US8438923B2 - MEMS device with opposite polarity spring bimorph - Google Patents

MEMS device with opposite polarity spring bimorph Download PDF

Info

Publication number
US8438923B2
US8438923B2 US12/413,196 US41319609A US8438923B2 US 8438923 B2 US8438923 B2 US 8438923B2 US 41319609 A US41319609 A US 41319609A US 8438923 B2 US8438923 B2 US 8438923B2
Authority
US
United States
Prior art keywords
spring
mass
layers
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/413,196
Other versions
US20100242604A1 (en
Inventor
Firas Sammoura
Kuang Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Priority to US12/413,196 priority Critical patent/US8438923B2/en
Assigned to ANALOG DEVICES, INC. reassignment ANALOG DEVICES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YANG, KUANG, SAMMOURA, FIRAS
Publication of US20100242604A1 publication Critical patent/US20100242604A1/en
Application granted granted Critical
Publication of US8438923B2 publication Critical patent/US8438923B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the invention generally relates to MEMS devices and, more particularly, the invention relates to piezoelectric MEMS sensing devices.
  • MEMS microelectromechanical systems
  • Such devices can sense acceleration or rotational movement, redirect light data signals between optical fibers, detect pressure changes, or transform an acoustic signal into an electric signal.
  • These diverse devices commonly interact with their internal microstructure (e.g., detecting microstructure movement or actuating microstructure) using electrostatics or piezoelectrics.
  • FIG. 1A schematically shows a part of a prior art accelerometer 10 P having a bimorph spring 12 P supporting a mass 14 P above a substrate 16 P.
  • the spring 12 P has five distinct layers; namely, a middle electrode 18 P between top and bottom polarized layers 20 P and 22 P, and two exterior electrodes 24 P and 26 P respectively on the top and bottom of the two polarized layers 20 P and 22 P.
  • the two polarized layers 20 P and 22 P have the same polarity at rest.
  • Movement of the mass in the positive Z-direction causes one of the polarized layers 20 P or 22 P to compress while the other polarized layer expands 20 P or 22 P.
  • This causes the first and second polarized layers 20 P and 22 P to have the electrical pattern shown in FIG. 1B (schematically showing the spring 12 P only).
  • the strength of those electric fields is a function of the compression/expansion of the respective polarized layers 20 P and 22 P.
  • a signal detector 28 P connected between the middle electrode 18 P and one of the exterior electrodes 24 P or 26 P detects a degree of change in polarity, indicating qualities of the movement of the mass 14 P.
  • a MEMS device has a bimorph with oppositely polarized layers.
  • the MEMS device has a mass supported at least in part by a spring.
  • the spring has first and second layers, and first and a second electrodes. The first and second layers are between the first and second electrodes, and the first and second layers, which are oppositely polarized, form a bimorph.
  • the MEMS device also may have a signal detector between the first electrode and the second electrode.
  • the signal detector detects at least one of a) a voltage difference between the first and second electrodes, or b) a current between the first and second electrodes.
  • the MEMS device further may have a substrate with a top surface. In that case, the spring may support the mass above the substrate, and the bimorph produces a signal (when moved) indicating the displacement of the mass in a direction that is generally orthogonal to the top surface of the substrate.
  • the first and second layers may be formed from a suitable material, such as aluminum nitride.
  • the device may implement the functionality of a number of different machines, such as an accelerometer or a gyroscope.
  • the spring and mass may form at least a part of an accelerometer (or gyroscope).
  • Some embodiments also have a middle electrode between the first and second layers.
  • the MEMS device may also have an electrical interface to the middle electrode.
  • Such an interface additionally may permit X and Y sensing.
  • the first layer may compress while the second layer expands. In that case, the electrical signal between the first and second electrodes is greater than an electrical signal between the first electrode and middle electrode.
  • the spring may be coupled with the mass about the outer periphery of the mass.
  • the spring and mass may form a cantilever.
  • the MEMS device may have a plurality of springs about the outer periphery of the mass. Each of at least two of those springs may have a bimorph of oppositely polarized layers.
  • a MEMS sensor has a substrate, a mass, and a piezoelectric spring movably suspending the mass above the substrate.
  • the spring has first and second layers of opposing polarities when at rest.
  • the first layer has a first interior surface and an opposing first exterior surface.
  • the second layer has a second interior surface and an opposing second exterior surface.
  • the first and second interior surfaces are positioned between the first and second exterior surfaces.
  • the first exterior surface has a first electrode
  • the second exterior surface has a second electrode.
  • a method of detecting an acceleration provides a mass suspended above a substrate by a piezoelectric spring having first and second oppositely polarized layers when at rest.
  • the spring has a spring constant that permits the mass to move in at least one direction relative to the substrate in response to an acceleration.
