US8390064B2 - Semiconductor device having gate trenches and manufacturing method thereof - Google Patents

Semiconductor device having gate trenches and manufacturing method thereof Download PDF

Info

Publication number
US8390064B2
US8390064B2 US12/635,309 US63530909A US8390064B2 US 8390064 B2 US8390064 B2 US 8390064B2 US 63530909 A US63530909 A US 63530909A US 8390064 B2 US8390064 B2 US 8390064B2
Authority
US
United States
Prior art keywords
gate electrode
gate
trench
forming
dummy gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/635,309
Other versions
US20100148248A1 (en
Inventor
Noriaki Mikasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longitude Licensing Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Assigned to ELPIDA MEMORY, INC. reassignment ELPIDA MEMORY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIKASA, NORIAKI
Publication of US20100148248A1 publication Critical patent/US20100148248A1/en
Application granted granted Critical
Publication of US8390064B2 publication Critical patent/US8390064B2/en
Assigned to ELPIDA MEMORY INC. reassignment ELPIDA MEMORY INC. SECURITY AGREEMENT Assignors: PS4 LUXCO S.A.R.L.
Assigned to PS4 LUXCO S.A.R.L. reassignment PS4 LUXCO S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELPIDA MEMORY, INC.
Assigned to LONGITUDE SEMICONDUCTOR S.A.R.L. reassignment LONGITUDE SEMICONDUCTOR S.A.R.L. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: PS5 LUXCO S.A.R.L.
Assigned to PS5 LUXCO S.A.R.L. reassignment PS5 LUXCO S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PS4 LUXCO S.A.R.L.
Assigned to LONGITUDE LICENSING LIMITED reassignment LONGITUDE LICENSING LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LONGITUDE SEMICONDUCTOR S.A.R.L.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly relates to a semiconductor device including trench gate transistors (trench gate is also referred to as “recess channel”, see Japanese Patent Application Laid-open Nos. 2005-322880, 2006-173429, and 2006-261627) and a manufacturing method of the semiconductor device.
  • trench gate is also referred to as “recess channel”, see Japanese Patent Application Laid-open Nos. 2005-322880, 2006-173429, and 2006-261627
  • fine patterns are formed by photolithography and dry etching.
  • FIGS. 26A and 26B show a configuration of memory cell transistors of an ordinary DRAM, where FIG. 26A is a schematic plan view and FIG. 26B is a schematic cross-sectional view taken along a line B-B of FIG. 26A .
  • STI Shallow Trench Isolation regions 401 are formed in a semiconductor substrate 400 by photolithography and dry etching, thereby defining and dividing active regions 402 .
  • Gate electrodes 403 each having an upper surface covered with a cap insulating film 405 and a side surface covered with a sidewall insulating film 406 are provided to cross the active regions 402 .
  • Contact plugs 407 are formed on diffusion layers 404 provided on both sides of each gate electrode 403 so as to be connected to the diffusion layers 404 , respectively.
  • the active regions 402 are formed to be sufficiently wide on both sides of the gate electrodes 403 .
  • the diffusion layers 404 are also formed to be sufficiently large. This arrangement enables each contact plug 407 and the diffusion layer 404 corresponding to the contact plug 407 to be connected to each other by as much as a sufficient area, thus suppressing contact resistance to be low.
  • FIGS. 27A and 27B show a configuration of memory cell transistors when the distance between two adjacent active regions is narrower, where FIG. 27A is a schematic plan view and FIG. 27B is a schematic cross-sectional view taken along a line B-B of FIG. 27A .
  • FIGS. 27A and 27B constituent elements identical to those in FIGS. 26A and 26B are denoted by like reference numerals and explanations thereof will be omitted.
  • the distance between two adjacent active regions 502 is made narrower, and thus photolithography and dry etching are not performed satisfactorily, so that an area of each of the active regions 502 defined and divided by STI regions 501 is reduced. This reduces areas of the diffusion layers 504 . As indicated by a dotted line in FIG. 27A , a contact area by which one contact plug 407 contacts with the diffusion layer 504 corresponding to the contact plug 407 is considerably reduced. Accordingly, there occurs a problem that contact resistance considerably increases.
  • the present invention seeks to solve one or more of the above problems, or to improve upon those problems at least in part.
  • a semiconductor device comprising: an active region provided in a semiconductor substrate, defined by an STI region, and extending in a first direction; a first gate trench, a second gate trench, and a dummy gate trench formed in the active region; a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction, at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode being buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively; first and second diffusion layers formed in the active region provided on both sides of the first gate electrode, respectively; and third and fourth diffusion layers formed in the active region provided on both sides of the second gate electrode, respectively, wherein the first gate electrode and the first and second diffusion layers constitute a first transistor, the second gate electrode and the third and fourth diffusion layers constitute a second transistor, and the dummy gate electrode is arranged between the second diffusion layer and the third diffusion layer, and electrically isolates the first transistor
  • a method of manufacturing a semiconductor device comprising: forming STI trenches in a semiconductor substrate to define an active region extending in a first direction in the semiconductor substrate; burying the STI trenches with an insulating film; forming a first gate trench, a second gate trench, and a dummy gate trench in the active region; forming a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction so that at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode are buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively; and forming first and second diffusion layers in the active region on both sides of the first gate electrode, respectively so as to form a first transistor constituted by the first gate electrode and the first and second diffusion layers, and forming third and fourth diffusion layers in the active region on both sides of the second gate electrode, respectively so as to form a second transistor constituted by the second gate electrode
  • the STI region does not isolate and separate the first transistor from the second transistor.
  • the dummy gate trench is provided in the active region where the first and second gate electrodes are formed, the dummy gate electrode is formed in the dummy gate trench, and the dummy gate electrode is arranged between the diffusion layer of the first transistor and the diffusion layer of the second transistor.
  • the dummy gate electrode thereby functions as an element isolation region. Therefore, photolithographic and dry etching targets can be limited to line-and-space patterns extending in the first direction.
  • the line-and-space patterns are relatively easy to resolve by the photolithography. Therefore, it is possible to prevent reduction in active region patterns in the first direction. Accordingly, it is possible to suppress reduction in areas of the diffusion layers and suppress a contact area between the contact plug and one diffusion layer from being reduced. This can suppress contact resistance to be sufficiently low.
