-15 2021-01-19 Koninklijke Douwe Egberts B.V. Unit, device and system for preparing beverage consumptions
US11147412B2 (en) * 2016-02-29 2021-10-19 Tchibo (Schweiz) Ag Milk frother system and operating method

Also Published As

Publication number Publication date
EP2196118A1 (en) 2010-06-16
ES2391365T3 (en) 2012-11-23
DE202008016400U1 (en) 2009-03-05
EP2196118B1 (en) 2012-07-25
US20100147158A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
US8646380B2 (en) Multi-path valve arrangement in a beverage making unit
US10244890B2 (en) Beverage preparation device and operating method
US9572453B2 (en) Device for discharging and heating milk
US9038529B2 (en) Coffee machine comprising a frothing device and means for cleaning the frothing device and a milk suction line and process for rinsing the milk suction line
EP2055215B1 (en) Apparatus and method for preparing milk under various temperature and consistency conditions in a coffee machine for forming various types of beverages
JP3989359B2 (en) Milk frothing and heating device
DK3079538T3 (en) Milk foam apparatus, beverage preparation system and beverage preparation machine
RU2011119509A (en) COFFEE MACHINE
US10610046B2 (en) Highly flexible use automatic coffee machine
CN111741702B (en) Coffee machine with integrated steam and hot water production
CN104105433B (en) Stress reduction system for espresso coffee machine
CN113194796B (en) Coffee machine with integrated steam and hot water generation
CN115104918A (en) Milk foam machine and hot drink preparation device
CN220442489U (en) Coffee machine
CN116849513A (en) Coffee machine and beverage generation method thereof
CN217852441U (en) Beverage making equipment
CN216534931U (en) Coffee machine beverage making waterway system and coffee machine
CN220442488U (en) Beverage machine
RU2779770C1 (en) Coffee machine with integrated steam and hot water
CN214341776U (en) Beverage brewing device
JP2023549318A (en) Automatic hot beverage machines, especially fully automatic coffee machines as well as methods for the operation of such automatic machines
CN117338158A (en) Water purifying and drinking machine and water taking method thereof
JP2017075764A (en) Heat pump type heating device
CN114711621A (en) Beverage making equipment
WO2016062352A1 (en) Valve assembly for a beverage dispenser and beverage dispenser comprising a valve assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: EUGSTER/FRISMAG AG,SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUELLER, THOMAS;REEL/FRAME:023702/0854

Effective date: 20091211

Owner name: EUGSTER/FRISMAG AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUELLER, THOMAS;REEL/FRAME:023702/0854

Effective date: 20091211

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8