  • the mass moves in response to an acceleration, which causes the first layer to compress to have a first polarity and the second layer to expand to have the same polarity.
  • the method measures a signal across the first and second layers.
  • the acceleration is a function of the signal measured across the layers.
  • the signal may be a function of the voltage difference between the first and second layers.
  • the signal may be a voltage, a current, or a power signal.
  • Some embodiments position a first outside electrode and a second outside electrode on the spring. The two layers are positioned at least in part between these outside electrodes. The signal is measured from those first and second outside electrodes.
  • FIG. 1A schematically shows a cross-sectional view of a prior art accelerometer.
  • FIG. 1B schematically shows the spring of the accelerometer of FIG. 1A in a flexed state.
  • FIG. 2 schematically shows a perspective view of one type of accelerometer that may implement illustrative embodiments of the invention.
  • FIG. 3 schematically shows a cross-sectional view of the accelerometer shown in FIG. 2 across line 3 - 3 .
  • FIG. 4A schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3 , with the spring in an at-rest state.
  • FIG. 4B schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3 , with the spring flexed downwardly.
  • FIG. 4C schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3 , with the spring flexed upwardly.
  • FIG. 5 schematically shows an alternative embodiment of the spring shown in FIGS. 4A-4C .
  • FIG. 6 schematically shows a cross-sectional view of an accelerometer implementing an alternative embodiment of the invention.
  • FIG. 7 shows a process of forming a bimorph spring in accordance with illustrative embodiments of the invention.
  • a MEMS device has a bimorph spring formed from two normally opposite-polarity layers. Accordingly, during use, when one layer is compressed and the other layer is stretched, the voltage potential of the two layers has an additive relationship. Consequently, such a spring should provide a greater signal-to-noise ratio than the above noted prior art bimorph springs (i.e., those that require a voltage reading across a single layer only). Moreover, such embodiments simplify fabrication processes by not requiring a connection to an often buried, middle electrode. Details of various embodiments are discussed below.
  • MEMS devices configured as inertial sensors, such as accelerometers and gyroscopes, optical switches, pressure sensors, and microphones.
  • MEMS engineers thus can apply various principals of illustrative embodiments, when appropriate and within their technical expertise, to other MEMS devices.
  • various embodiments also apply to other types of sensors, such as non-cantilevered accelerometers, or gyroscopes with and without cantilevers.
  • FIG. 2 schematically shows a perspective view of one type of accelerometer 10 that may implement illustrative embodiments of the invention.
  • FIG. 3 schematically shows a cross-sectional view of the same accelerometer 10 across line 3 - 3 of FIG. 2 .
  • the accelerometer 10 has a spring 12 that suspends a movable mass 14 above a substrate 16 in a cantilevered manner.
  • the accelerometer 10 generally generates a signal representative of movement of the mass 14 in a direction that is generally toward or away from the underlying substrate 16 .
  • type of accelerometer 10 as a “Z-axis” accelerometer.
  • the spring 12 has a prescribed flexibility/spring constant that permits the mass 14 to move generally upwardly or downwardly, in a cantilevered manner, toward or away from the substrate 16 . Acceleration of the substrate 16 , and its underlying apparatus, is a function of the mass movement. To that end, in addition to supporting the mass 14 , the spring 12 also has piezoelectric properties that enable detection circuitry (shown schematically in FIG. 3 only) to detect movement of the mass 14 . More particularly, as discussed in greater detail below and mentioned above, the spring 12 is a multilayer bimorph having a unique polarization pattern.
  • prior art bimorph springs such as those discussed above with regard to FIGS. 1A and 1B , suffered deficiencies that may not be readily apparent to others skilled in the art. Specifically, prior art springs may not provide a signal of sufficient amplitude for lower power applications because they deliver a voltage across one layer only. To the knowledge of the inventors, those skilled in the art have not acknowledged this problem, nor suggested improving the signal-to-noise ratio.
  • the spring 12 is a multilayered bimorph structure having at least two layers that are normally oppositely polarized.
  • FIG. 4A schematically shows an enlarged cross-sectional view of the spring 12 when at rest.
  • the spring 12 has a center/middle electrode 18 , top and bottom (active/polarized) layers 20 and 22 on either side of the center electrode 18 , and top and bottom electrodes 24 and 26 respectively on the top and bottom layers 20 and 22 .
  • the electrodes 18 , 24 and 26 may be formed from any metal sufficient for the intended purpose, such as titanium tungsten or platinum.
  • the top and bottom layers 20 and 22 also may be formed from a material sufficient for the intended purposes, such as aluminum nitride. As shown in FIG. 4A , when at rest, the top layer 20 has a polarity with a negative charge in the middle of the bimorph, and a positive charge near the top and bottom edges. It should be noted, however, that an opposite polarity also should suffice. Discussion of the specific polarity merely is for illustrative purposes only.