  • FIGS. 1A to 1C show a configuration of a semiconductor device 10 according to a first embodiment of the present invention, where FIG. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along a line B-B of FIG. 1A , and FIG. 1C is a schematic cross-sectional view taken along a line C-C of FIG. 1A ;
  • FIGS. 2A to 2C show one step (forming a first mask layer 111 ) of manufacturing processes of the semiconductor device 10 according to the first embodiment
  • FIGS. 3A to 3C show one step (forming STI regions 101 ) of manufacturing processes of the semiconductor device 10 according to the first embodiment
  • FIGS. 4A to 4C show one step (forming a second mask layer 112 ) of manufacturing processes of the semiconductor device 10 according to the first embodiment
  • FIGS. 5A to 5C show one step (forming a first gate trench 103 gt 1 , a second gate trench 103 gt 2 and a dummy gate trench 103 dgt ) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
  • FIGS. 6A to 6C show one step (forming a first gate electrode 104 g 1 , a second gate electrode 104 g 2 and a dummy gate electrode 104 dg ) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
  • FIGS. 7A to 7D show a configuration of a semiconductor device 20 according to a second embodiment of the present invention, where FIG. 7A is a schematic plan view, FIG. 7B is a schematic cross-sectional view taken along a line B-B of FIG. 7A , FIG. 7C is a schematic cross-sectional view taken along a line C-C of FIG. 7A , and FIG. 7D is a schematic cross-sectional view taken along a line D-D of FIG. 7A ;
  • FIGS. 8A to 8C show one step (forming a first mask layer 213 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 9A to 9C show one step (forming sidewall insulating films 212 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 10A to 10C show one step (forming STI trenches 201 t ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 11A to 11C show one step (forming STI regions 201 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 12A to 12C show one step (removing the first mask layer 213 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 13A to 13D show one step (forming a first gate trench 203 gt 1 , a second gate trench 203 gt 2 , a dummy gate trench 203 dgt and fin portions 211 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
  • FIGS. 14A to 14D show one step (forming a photoresist 215 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 15A to 15D show one step (removing the fin portions 211 formed on the side of dummy gate trench 203 dgt ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 16A to 16D show one step (removing the photoresist 215 and the second mask layer 214 ) of manufacturing processes of the semiconductor device 20 according to the second embodiment
  • FIGS. 17A to 17D show one step (forming a first gate electrode 204 g 1 , a second gate electrode 204 g 2 and a dummy gate electrode 204 dg ) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
  • FIGS. 18A to 18D show a configuration of a semiconductor device 30 according to a third embodiment of the present invention, where FIG. 18A is a schematic plan view, FIG. 18B is a schematic cross-sectional view taken along a line B-B of FIG. 18A , FIG. 18C is a schematic cross-sectional view taken along a line C-C of FIG. 18A , and FIG. 18D is a schematic cross-sectional view taken along a line D-D of FIG. 18A ;
  • FIGS. 19A to 19C show one step (etching a first mask layer 313 and a semiconductor substrate 300 ) of manufacturing processes of the semiconductor device 30 according to the third embodiment
  • FIGS. 20A to 20C show one step (forming sidewall insulating films 312 ) of manufacturing processes of the semiconductor device 30 according to the third embodiment
  • FIGS. 21A to 21D show one step (forming a photoresist 314 ) of manufacturing processes of the semiconductor device 30 according to the third embodiment
  • FIGS. 22A to 22D show one step (forming STI trenches 301 t ) of manufacturing processes of the semiconductor device 30 according to the third embodiment
  • FIGS. 23A to 23D show one step (forming STI regions 301 ) of manufacturing processes of the semiconductor device 30 according to the third embodiment
  • FIGS. 24A to 24D show one step (forming a second mask layer 315 , a first gate trench 303 gt 1 , a second gate trench 303 gt 2 and a dummy gate trench 303 dgt ) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
  • FIGS. 25A to 25D show one step (forming a first gate electrode 304 g 1 , a second gate electrode 304 g 2 and a dummy gate electrode 304 dg ) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
  • FIGS. 26A and 26B show a configuration of memory cell transistors of an ordinary DRAM, where FIG. 26A is a schematic plan view and FIG. 26B is a schematic cross-sectional view taken along a line B-B of FIG. 26A ; and
  • FIGS. 27A and 27B show a configuration of memory cell transistors when the distance between two adjacent active regions is narrower, where FIG. 27A is a schematic plan view and FIG. 27B is a schematic cross-sectional view taken along a line B-B of FIG. 27A .
  • FIGS. 1A to 1C show a configuration of a semiconductor device 10 according to a first embodiment of the present invention, where FIG. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along a line B-B of FIG. 1A , and FIG. 1C is a schematic cross-sectional view taken along a line C-C of FIG. 1A .
  • the semiconductor device 10 according to the first embodiment is a DRAM, and FIGS. 1A to 1C show the configuration at a time when formation of contact plugs to be connected to diffusion layers is completed.
  • the semiconductor device 10 is configured to include active regions 102 provided in a semiconductor substrate 100 , defined and divided by STI regions 101 , and extending in an X direction (a first direction), first gate trenches 103 gt 1 , second gate trenches 103 gt 2 , and dummy gate trenches 103 dgt provided in the active regions 102 , and first gate electrodes 104 g 1 , second gate electrodes 104 g 2 , and dummy gate electrodes 104 dg which extend in a Y direction (second direction) crossing the active regions 102 , and at least a part of which are buried in the first gate trenches 103 gt 1 , second gate trenches 103 gt 2 , and dummy gate trenches 103 dgt , respectively.
  • Each of the dummy gate electrodes 104 dg is arranged between one first gate electrode 104 g 1 and one second gate electrode
  • First to fourth diffusion layers 105 a 1 , 105 a 2 , 105 b 1 , and 105 b 2 to serve as source/drain regions are provided on both sides of the first and second gate electrodes 104 g 1 and 104 g 2 , respectively.
  • a cap insulating film 106 is provided on each of upper surfaces of the first and second gate electrodes 104 g 1 and 104 g 2 and the dummy gate electrodes 104 dg , and a sidewall insulating film 107 is provided on each of both side surfaces thereof.
  • Contact plugs 108 are connected to 105 a 2 , 105 b 1 , and 105 b 2 , respectively, thereby electrically connecting bit contacts or capacity contacts (not shown) to be provided on higher layers than the diffusion layers 105 a 1 , 105 a 2 , 105 b 1 , and 105 b 2 to the diffusion layers.
  • One first gate electrode 104 g 1 and the first and second diffusion layers 105 a 1 and 105 a 2 constitute a first transistor 109
  • one second gate electrode 104 g 2 and the third and fourth diffusion layers 105 b 1 and 105 b 2 constitute a second transistor 110 .
  • a predetermined bias is applied to each of the first and second gate electrodes 104 g 1 and 104 g 2 to thereby perform a transistor operation so as to form channels opposite in conduction type to the semiconductor substrate 100 as indicated by a broken-line arrow shown in FIG. 1B .
  • each dummy gate electrode 104 dg is arranged between the second diffusion layer 105 a 2 and the third diffusion layer 105 b 1 , whereby the dummy gate electrode 104 dg and the second and third diffusion layers 105 a 2 and 105 b 1 constitute a transistor.
  • a bias opposite to the predetermined bias is always applied to the dummy gate electrode 104 dg , so that no channel is formed between the diffusion layers 105 a 2 and 105 b 1 . That is, the transistor constituted by the dummy gate electrode 104 dg and the second and third diffusion layers 105 a 2 and 105 b 1 is always turned off. Therefore, the dummy gate electrode 104 gd functions as an element isolation region that isolates and separates the first transistor 109 from the second transistor 110 .
  • a manufacturing method of the semiconductor device 10 according to the first embodiment is explained next.
  • FIGS. 2A to 2C to FIGS. 6A to 6C show manufacturing processes of the manufacturing method of the semiconductor device 10 according to the first embodiment.
  • each drawing tagged as “A” is a schematic plan view
  • each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”
  • each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”.
  • a first mask layer 111 having line-and-space patterns is formed on the semiconductor substrate 100 so as to cover regions that are to serve as the active regions 102 .
  • the semiconductor substrate 100 is etched by using the mask layer 111 to thereby form STI trenches 101 t . Thereafter, the STI trenches 101 t are buried with an insulating film, thereby forming the STI regions 101 .
  • a second mask layer 112 exposing regions, where the first gate trenches 103 gt 1 , the second gate trenches 103 gt 2 , and the dummy gate trenches 103 dgt are formed, is formed on the active regions 102 of the semiconductor substrate 100 , as shown in FIGS. 4A to 4C .
  • the semiconductor substrate 100 is etched, thereby forming the first gate trenches 103 gt 1 , the second gate trenches 103 gt 2 , and the dummy gate trenches 103 dgt as shown in FIGS. 5A to 5C .
  • a conductive material is then formed on an entire surface to bury the first gate trenches 103 gt 1 , the second gate trenches 103 gt 2 , and the dummy gate trenches 103 dgt with the conductive material. Thereafter, as shown in FIGS. 6A to 6C , the cap insulating films 106 are formed and the conductive material is patterned by using the cap insulating films 106 as a mask.
  • the first gate electrodes 104 gt 1 , the second gate electrodes 104 gt 2 , and the dummy gate electrodes 104 dgt at least a part of which are buried in the first gate trenches 103 gt 1 , the second gate trenches 103 gt 2 , and the dummy gate trenches 103 dgt , respectively are thereby formed.
  • first and second gate electrodes 104 g 1 and 104 g 2 , the dummy gate electrodes 104 dg , and the cap insulating films 106 are implanted into the semiconductor substrate 100 , thereby forming the first to fourth diffusion layers 105 a 1 , 105 a 2 , 105 b 1 , and 105 b 2 .
  • the sidewall insulating films 107 are formed on side surfaces of the first and second gate electrodes 104 g 1 and 104 g 2 , the dummy gate electrodes 104 dg , and the cap insulating films 106 , respectively.
  • the contact plugs 108 connected to the diffusion layers 105 a 1 , 105 a 2 , 105 b 2 , and 105 b 3 , respectively are formed, thereby obtaining the configuration shown in FIGS. 1A to 1C .
  • the STI regions 101 are responsible for element isolation in the Y direction (see FIGS. 1A to 1C ) and the dummy gate electrodes 104 dg are responsible for element isolation in the X direction. Therefore, patterns of the active regions 102 can be formed as line-and-space patterns capable of ensuring photolithographically high resolution and extending in one direction (X direction), and thus it is possible to prevent reduction in the active regions 102 .
  • a second embodiment of the present invention is described next.
  • a transistor having a so-called double-fin structure in which fin portions formed by a part of a semiconductor substrate and constituting channel regions are provided on side surfaces of gate trenches, respectively is used as a memory cell transistor. Furthermore, in the second embodiment, no fin portions are provided on side surfaces of dummy gate trenches functioning as element isolation regions.
  • FIGS. 7A to 7D show a configuration of a semiconductor device 20 according to the second embodiment, where FIG. 7A is a schematic plan view, FIG. 7B is a schematic cross-sectional view taken along a line B-B of FIG. 7A , FIG. 7C is a schematic cross-sectional view taken along a line C-C of FIG. 7A , and FIG. 7D is a schematic cross-sectional view taken along a line D-D of FIG. 7A .
  • constituent elements identical to those in the semiconductor device 10 according to the first embodiment are denoted by like reference numerals and explanations thereof will be omitted.
  • the semiconductor device 20 includes fin portions 211 provided in lower portions of side surfaces of first and second gate trenches 203 gt 1 and 203 gt 2 in an X direction, formed by a part of a semiconductor substrate 200 , and constituting a part of channel regions, respectively. Regions defined and divided by STI regions 201 and each indicated by a one-dot chain line are active regions 202 .
  • first transistor 209 and a second transistor 210 channel regions formed when a predetermined bias is applied to each of first and second gate electrodes 204 gt 1 and 204 gt 2 are formed not only on side surfaces and bottom surfaces of the first and second gate trenches 203 gt 1 and 203 gt 2 in a Y direction but also on the fin portions 211 provided on the side surfaces thereof in the X direction.
  • no fin portions are formed on side surfaces of dummy gate trenches 203 dgt in the X direction.
  • a threshold voltage of a transistor including each dummy gate electrode 204 dg can be set higher than those of the first and second transistors 209 and 210 . It is, therefore, possible to ensure that each dummy gate electrode 204 dg functions as an element isolation region between the first and second transistors 209 and 210 .
  • Sidewall insulating films 212 are provided on upper portions of the side surfaces of the first and second gate trenches 203 gt 1 and 203 gt 2 in the X direction, respectively. Therefore, the upper portions of the first and second gate trenches 203 gt 1 and 203 gt 2 contact with the STI regions 201 via the sidewall insulating films 212 .