  • FIG. 4B schematically shows the same bimorph spring 12 of FIG. 4A stressed generally downwardly.
  • the top layer 20 stretches downwardly while the bottom layer 22 compresses. Consequently, the polarity of the top layer 20 remains the same while polarity of the bottom layer 22 changes.
  • this polarity switch has an additive effect to the voltage across the entire bimorph (i.e., between the top and bottom electrodes 24 and 26 ).
  • the inventors anticipate that the signal between the top and bottom electrodes 24 and 26 will be greater than the signal between the middle electrode 18 and either one of the top and bottom electrodes 24 and 26 .
  • FIG. 4C schematically shows the same bimorph spring 12 of FIG. 4A stressed generally upwardly.
  • the top layer 20 compresses while the bottom layer 22 stretches—the opposite result from that shown in FIG. 4B . Consequently, the polarity of the top layer 20 changes while polarity of the bottom layer 22 remains the same. Accordingly, when stressed generally upwardly, this polarity switch has an additive effect of the voltage across the entire bimorph.
  • FIG. 3 schematically shows a detector 28 that, when connected to the top and bottom electrodes 24 and 26 , reads the voltage across bimorph.
  • the detector 28 may detect a signal (e.g., a current signal) that is proportional to the voltage between the top and bottom electrodes 24 and 26 .
  • the detector 28 simply connects to both top and bottom electrodes 24 and 26 , which should be readily accessible.
  • FIGS. 1A and 1B which requires access to the middle electrode 18 —an electrode that typically is generally inaccessible absent additional fabrication steps. Accordingly, in addition to providing an improved signal-to-noise ratio, various embodiments simplify device fabrication, thus reducing overall part cost.
  • the middle electrode 18 can serve various purposes. For example, it facilitates current flow between the top and bottom layers 20 and 22 . In addition, despite mitigating one benefit of the design, it still can be electrically accessed to detect motion in a direction that is generally parallel to the substrate 16 (i.e., in the X-direction and the Y-direction). Accordingly, various embodiments may be implemented not only in Z-axis sensors, but also in X-axis and Y-axis sensors. In fact, various embodiments also apply to 2-dimensional and 3-dimensional sensors.
  • FIG. 5 schematically shows the spring 12 without the middle electrode 18 .
  • Yet other embodiments may include additional electrodes or layers as dictated by the desired application.
  • FIG. 6 schematically shows an alternative accelerometer 10 having at least two bimorph springs 12 supporting the mass 14 at its periphery above the substrate 16 .
  • the springs 12 of this embodiment can have the middle electrode 18 , or omit the middle electrode 18 .
  • this accelerometer 10 may detect movement in one or more of the X-direction, Y-direction, or Z-direction.
  • FIG. 7 shows one of many possible processes of forming the bimorph spring 12 in accordance with illustrative embodiments of the invention. It should be noted that for simplicity, this process omits discussion of fabricating the overall accelerometer 10 , focusing primarily on the bimorph spring 12 . Even with that simplification, this process only generally describes a generalized process of forming the bimorph spring 12 and thus, omits granular details of the process that one skilled in the art can readily apply.
  • the process begins at step 700 , which sputters a target material onto a substrate to form the bottom layer 22 .
  • this and other steps start with a base material, such as titanium tungsten or platinum (noted above), that forms the bottom electrode 26 .
  • a base material such as titanium tungsten or platinum (noted above)
  • conventional processes may sputter aluminum from an aluminum target onto the substrate. Consequently, the bottom electrode 26 supports the bottom layer 22 , which, in this embodiment, is formed from aluminum nitride.
  • this bottom layer 22 has a certain polarity, which is a function of its fabrication. For example, one or more of the nitrogen flow rate, the oxygen content in the deposition chamber, pressure in the chamber, and deposition power are controlled to produce the desired polarity across the bottom layer 22 .
  • the process adds the middle electrode 18 to the top of the bottom layer 22 (step 702 ), and then sputters the top layer 20 onto the top surface of the middle electrode 18 (step 704 ).
  • this step also may sputter aluminum from an aluminum target onto the exposed middle electrode 18 in a nitrogen atmosphere.
  • this top layer 20 normally has a polarity that is opposite to that of the bottom layer 22 . Accordingly, as with the bottom layer 22 , one or more of the nitrogen flow rate, the oxygen content in the deposition chamber, pressure in the chamber, and deposition power are controlled to produce the desired polarity across the top layer 20 .
  • step 706 which adds the top electrode 24 .
  • specific materials e.g., aluminum, nitrogen, platinum and titanium tungsten
  • the cantilevered accelerometer 10 of FIGS. 2 and 3 compresses one layer 20 or 22 while stretching the other layer 20 or 22 .
  • One skilled in the art therefore can take advantage of the full polarity of the entire bimorph spring 12 , thus improving signal-to-noise ratio while not requiring access to the middle electrode 18 .
  • both layers 20 and 22 either compress or stretch and thus, access to the middle electrode 18 should provide the appropriate, but lower data signals.