  • the fin portions 211 can be formed to be high enough to reach above the upper portions of the first and second gate trenches 203 gt 1 and 203 gt 2 , such fin portions 211 tend to cause a problem that it is difficult to control threshold voltages. For this reason, the fin portions 211 are formed as shown in FIG. 7D .
  • a manufacturing method of the semiconductor device 20 according to the second embodiment is described next.
  • FIGS. 8A to 8C to FIGS. 17A to 17D show manufacturing processes of the manufacturing method of the semiconductor device 20 according to the second embodiment.
  • each drawing tagged as “A” is a schematic plan view
  • each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”
  • each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”
  • each drawing tagged as “D” is a schematic cross-sectional view taken along a line D-D of “A”.
  • the drawing tagged as “D” will be omitted.
  • a first mask layer 213 having line-and-space patterns is formed on the semiconductor substrate 200 .
  • the region indicated by a one-dot chain line is to serve as the active region 202 later.
  • the first mask layer 213 is formed to be narrower than the active region 202 .
  • the semiconductor substrate 200 is etched to thereby form trenches.
  • an insulating film is formed on an entire surface and the insulating film is then etched back, thereby forming sidewall insulating films 212 on side surfaces of the first mask layer 213 , respectively.
  • the semiconductor substrate 200 is etched to make the trenches deeper, thereby forming STI trenches 201 t.
  • the STI trenches 201 t are buried with an insulating film, thereby forming the STI regions 201 .
  • the STI regions 201 define and divide the active regions 202 .
  • planarization is performed until an upper surface of the semiconductor substrate 200 is exposed by CMP (Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • a second mask layer 214 exposing regions, where the first gate trenches 203 gt 1 , the second gate trenches 203 gt 2 , and the dummy gate trenches 203 dgt are formed, is then formed.
  • the semiconductor substrate 200 is etched.
  • the first gate trenches 203 gt 1 , the second gate trenches 203 gt 2 , and the dummy gate trenches 203 dgt are thereby formed.
  • the fin portions 211 formed by a part of the semiconductor substrate 200 are formed in lower portions of the sidewall insulating films 212 on the side surfaces of the trenches 203 gt 1 , 203 gt 2 , and 203 dgt , respectively.
  • a photoresist 215 including openings 215 op exposing upper portions of the dummy gate trenches 203 dgt is formed.
  • the fin portions 211 formed on side surfaces of the dummy gate trenches 203 dgt are removed by etching.
  • the dummy gate trenches 203 dgt slightly expand in the X direction (see FIGS. 7A to 7D ) and a height direction.
  • the photoresist 215 and the second mask layer 214 are removed. Thereafter, similarly to the first embodiment, the first gate electrodes 204 g 1 , the second gate electrodes 204 g 2 , the dummy gate electrodes 204 dg , the first to fourth diffusion layers 105 a 1 , 105 a 2 , 105 b 1 , and 105 b 2 , the sidewall insulating films 107 , and the contact plugs 108 at least a part of which are buried in the cap insulating films 106 , the first gate trenches 203 gt 1 , the second gate trenches 203 gt 2 , and the dummy gate trenches 203 dgt , respectively are sequentially formed, thereby obtaining the configuration shown in FIGS. 17A to 17D .
  • the second embodiment can exhibit effects identical to those of the first embodiment.
  • the fin portions 211 are formed at least a part of the side surfaces of the first and second gate electrodes 204 g 1 and 204 g 2 in the X direction (lower side surfaces of the first and second gate electrodes 204 g 1 and 204 g 2 ) respectively.
  • each of the fin portions 211 serves as a channel region. It is, therefore, possible to reduce threshold voltages of the first and second transistors 209 and 210 .
  • no fin portions are formed on the side surfaces of the dummy gate trenches 203 dgt in the X direction (the fin portions are removed at the process shown in FIGS.
  • each dummy gate electrode 204 dg functions as an element isolation region between the first and second transistors 209 and 210 .
  • a third embodiment of the present invention is described next.
  • the third embodiment is a modification of the second embodiment and different from the second embodiment in a manufacturing process for not providing fin portions on side surfaces of dummy gate trenches. Due to this difference, there are some parts in configuration that are different from the second embodiment; however, the configurations of the second and third embodiments are functionally almost identical.
  • FIGS. 18A to 18D show a configuration of a semiconductor device 30 according to the third embodiment, where FIG. 18A is a schematic plan view, FIG. 18B is a schematic cross-sectional view taken along a line B-B of FIG. 18A , FIG. 18C is a schematic cross-sectional view taken along a line C-C of FIG. 18A , and FIG. 18D is a schematic cross-sectional view taken along a line D-D of FIG. 18A .
  • constituent elements identical to those in the semiconductor device 10 according to the first embodiment are denoted by like reference numerals and explanations thereof will be omitted.
  • the semiconductor device 30 includes fin portions 311 provided in lower portions of side surfaces of first and second gate trenches 303 gt 1 and 303 gt 2 in an X direction, formed by a part of a semiconductor substrate 300 , and constituting a part of channel regions, respectively.
  • Sidewall insulating films 312 are provided on upper portions of the side surfaces of the first and second gate trenches 303 gt 1 and 303 gt 2 in the X direction, respectively. Therefore, upper portions of the first and second gate trenches 303 gt 1 and 303 gt 2 contact with STI regions 301 via the sidewall insulating films 312 , respectively.
  • first transistor 309 and a second transistor 310 channel regions formed when a predetermined bias is applied to each of first and second gate electrodes 304 gt 1 and 304 gt 2 are formed not only on side surfaces and bottom surfaces of the first and second gate trenches 303 gt 1 and 303 gt 2 in a Y direction but also on the fin portions 311 provided on the side surfaces thereof in the X direction.
  • no fin portions are formed on side surfaces of dummy gate trenches 303 dgt in the X direction.
  • the above configuration is identical to that of the semiconductor device 20 according to the second embodiment.
  • the entire side surfaces of the dummy gate trenches 303 dgt in the X direction contact with the STI regions 301 without via a part of the semiconductor substrate 300 , as shown in FIG. 18C . That is, the sidewall insulating films 312 are not formed on upper surfaces of the side surfaces of the dummy gate trenches 303 dgt in the X direction.
  • active regions 302 defined and divided by the STI regions 301 are made narrower in the X direction near dummy gate electrodes 304 dg .
  • a width of each dummy gate electrode 304 dg in a height direction is identical from an upper portion to a lower portion thereof.
  • the third embodiment configuration differs from the second embodiment as described above.
  • the presence of the fin portions 311 enable the threshold voltage of the transistor including each dummy gate electrode 304 dg to be set higher than those of the first and second transistors 309 and 310 , and ensures that each dummy gate electrode 304 dg functions as an element isolation region between the first and second transistors 309 and 310 .
  • a manufacturing method of the semiconductor device 30 according to the third embodiment is described next.
  • FIGS. 18A to 18D to FIGS. 25A to 25D show manufacturing processes of the manufacturing method of the semiconductor device 30 according to the third embodiment.
  • each drawing tagged as “A” is a schematic plan view
  • each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”
  • each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”
  • each drawing tagged as “D” is a schematic cross-sectional view taken along a line D-D of “A”.
  • the schematic cross-sectional view taken along the line D-D is identical to that taken along the line C-C, the drawing tagged as “D” will be omitted.
  • a first mask layer 313 having line-and-space patterns is formed on the semiconductor substrate 300 .
  • the region indicated by a one-dot chain line is to serve as the active region 302 later.
  • the first mask layer 313 is formed so that a width of the first mask layer 313 is smaller than a largest width of the active region 302 .
  • the semiconductor substrate 300 is etched to form trenches.
  • the photoresist 314 As shown in FIGS. 21A to 21D , while the first mask layer 313 is left, a photoresist 314 including openings 314 op exposing regions, where the dummy gate trenches 303 dgt are formed, is formed.
  • the sidewall insulating films 312 are etched. Only the sidewall insulating films 312 formed in the regions, where the dummy gate trenches 303 dgt are formed, are thereby removed.
  • the semiconductor substrate 300 is etched to make the trenches deeper, thereby forming STI trenches 301 t , as shown in FIGS. 22A to 22C .
  • the STI trenches 301 t are buried with an insulating film and subjected to planarization, thereby forming the STI regions 301 , as shown in FIGS. 23A to 23C .
  • the STI regions 301 define and divide the active regions 302 .
  • a second mask layer 315 exposing regions, where the first gate trenches 303 gt 1 , the second gate trenches 303 gt 2 , and the dummy gate trenches 303 dgt are formed, is formed.
  • the semiconductor substrate 300 is etched.
  • the first gate trenches 303 gt 1 , the second gate trenches 303 gt 2 , and the dummy gate trenches 303 dgt are thereby formed.
  • the fin portions 311 formed by a part of the semiconductor substrate 300 are formed in lower portions of the sidewall insulating films 312 on the side surfaces of the first gate trenches 303 gt 1 and second gate trenches 303 gt 2 , respectively.
  • the first gate electrodes 304 gt 1 , the second gate electrodes 304 g 2 , the dummy gate electrodes 304 dg , first to fourth diffusion layers 105 a 1 , 105 a 2 , 105 b 1 , and 105 b 2 , sidewall insulating films 107 , and contact plugs 108 at least a part of which are buried in cap insulating films 106 , the first gate trenches 303 gt 1 , the second gate trenches 303 gt 2 , and the dummy gate trenches 303 dgt , respectively are sequentially formed, thereby obtaining a configuration shown in FIGS. 25A to 25D .
  • the semiconductor device 30 capable of achieving the same effects as those of the first and second embodiments can be formed by manufacturing processes different from those of the second embodiment.
  • each dummy gate electrode can be formed out of polycrystalline silicon having a conduction type (for example, P type) identical to that of the semiconductor substrate, and the first and second gate electrodes can be formed out of polycrystalline silicon having a different conduction type (for example, N type) from that of the semiconductor substrate.
  • P type conduction type
  • N type conduction type
  • an undoped polycrystalline silicon film is formed on an entire surface so as to be buried in the gate trenches and dummy trenches, and N impurity ions, for example, are then implanted into the polycrystalline silicon film on the gate trenches by using a mask layer that covers the dummy trenches.
  • N impurity ions for example
  • P impurity ions for example, are implanted into the polycrystalline silicon film on the dummy trenches
  • the polycrystalline silicon film is then patterned into shapes of gate electrodes and dummy gate electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor device includes a first gate trench, a second gate trench, and a dummy gate trench provided in an active region extending in an X direction; and a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a Y direction crossing the active region, at least a part of which are buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively. The dummy gate electrode arranged between second and third diffusion layers isolates and separates a transistor constituted by the first gate electrode and first and second diffusion layers provided on both sides of the first gate electrode, respectively, from a transistor constituted by the second gate electrode and third and fourth diffusion layers provided on both sides of the second gate electrode, respectively.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly relates to a semiconductor device including trench gate transistors (trench gate is also referred to as “recess channel”, see Japanese Patent Application Laid-open Nos. 2005-322880, 2006-173429, and 2006-261627) and a manufacturing method of the semiconductor device.
2. Description of Related Art
Generally, in a manufacturing method of a semiconductor device, fine patterns are formed by photolithography and dry etching.
FIGS. 26A and 26B show a configuration of memory cell transistors of an ordinary DRAM, where FIG. 26A is a schematic plan view and FIG. 26B is a schematic cross-sectional view taken along a line B-B of FIG. 26A.
As shown in FIGS. 26A and 26B, STI (Shallow Trench Isolation) regions 401 are formed in a semiconductor substrate 400 by photolithography and dry etching, thereby defining and dividing active regions 402. Gate electrodes 403 each having an upper surface covered with a cap insulating film 405 and a side surface covered with a sidewall insulating film 406 are provided to cross the active regions 402. Contact plugs 407 are formed on diffusion layers 404 provided on both sides of each gate electrode 403 so as to be connected to the diffusion layers 404, respectively. In the example shown in FIGS. 26A and 26B, the active regions 402 are formed to be sufficiently wide on both sides of the gate electrodes 403. Due to this, the diffusion layers 404 are also formed to be sufficiently large. This arrangement enables each contact plug 407 and the diffusion layer 404 corresponding to the contact plug 407 to be connected to each other by as much as a sufficient area, thus suppressing contact resistance to be low.
However, along with downscaling of semiconductor devices, it has been difficult to form fine patterns by photolithography and dry etching. For example, the following problems occur when the active regions surrounded by the STI regions in a region where memory cells are formed to have minimum working dimensions such as a memory cell region of a DRAM.