Abstract

A MEMS device has a mass supported at least in part by a spring. Among other things, the spring has first and second layers, and first and a second electrodes. The first and second layers are between the first and second electrodes, and the first and second layers, which are oppositely polarized, form a bimorph.

Description

FIELD OF THE INVENTION
The invention generally relates to MEMS devices and, more particularly, the invention relates to piezoelectric MEMS sensing devices.
BACKGROUND OF THE INVENTION
Engineers and scientists have designed microelectromechanical systems (“MEMS” or “MEMS devices”) to perform a wide variety of functions. Among other things, such devices can sense acceleration or rotational movement, redirect light data signals between optical fibers, detect pressure changes, or transform an acoustic signal into an electric signal. These diverse devices commonly interact with their internal microstructure (e.g., detecting microstructure movement or actuating microstructure) using electrostatics or piezoelectrics.
MEMS devices using piezoelectrics to detect movement (e.g., an accelerometer) can employ a bimorph structure as a spring to support its corresponding mass above a substrate. Specifically, by way of example, FIG. 1A schematically shows a part of a prior art accelerometer 10P having a bimorph spring 12P supporting a mass 14P above a substrate 16P. As shown, the spring 12P has five distinct layers; namely, a middle electrode 18P between top and bottom polarized layers 20P and 22P, and two exterior electrodes 24P and 26P respectively on the top and bottom of the two polarized layers 20P and 22P. The two polarized layers 20P and 22P have the same polarity at rest.
Movement of the mass in the positive Z-direction, which, in this example, is generally orthogonal to and toward the substrate, causes one of the polarized layers 20P or 22P to compress while the other polarized layer expands 20P or 22P. This causes the first and second polarized layers 20P and 22P to have the electrical pattern shown in FIG. 1B (schematically showing the spring 12P only). The strength of those electric fields is a function of the compression/expansion of the respective polarized layers 20P and 22P. A signal detector 28P connected between the middle electrode 18P and one of the exterior electrodes 24P or 26P detects a degree of change in polarity, indicating qualities of the movement of the mass 14P.
To the knowledge of the inventors, many in the art consider this design to operate satisfactorily. In contrast, the inventors believe that future technological demands may limit the applicability of this prior art design across many current and emerging applications.
SUMMARY OF THE INVENTION
In accordance with one embodiment of the invention, a MEMS device has a bimorph with oppositely polarized layers. Specifically, the MEMS device has a mass supported at least in part by a spring. Among other things, the spring has first and second layers, and first and a second electrodes. The first and second layers are between the first and second electrodes, and the first and second layers, which are oppositely polarized, form a bimorph.
For added functionality, the MEMS device also may have a signal detector between the first electrode and the second electrode. The signal detector detects at least one of a) a voltage difference between the first and second electrodes, or b) a current between the first and second electrodes. The MEMS device further may have a substrate with a top surface. In that case, the spring may support the mass above the substrate, and the bimorph produces a signal (when moved) indicating the displacement of the mass in a direction that is generally orthogonal to the top surface of the substrate.
The first and second layers may be formed from a suitable material, such as aluminum nitride. The device may implement the functionality of a number of different machines, such as an accelerometer or a gyroscope. The spring and mass may form at least a part of an accelerometer (or gyroscope).
Some embodiments also have a middle electrode between the first and second layers. Thus, the MEMS device may also have an electrical interface to the middle electrode. Such an interface additionally may permit X and Y sensing. During use, the first layer may compress while the second layer expands. In that case, the electrical signal between the first and second electrodes is greater than an electrical signal between the first electrode and middle electrode.
The spring may be coupled with the mass about the outer periphery of the mass.
For example, the spring and mass may form a cantilever. Alternatively, the MEMS device may have a plurality of springs about the outer periphery of the mass. Each of at least two of those springs may have a bimorph of oppositely polarized layers.
In accordance with other embodiments of the invention, a MEMS sensor has a substrate, a mass, and a piezoelectric spring movably suspending the mass above the substrate. The spring has first and second layers of opposing polarities when at rest. The first layer has a first interior surface and an opposing first exterior surface. In a corresponding manner, the second layer has a second interior surface and an opposing second exterior surface. The first and second interior surfaces are positioned between the first and second exterior surfaces. To facilitate reception of a signal, the first exterior surface has a first electrode, and the second exterior surface has a second electrode.
In accordance with another embodiment of the invention, a method of detecting an acceleration provides a mass suspended above a substrate by a piezoelectric spring having first and second oppositely polarized layers when at rest. The spring has a spring constant that permits the mass to move in at least one direction relative to the substrate in response to an acceleration. The mass moves in response to an acceleration, which causes the first layer to compress to have a first polarity and the second layer to expand to have the same polarity. The method then measures a signal across the first and second layers. The acceleration is a function of the signal measured across the layers.
The signal may be a function of the voltage difference between the first and second layers. For example, the signal may be a voltage, a current, or a power signal. Some embodiments position a first outside electrode and a second outside electrode on the spring. The two layers are positioned at least in part between these outside electrodes. The signal is measured from those first and second outside electrodes.
BRIEF DESCRIPTION OF THE DRAWINGS
Those skilled in the art should more fully appreciate advantages of various embodiments of the invention from the following “Description of Illustrative Embodiments,” discussed with reference to the drawings summarized immediately below.
FIG. 1A schematically shows a cross-sectional view of a prior art accelerometer.
FIG. 1B schematically shows the spring of the accelerometer of FIG. 1A in a flexed state.
FIG. 2 schematically shows a perspective view of one type of accelerometer that may implement illustrative embodiments of the invention.
FIG. 3 schematically shows a cross-sectional view of the accelerometer shown in FIG. 2 across line 3-3.
FIG. 4A schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3, with the spring in an at-rest state.
FIG. 4B schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3, with the spring flexed downwardly.
FIG. 4C schematically shows an enlarged view of the spring in the accelerometer shown in FIG. 3, with the spring flexed upwardly.
FIG. 5 schematically shows an alternative embodiment of the spring shown in FIGS. 4A-4C.
FIG. 6 schematically shows a cross-sectional view of an accelerometer implementing an alternative embodiment of the invention.
FIG. 7 shows a process of forming a bimorph spring in accordance with illustrative embodiments of the invention.
DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
In illustrative embodiments, a MEMS device has a bimorph spring formed from two normally opposite-polarity layers. Accordingly, during use, when one layer is compressed and the other layer is stretched, the voltage potential of the two layers has an additive relationship. Consequently, such a spring should provide a greater signal-to-noise ratio than the above noted prior art bimorph springs (i.e., those that require a voltage reading across a single layer only). Moreover, such embodiments simplify fabrication processes by not requiring a connection to an often buried, middle electrode. Details of various embodiments are discussed below.
Principals of illustrative embodiments apply to a number of different MEMS devices. To that end, among other things, they may apply to MEMS devices configured as inertial sensors, such as accelerometers and gyroscopes, optical switches, pressure sensors, and microphones. To simplify the discussion, however, illustrative embodiments are discussed in terms of a specific MEMS sensor; namely a cantilevered accelerometer. MEMS engineers thus can apply various principals of illustrative embodiments, when appropriate and within their technical expertise, to other MEMS devices. For example, various embodiments also apply to other types of sensors, such as non-cantilevered accelerometers, or gyroscopes with and without cantilevers.
FIG. 2 schematically shows a perspective view of one type of accelerometer 10 that may implement illustrative embodiments of the invention. FIG. 3 schematically shows a cross-sectional view of the same accelerometer 10 across line 3-3 of FIG. 2. As noted above, the accelerometer 10 has a spring 12 that suspends a movable mass 14 above a substrate 16 in a cantilevered manner. The accelerometer 10 generally generates a signal representative of movement of the mass 14 in a direction that is generally toward or away from the underlying substrate 16. As such, those skilled in the art would referred to as type of accelerometer 10 as a “Z-axis” accelerometer.
More specifically, the spring 12 has a prescribed flexibility/spring constant that permits the mass 14 to move generally upwardly or downwardly, in a cantilevered manner, toward or away from the substrate 16. Acceleration of the substrate 16, and its underlying apparatus, is a function of the mass movement. To that end, in addition to supporting the mass 14, the spring 12 also has piezoelectric properties that enable detection circuitry (shown schematically in FIG. 3 only) to detect movement of the mass 14. More particularly, as discussed in greater detail below and mentioned above, the spring 12 is a multilayer bimorph having a unique polarization pattern.
The inventors realized that prior art bimorph springs, such as those discussed above with regard to FIGS. 1A and 1B, suffered deficiencies that may not be readily apparent to others skilled in the art. Specifically, prior art springs may not provide a signal of sufficient amplitude for lower power applications because they deliver a voltage across one layer only. To the knowledge of the inventors, those skilled in the art have not acknowledged this problem, nor suggested improving the signal-to-noise ratio.
Accordingly, in illustrative embodiments of the invention, the spring 12 is a multilayered bimorph structure having at least two layers that are normally oppositely polarized. To that end, FIG. 4A schematically shows an enlarged cross-sectional view of the spring 12 when at rest. As shown, the spring 12 has a center/middle electrode 18, top and bottom (active/polarized) layers 20 and 22 on either side of the center electrode 18, and top and bottom electrodes 24 and 26 respectively on the top and bottom layers 20 and 22. It should be noted that special terminology, such as “top,” “bottom,” “up,” “center,” “middle,” and “down,” are from the perspective of the drawings only; those terms are used merely to simplify the discussion and not intended to limit various embodiments or imply exact points (i.e., “center” is not necessarily intended to mean exactly in the center).
The electrodes 18, 24 and 26 may be formed from any metal sufficient for the intended purpose, such as titanium tungsten or platinum. The top and bottom layers 20 and 22 also may be formed from a material sufficient for the intended purposes, such as aluminum nitride. As shown in FIG. 4A, when at rest, the top layer 20 has a polarity with a negative charge in the middle of the bimorph, and a positive charge near the top and bottom edges. It should be noted, however, that an opposite polarity also should suffice. Discussion of the specific polarity merely is for illustrative purposes only.