FIGS. 27A and 27B show a configuration of memory cell transistors when the distance between two adjacent active regions is narrower, where FIG. 27A is a schematic plan view and FIG. 27B is a schematic cross-sectional view taken along a line B-B of FIG. 27A. In FIGS. 27A and 27B, constituent elements identical to those in FIGS. 26A and 26B are denoted by like reference numerals and explanations thereof will be omitted.
In FIGS. 27A and 27B, the distance between two adjacent active regions 502 is made narrower, and thus photolithography and dry etching are not performed satisfactorily, so that an area of each of the active regions 502 defined and divided by STI regions 501 is reduced. This reduces areas of the diffusion layers 504. As indicated by a dotted line in FIG. 27A, a contact area by which one contact plug 407 contacts with the diffusion layer 504 corresponding to the contact plug 407 is considerably reduced. Accordingly, there occurs a problem that contact resistance considerably increases.
While problems of conventional techniques have been described while referring to a memory cell region of a DRAM by way of example, these problems similarly and possibly occur to peripheral regions of a DRAM and in formation of fine patterns in other semiconductor devices.
SUMMARY
The present invention seeks to solve one or more of the above problems, or to improve upon those problems at least in part.
In one embodiment, there is provided a semiconductor device comprising: an active region provided in a semiconductor substrate, defined by an STI region, and extending in a first direction; a first gate trench, a second gate trench, and a dummy gate trench formed in the active region; a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction, at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode being buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively; first and second diffusion layers formed in the active region provided on both sides of the first gate electrode, respectively; and third and fourth diffusion layers formed in the active region provided on both sides of the second gate electrode, respectively, wherein the first gate electrode and the first and second diffusion layers constitute a first transistor, the second gate electrode and the third and fourth diffusion layers constitute a second transistor, and the dummy gate electrode is arranged between the second diffusion layer and the third diffusion layer, and electrically isolates the first transistor from the second transistor.
In another embodiment, there is provided a method of manufacturing a semiconductor device comprising: forming STI trenches in a semiconductor substrate to define an active region extending in a first direction in the semiconductor substrate; burying the STI trenches with an insulating film; forming a first gate trench, a second gate trench, and a dummy gate trench in the active region; forming a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction so that at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode are buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively; and forming first and second diffusion layers in the active region on both sides of the first gate electrode, respectively so as to form a first transistor constituted by the first gate electrode and the first and second diffusion layers, and forming third and fourth diffusion layers in the active region on both sides of the second gate electrode, respectively so as to form a second transistor constituted by the second gate electrode and the third and fourth diffusion layers, wherein the dummy gate electrode is arranged between the second diffusion layer and the third diffusion layer, and electrically isolates the first transistor from the second transistor.
According to the present invention, the STI region does not isolate and separate the first transistor from the second transistor. Instead, the dummy gate trench is provided in the active region where the first and second gate electrodes are formed, the dummy gate electrode is formed in the dummy gate trench, and the dummy gate electrode is arranged between the diffusion layer of the first transistor and the diffusion layer of the second transistor. The dummy gate electrode thereby functions as an element isolation region. Therefore, photolithographic and dry etching targets can be limited to line-and-space patterns extending in the first direction. The line-and-space patterns are relatively easy to resolve by the photolithography. Therefore, it is possible to prevent reduction in active region patterns in the first direction. Accordingly, it is possible to suppress reduction in areas of the diffusion layers and suppress a contact area between the contact plug and one diffusion layer from being reduced. This can suppress contact resistance to be sufficiently low.
BRIEF DESCRIPTION OF THE DRAWINGS
The above features and advantages of the present invention will be more apparent from the following description of certain preferred embodiments taken in conjunction with the accompanying drawings, in which:
FIGS. 1A to 1C show a configuration of a semiconductor device 10 according to a first embodiment of the present invention, where FIG. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along a line B-B of FIG. 1A, and FIG. 1C is a schematic cross-sectional view taken along a line C-C of FIG. 1A;
FIGS. 2A to 2C show one step (forming a first mask layer 111) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
FIGS. 3A to 3C show one step (forming STI regions 101) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
FIGS. 4A to 4C show one step (forming a second mask layer 112) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
FIGS. 5A to 5C show one step (forming a first gate trench 103 gt 1, a second gate trench 103 gt 2 and a dummy gate trench 103 dgt) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
FIGS. 6A to 6C show one step (forming a first gate electrode 104 g 1, a second gate electrode 104 g 2 and a dummy gate electrode 104 dg) of manufacturing processes of the semiconductor device 10 according to the first embodiment;
FIGS. 7A to 7D show a configuration of a semiconductor device 20 according to a second embodiment of the present invention, where FIG. 7A is a schematic plan view, FIG. 7B is a schematic cross-sectional view taken along a line B-B of FIG. 7A, FIG. 7C is a schematic cross-sectional view taken along a line C-C of FIG. 7A, and FIG. 7D is a schematic cross-sectional view taken along a line D-D of FIG. 7A;
FIGS. 8A to 8C show one step (forming a first mask layer 213) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 9A to 9C show one step (forming sidewall insulating films 212) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 10A to 10C show one step (forming STI trenches 201 t) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 11A to 11C show one step (forming STI regions 201) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 12A to 12C show one step (removing the first mask layer 213) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 13A to 13D show one step (forming a first gate trench 203 gt 1, a second gate trench 203 gt 2, a dummy gate trench 203 dgt and fin portions 211) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 14A to 14D show one step (forming a photoresist 215) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 15A to 15D show one step (removing the fin portions 211 formed on the side of dummy gate trench 203 dgt) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 16A to 16D show one step (removing the photoresist 215 and the second mask layer 214) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 17A to 17D show one step (forming a first gate electrode 204 g 1, a second gate electrode 204 g 2 and a dummy gate electrode 204 dg) of manufacturing processes of the semiconductor device 20 according to the second embodiment;
FIGS. 18A to 18D show a configuration of a semiconductor device 30 according to a third embodiment of the present invention, where FIG. 18A is a schematic plan view, FIG. 18B is a schematic cross-sectional view taken along a line B-B of FIG. 18A, FIG. 18C is a schematic cross-sectional view taken along a line C-C of FIG. 18A, and FIG. 18D is a schematic cross-sectional view taken along a line D-D of FIG. 18A;
FIGS. 19A to 19C show one step (etching a first mask layer 313 and a semiconductor substrate 300) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 20A to 20C show one step (forming sidewall insulating films 312) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 21A to 21D show one step (forming a photoresist 314) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 22A to 22D show one step (forming STI trenches 301 t) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 23A to 23D show one step (forming STI regions 301) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 24A to 24D show one step (forming a second mask layer 315, a first gate trench 303 gt 1, a second gate trench 303 gt 2 and a dummy gate trench 303 dgt) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 25A to 25D show one step (forming a first gate electrode 304 g 1, a second gate electrode 304 g 2 and a dummy gate electrode 304 dg) of manufacturing processes of the semiconductor device 30 according to the third embodiment;
FIGS. 26A and 26B show a configuration of memory cell transistors of an ordinary DRAM, where FIG. 26A is a schematic plan view and FIG. 26B is a schematic cross-sectional view taken along a line B-B of FIG. 26A; and
FIGS. 27A and 27B show a configuration of memory cell transistors when the distance between two adjacent active regions is narrower, where FIG. 27A is a schematic plan view and FIG. 27B is a schematic cross-sectional view taken along a line B-B of FIG. 27A.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Preferred embodiments of the present invention will be explained below in detail with reference to the accompanying drawings.