FIG. 4B schematically shows the same bimorph spring 12 of FIG. 4A stressed generally downwardly. As shown, the top layer 20 stretches downwardly while the bottom layer 22 compresses. Consequently, the polarity of the top layer 20 remains the same while polarity of the bottom layer 22 changes. As noted above, this polarity switch has an additive effect to the voltage across the entire bimorph (i.e., between the top and bottom electrodes 24 and 26). In other words, the inventors anticipate that the signal between the top and bottom electrodes 24 and 26 will be greater than the signal between the middle electrode 18 and either one of the top and bottom electrodes 24 and 26.
In a similar manner, FIG. 4C schematically shows the same bimorph spring 12 of FIG. 4A stressed generally upwardly. As shown, the top layer 20 compresses while the bottom layer 22 stretches—the opposite result from that shown in FIG. 4B. Consequently, the polarity of the top layer 20 changes while polarity of the bottom layer 22 remains the same. Accordingly, when stressed generally upwardly, this polarity switch has an additive effect of the voltage across the entire bimorph.
As noted above, FIG. 3 schematically shows a detector 28 that, when connected to the top and bottom electrodes 24 and 26, reads the voltage across bimorph. For example, the detector 28 may detect a signal (e.g., a current signal) that is proportional to the voltage between the top and bottom electrodes 24 and 26. To that end, the detector 28 simply connects to both top and bottom electrodes 24 and 26, which should be readily accessible. This is in contrast to the prior art bimorph design of FIGS. 1A and 1B, which requires access to the middle electrode 18—an electrode that typically is generally inaccessible absent additional fabrication steps. Accordingly, in addition to providing an improved signal-to-noise ratio, various embodiments simplify device fabrication, thus reducing overall part cost.
Although its function is not discussed above, the middle electrode 18 can serve various purposes. For example, it facilitates current flow between the top and bottom layers 20 and 22. In addition, despite mitigating one benefit of the design, it still can be electrically accessed to detect motion in a direction that is generally parallel to the substrate 16 (i.e., in the X-direction and the Y-direction). Accordingly, various embodiments may be implemented not only in Z-axis sensors, but also in X-axis and Y-axis sensors. In fact, various embodiments also apply to 2-dimensional and 3-dimensional sensors.
Alternative embodiments may omit the middle electrode 18. Specifically, FIG. 5 schematically shows the spring 12 without the middle electrode 18. Yet other embodiments may include additional electrodes or layers as dictated by the desired application.
As noted above, various embodiments are not limited to cantilevered microstructure. For example, FIG. 6 schematically shows an alternative accelerometer 10 having at least two bimorph springs 12 supporting the mass 14 at its periphery above the substrate 16. Depending on the application, the springs 12 of this embodiment can have the middle electrode 18, or omit the middle electrode 18. Accordingly, this accelerometer 10 may detect movement in one or more of the X-direction, Y-direction, or Z-direction.
FIG. 7 shows one of many possible processes of forming the bimorph spring 12 in accordance with illustrative embodiments of the invention. It should be noted that for simplicity, this process omits discussion of fabricating the overall accelerometer 10, focusing primarily on the bimorph spring 12. Even with that simplification, this process only generally describes a generalized process of forming the bimorph spring 12 and thus, omits granular details of the process that one skilled in the art can readily apply.
The process begins at step 700, which sputters a target material onto a substrate to form the bottom layer 22. To that end, as with many MEMS fabrication processes, this and other steps start with a base material, such as titanium tungsten or platinum (noted above), that forms the bottom electrode 26. While in a nitrogen gas environment, conventional processes may sputter aluminum from an aluminum target onto the substrate. Consequently, the bottom electrode 26 supports the bottom layer 22, which, in this embodiment, is formed from aluminum nitride.
As discussed above, this bottom layer 22 has a certain polarity, which is a function of its fabrication. For example, one or more of the nitrogen flow rate, the oxygen content in the deposition chamber, pressure in the chamber, and deposition power are controlled to produce the desired polarity across the bottom layer 22.
Next, the process adds the middle electrode 18 to the top of the bottom layer 22 (step 702), and then sputters the top layer 20 onto the top surface of the middle electrode 18 (step 704). In a manner similar to step 700, this step also may sputter aluminum from an aluminum target onto the exposed middle electrode 18 in a nitrogen atmosphere. As noted throughout, this top layer 20 normally has a polarity that is opposite to that of the bottom layer 22. Accordingly, as with the bottom layer 22, one or more of the nitrogen flow rate, the oxygen content in the deposition chamber, pressure in the chamber, and deposition power are controlled to produce the desired polarity across the top layer 20.
The process concludes at step 706, which adds the top electrode 24. It should be noted that discussion of specific materials (e.g., aluminum, nitrogen, platinum and titanium tungsten) are for illustrative purposes only. Those skilled in the art therefore can use other materials as permitted by the application.
Accordingly, when used to detect Z-direction movement, the cantilevered accelerometer 10 of FIGS. 2 and 3 compresses one layer 20 or 22 while stretching the other layer 20 or 22. One skilled in the art therefore can take advantage of the full polarity of the entire bimorph spring 12, thus improving signal-to-noise ratio while not requiring access to the middle electrode 18. When used to detect X-direction or Y-direction movement, both layers 20 and 22 either compress or stretch and thus, access to the middle electrode 18 should provide the appropriate, but lower data signals.
Although the above discussion discloses various exemplary embodiments of the invention, it should be apparent that those skilled in the art can make various modifications that will achieve some of the advantages of the invention without departing from the true scope of the invention.