FIGS. 1A to 1C show a configuration of a semiconductor device 10 according to a first embodiment of the present invention, where FIG. 1A is a schematic plan view, FIG. 1B is a schematic cross-sectional view taken along a line B-B of FIG. 1A, and FIG. 1C is a schematic cross-sectional view taken along a line C-C of FIG. 1A. The semiconductor device 10 according to the first embodiment is a DRAM, and FIGS. 1A to 1C show the configuration at a time when formation of contact plugs to be connected to diffusion layers is completed.
As shown in FIGS. 1A to 1C, the semiconductor device 10 according to the first embodiment is configured to include active regions 102 provided in a semiconductor substrate 100, defined and divided by STI regions 101, and extending in an X direction (a first direction), first gate trenches 103 gt 1, second gate trenches 103 gt 2, and dummy gate trenches 103 dgt provided in the active regions 102, and first gate electrodes 104 g 1, second gate electrodes 104 g 2, and dummy gate electrodes 104 dg which extend in a Y direction (second direction) crossing the active regions 102, and at least a part of which are buried in the first gate trenches 103 gt 1, second gate trenches 103 gt 2, and dummy gate trenches 103 dgt, respectively. Each of the dummy gate electrodes 104 dg is arranged between one first gate electrode 104 g 1 and one second gate electrode 104 g 2.
First to fourth diffusion layers 105 a 1, 105 a 2, 105 b 1, and 105 b 2 to serve as source/drain regions are provided on both sides of the first and second gate electrodes 104 g 1 and 104 g 2, respectively. A cap insulating film 106 is provided on each of upper surfaces of the first and second gate electrodes 104 g 1 and 104 g 2 and the dummy gate electrodes 104 dg, and a sidewall insulating film 107 is provided on each of both side surfaces thereof. Contact plugs 108 are connected to 105 a 2, 105 b 1, and 105 b 2, respectively, thereby electrically connecting bit contacts or capacity contacts (not shown) to be provided on higher layers than the diffusion layers 105 a 1, 105 a 2, 105 b 1, and 105 b 2 to the diffusion layers.
One first gate electrode 104 g 1 and the first and second diffusion layers 105 a 1 and 105 a 2 constitute a first transistor 109, and one second gate electrode 104 g 2 and the third and fourth diffusion layers 105 b 1 and 105 b 2 constitute a second transistor 110. A predetermined bias is applied to each of the first and second gate electrodes 104 g 1 and 104 g 2 to thereby perform a transistor operation so as to form channels opposite in conduction type to the semiconductor substrate 100 as indicated by a broken-line arrow shown in FIG. 1B.
Meanwhile, each dummy gate electrode 104 dg is arranged between the second diffusion layer 105 a 2 and the third diffusion layer 105 b 1, whereby the dummy gate electrode 104 dg and the second and third diffusion layers 105 a 2 and 105 b 1 constitute a transistor. However, a bias opposite to the predetermined bias is always applied to the dummy gate electrode 104 dg, so that no channel is formed between the diffusion layers 105 a 2 and 105 b 1. That is, the transistor constituted by the dummy gate electrode 104 dg and the second and third diffusion layers 105 a 2 and 105 b 1 is always turned off. Therefore, the dummy gate electrode 104 gd functions as an element isolation region that isolates and separates the first transistor 109 from the second transistor 110.
A manufacturing method of the semiconductor device 10 according to the first embodiment is explained next.
FIGS. 2A to 2C to FIGS. 6A to 6C show manufacturing processes of the manufacturing method of the semiconductor device 10 according to the first embodiment. In FIGS. 2A to 2C to FIGS. 6A to 6C, each drawing tagged as “A” is a schematic plan view, each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”, and each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”.
First, as shown in FIGS. 2A to 2C, a first mask layer 111 having line-and-space patterns is formed on the semiconductor substrate 100 so as to cover regions that are to serve as the active regions 102. As shown in FIGS. 3A to 3C, the semiconductor substrate 100 is etched by using the mask layer 111 to thereby form STI trenches 101 t. Thereafter, the STI trenches 101 t are buried with an insulating film, thereby forming the STI regions 101.
After removing the first mask layer 111, a second mask layer 112 exposing regions, where the first gate trenches 103 gt 1, the second gate trenches 103 gt 2, and the dummy gate trenches 103 dgt are formed, is formed on the active regions 102 of the semiconductor substrate 100, as shown in FIGS. 4A to 4C. By using the second mask layer 112, the semiconductor substrate 100 is etched, thereby forming the first gate trenches 103 gt 1, the second gate trenches 103 gt 2, and the dummy gate trenches 103 dgt as shown in FIGS. 5A to 5C.
A conductive material is then formed on an entire surface to bury the first gate trenches 103 gt 1, the second gate trenches 103 gt 2, and the dummy gate trenches 103 dgt with the conductive material. Thereafter, as shown in FIGS. 6A to 6C, the cap insulating films 106 are formed and the conductive material is patterned by using the cap insulating films 106 as a mask. The first gate electrodes 104 gt 1, the second gate electrodes 104 gt 2, and the dummy gate electrodes 104 dgt at least a part of which are buried in the first gate trenches 103 gt 1, the second gate trenches 103 gt 2, and the dummy gate trenches 103 dgt, respectively are thereby formed.