Claims (9)

What is claimed is:
1. A MEMS inertial sensor comprising:
a substrate;
a mass; and
a piezoelectric spring movably suspending the mass above the substrate, the spring being formed on the substrate by sputter etching and having first and second layers of opposing polarities when at rest, the first layer having a first interior surface and an opposing first exterior surface, the second layer having a second interior surface and an opposing second exterior surface, the first and second interior surfaces being between the first and second exterior surfaces, the first exterior surface having a first electrode, the second exterior surface having a second electrode, the mass being structurally different from the spring.
2. The MEMS sensor as defined by claim 1 wherein the first and second layer comprise aluminum nitride.
3. The MEMS sensor as defined by claim 1 further comprising an electrical conductor between the first and second interior surfaces.
4. The MEMS sensor as defined by claim 1 further comprising a signal detector between the first electrode and the second electrode, the signal detector detecting a signal proportional to the voltage between the first and second electrodes.
5. The MEMS sensor as defined by claim 4 wherein the signal detector detects a voltage between the first and second electrodes.
6. A method of detecting an acceleration, the method comprising:
providing a MEMS inertial sensor comprising a mass suspended above a substrate by a piezoelectric spring, the spring being formed by sputter etching processes that sputter the spring onto the substrate, the piezoelectric spring having first and second oppositely polarized layers when at rest, the spring having a spring constant that permits the mass to move in at least one direction relative to the substrate in response to an acceleration, the mass being structurally different from the spring;
the mass moving relative to the substrate in response to an acceleration, the movable mass causing the first layer to compress to have a first polarity, the movable mass causing the second layer to expand to have the same polarity; and
measuring a signal across the first and second layers, the acceleration being a function of the signal measured across the layers.
7. The method as defined by claim 6 wherein the spring also has a first outside electrode and a second outside electrode, the two layers being at least in part between the first and second outside electrodes, the signal being measured from the first and second outside electrodes.
8. The method as defined by claim 6 wherein the signal is a function of the voltage difference between the first and second layers.
9. The method as defined by claim 6 wherein the spring has a middle electrode between the first and second layers, the middle electrode being physically inaccessible to the exterior of the spring.
US12/413,196 2009-03-27 2009-03-27 MEMS device with opposite polarity spring bimorph Active 2030-07-18 US8438923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/413,196 US8438923B2 (en) 2009-03-27 2009-03-27 MEMS device with opposite polarity spring bimorph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/413,196 US8438923B2 (en) 2009-03-27 2009-03-27 MEMS device with opposite polarity spring bimorph

Publications (2)

Publication Number Publication Date
US20100242604A1 US20100242604A1 (en) 2010-09-30
US8438923B2 true US8438923B2 (en) 2013-05-14

Family

ID=42782482

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/413,196 Active 2030-07-18 US8438923B2 (en) 2009-03-27 2009-03-27 MEMS device with opposite polarity spring bimorph

Country Status (1)

Country Link
US (1) US8438923B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071793A (en) * 2008-09-18 2010-04-02 Toshiba Corp Multiaxial acceleration sensor and angular velocity sensor
US8943888B2 (en) * 2013-01-09 2015-02-03 M-Tech Instrument Corporation (Holding) Limited Micromachined flow sensor integrated with flow inception detection and make of the same
US9470806B2 (en) 2013-08-29 2016-10-18 Pgs Geophysical As Piezoelectric accelerometer
JP6610706B2 (en) 2017-05-24 2019-11-27 株式会社村田製作所 Piezoelectric gyroscope with lateral drive transducer
JP6696530B2 (en) 2017-05-24 2020-05-20 株式会社村田製作所 Coupling suspension in a piezoelectric gyroscope
JP6627912B2 (en) * 2017-05-24 2020-01-08 株式会社村田製作所 Piezoelectric rotating MEMS resonator
JP6627911B2 (en) * 2017-05-24 2020-01-08 株式会社村田製作所 Piezoelectric rotating MEMS resonator
JP2019033631A (en) * 2017-08-09 2019-02-28 国立大学法人静岡大学 Mems vibration element and manufacturing method therefor, and vibration power generation element
CN114217089B (en) * 2021-10-26 2023-02-17 北京理工大学 MEMS omnibearing fluid vector flow velocity sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034345A (en) * 1959-05-19 1962-05-15 Bell Telephone Labor Inc Gauges using piezoresistive elements
US20050104478A1 (en) * 2003-02-25 2005-05-19 Palo Alto Research Center Incorporated Bimorph MEMS devices
US7231874B2 (en) * 2001-09-05 2007-06-19 Omnitek Partners Llc Power supplies for projectiles and other devices
US20070228887A1 (en) * 2006-03-31 2007-10-04 Kabushiki Kaisha Toshiba Piezoelectric driven mems device
US20070284969A1 (en) * 2006-04-10 2007-12-13 Honeywell International Inc. Micromachined, piezoelectric vibration-induced energy harvesting device and its fabrication
US20080079333A1 (en) * 2006-10-02 2008-04-03 Robert Bosch Gmbh Energy harvesting device manufactured by print forming processes
US7948153B1 (en) * 2008-05-14 2011-05-24 Sandia Corporation Piezoelectric energy harvester having planform-tapered interdigitated beams

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034345A (en) * 1959-05-19 1962-05-15 Bell Telephone Labor Inc Gauges using piezoresistive elements
US7231874B2 (en) * 2001-09-05 2007-06-19 Omnitek Partners Llc Power supplies for projectiles and other devices
US20050104478A1 (en) * 2003-02-25 2005-05-19 Palo Alto Research Center Incorporated Bimorph MEMS devices
US6895645B2 (en) * 2003-02-25 2005-05-24 Palo Alto Research Center Incorporated Methods to make bimorph MEMS devices
US7084554B2 (en) * 2003-02-25 2006-08-01 Palo Alto Research Center Incorporated Bimorph MEMS devices
US20070228887A1 (en) * 2006-03-31 2007-10-04 Kabushiki Kaisha Toshiba Piezoelectric driven mems device
US7732990B2 (en) * 2006-03-31 2010-06-08 Kabushiki Kaisha Toshiba Piezoelectric driven MEMS device
US20070284969A1 (en) * 2006-04-10 2007-12-13 Honeywell International Inc. Micromachined, piezoelectric vibration-induced energy harvesting device and its fabrication
US20080079333A1 (en) * 2006-10-02 2008-04-03 Robert Bosch Gmbh Energy harvesting device manufactured by print forming processes
US7414351B2 (en) * 2006-10-02 2008-08-19 Robert Bosch Gmbh Energy harvesting device manufactured by print forming processes
US7948153B1 (en) * 2008-05-14 2011-05-24 Sandia Corporation Piezoelectric energy harvester having planform-tapered interdigitated beams

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Akiyama, Morito, et al. Influence of oxygen concentration in sputtering gas on piezoelectric response of aluminum nitride thin films, American Institute of Physics, Applied Physics Letters 93, 021903 (2008) 3 pages.
Akiyama, Morito, et al. Polarity inversion in aluminum nitride thin films under high sputtering power, American Institute of Physics, Applied Physics Letters 90, 151910 (2007) 3 pages.
Toshihiro, Kamohara, et al. Influence of polar distribution on piezoelectric response of aluminum nitride thin films, American Institute of Physics, Applied Physics Letters 92, 093506 (2008) 3 pages.
Toshihiro, Kamohara, et al. Influence of sputtering pressure on polarity distribution of aluminum nitride thin films, American Institute of Physics, Applied Physics Letters 89, 243507 (2006) 3 pages.

Also Published As

Publication number Publication date
US20100242604A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US8438923B2 (en) MEMS device with opposite polarity spring bimorph
CN110058051B (en) Z-axis micro-electromechanical detection structure with drift reduction function
US8459114B2 (en) Multi-axis capacitive accelerometer
US7121141B2 (en) Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
US9831803B2 (en) Membrane-based nano-electromechanical systems device and methods to make and use same
JP4687577B2 (en) Inertial sensor
EP3156804B1 (en) Microelectromechanical sensor device with reduced stress sensitivity
US8201449B2 (en) Sensor
RU2325722C2 (en) Miniature relay and corresponding variants of its application
US8418557B2 (en) Physical quantity sensor
EP2329280A1 (en) A capacitive sensor device and a method of sensing accelerations
CN105115540A (en) MEMS inertia sensor and humidity sensor integration device and manufacturing method therefor
CN116106579A (en) MEMS inertial sensor, detection method and electronic equipment
JP2011196966A (en) Inertia sensor
CN114994363B (en) MEMS inertial sensing structure and manufacturing method thereof
JP2008064603A (en) Acceleration sensor and acceleration detector
Yamane et al. An arrayed MEMS accelerometer with a wide range of detection
CN204758028U (en) MEMS inertial sensor , humidity transducer integrated device
CN111908419B (en) Sandwich type MEMS device structure
Bais et al. Structure design and fabrication of an area-changed bulk micromachined capacitive accelerometer
JP4611005B2 (en) Sensor element
US20230288202A1 (en) Sensor and electronic device
JP2009103699A (en) Acceleration sensor
CN111908419A (en) Sandwich type MEMS device structure
JPH0510966A (en) Acceleration sensor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ANALOG DEVICES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAMMOURA, FIRAS;YANG, KUANG;SIGNING DATES FROM 20090401 TO 20090402;REEL/FRAME:022509/0568

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8