By using the first and second gate electrodes 104 g 1 and 104 g 2, the dummy gate electrodes 104 dg, and the cap insulating films 106 as a mask, impurity ions are implanted into the semiconductor substrate 100, thereby forming the first to fourth diffusion layers 105 a 1, 105 a 2, 105 b 1, and 105 b 2. Next, the sidewall insulating films 107 are formed on side surfaces of the first and second gate electrodes 104 g 1 and 104 g 2, the dummy gate electrodes 104 dg, and the cap insulating films 106, respectively. The contact plugs 108 connected to the diffusion layers 105 a 1, 105 a 2, 105 b 2, and 105 b 3, respectively are formed, thereby obtaining the configuration shown in FIGS. 1A to 1C.
As described above, according to the first embodiment, the STI regions 101 are responsible for element isolation in the Y direction (see FIGS. 1A to 1C) and the dummy gate electrodes 104 dg are responsible for element isolation in the X direction. Therefore, patterns of the active regions 102 can be formed as line-and-space patterns capable of ensuring photolithographically high resolution and extending in one direction (X direction), and thus it is possible to prevent reduction in the active regions 102. It is thereby possible to reduce areas of the diffusion layers 105 a 1, 105 a 2, 105 b 2, and 105 b 3, sufficiently secure contact areas by which the contact plugs 108 contact with the diffusion layers 105 a 1, 105 a 2, 105 b 2, and 105 b 3, respectively, and suppress contact resistance to be low.
A second embodiment of the present invention is described next. In the second embodiment, a transistor having a so-called double-fin structure in which fin portions formed by a part of a semiconductor substrate and constituting channel regions are provided on side surfaces of gate trenches, respectively is used as a memory cell transistor. Furthermore, in the second embodiment, no fin portions are provided on side surfaces of dummy gate trenches functioning as element isolation regions.
FIGS. 7A to 7D show a configuration of a semiconductor device 20 according to the second embodiment, where FIG. 7A is a schematic plan view, FIG. 7B is a schematic cross-sectional view taken along a line B-B of FIG. 7A, FIG. 7C is a schematic cross-sectional view taken along a line C-C of FIG. 7A, and FIG. 7D is a schematic cross-sectional view taken along a line D-D of FIG. 7A. In the second embodiment, constituent elements identical to those in the semiconductor device 10 according to the first embodiment are denoted by like reference numerals and explanations thereof will be omitted.
As shown in FIG. 7D, the semiconductor device 20 according to the second embodiment includes fin portions 211 provided in lower portions of side surfaces of first and second gate trenches 203 gt 1 and 203 gt 2 in an X direction, formed by a part of a semiconductor substrate 200, and constituting a part of channel regions, respectively. Regions defined and divided by STI regions 201 and each indicated by a one-dot chain line are active regions 202. In a first transistor 209 and a second transistor 210, channel regions formed when a predetermined bias is applied to each of first and second gate electrodes 204 gt 1 and 204 gt 2 are formed not only on side surfaces and bottom surfaces of the first and second gate trenches 203 gt 1 and 203 gt 2 in a Y direction but also on the fin portions 211 provided on the side surfaces thereof in the X direction. By this arrangement, it is possible to reduce threshold voltages of the first and second transistors 209 and 210. Meanwhile, as shown in FIG. 7C, no fin portions are formed on side surfaces of dummy gate trenches 203 dgt in the X direction. That is, the side surfaces of dummy gate trenches 203 dgt in the X direction contact with the STI regions 201 without via a part of the semiconductor substrate 200. By this arrangement, a threshold voltage of a transistor including each dummy gate electrode 204 dg can be set higher than those of the first and second transistors 209 and 210. It is, therefore, possible to ensure that each dummy gate electrode 204 dg functions as an element isolation region between the first and second transistors 209 and 210.
Sidewall insulating films 212 are provided on upper portions of the side surfaces of the first and second gate trenches 203 gt 1 and 203 gt 2 in the X direction, respectively. Therefore, the upper portions of the first and second gate trenches 203 gt 1 and 203 gt 2 contact with the STI regions 201 via the sidewall insulating films 212. Although the fin portions 211 can be formed to be high enough to reach above the upper portions of the first and second gate trenches 203 gt 1 and 203 gt 2, such fin portions 211 tend to cause a problem that it is difficult to control threshold voltages. For this reason, the fin portions 211 are formed as shown in FIG. 7D.
A manufacturing method of the semiconductor device 20 according to the second embodiment is described next.
FIGS. 8A to 8C to FIGS. 17A to 17D show manufacturing processes of the manufacturing method of the semiconductor device 20 according to the second embodiment. In FIGS. 8A to 8C to FIGS. 17A to 17D, each drawing tagged as “A” is a schematic plan view, each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”, each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”, and each drawing tagged as “D” is a schematic cross-sectional view taken along a line D-D of “A”. When the schematic cross-sectional view taken along the line D-D is identical to that taken along the line C-C, the drawing tagged as “D” will be omitted.
First, as shown in FIGS. 8A to 8C, a first mask layer 213 having line-and-space patterns is formed on the semiconductor substrate 200. The region indicated by a one-dot chain line is to serve as the active region 202 later. In the second embodiment, the first mask layer 213 is formed to be narrower than the active region 202. By using the first mask layer 213, as a mask, the semiconductor substrate 200 is etched to thereby form trenches.
As shown in FIGS. 9A to 9C, an insulating film is formed on an entire surface and the insulating film is then etched back, thereby forming sidewall insulating films 212 on side surfaces of the first mask layer 213, respectively. As shown in FIGS. 10A to 10C, by using the first mask layer 213 and the sidewall insulating films 212 as a mask, the semiconductor substrate 200 is etched to make the trenches deeper, thereby forming STI trenches 201 t.
As shown in FIGS. 11A to 11C, the STI trenches 201 t are buried with an insulating film, thereby forming the STI regions 201. In this way, the STI regions 201 define and divide the active regions 202.
Thereafter, as shown in FIGS. 12 to 12C, planarization is performed until an upper surface of the semiconductor substrate 200 is exposed by CMP (Chemical Mechanical Polishing). As shown in FIGS. 13A to 13D, a second mask layer 214 exposing regions, where the first gate trenches 203 gt 1, the second gate trenches 203 gt 2, and the dummy gate trenches 203 dgt are formed, is then formed. By using the second mask layer 214, the sidewall insulating films 212, and the STI regions 201 as a mask, the semiconductor substrate 200 is etched. The first gate trenches 203 gt 1, the second gate trenches 203 gt 2, and the dummy gate trenches 203 dgt are thereby formed. At the same time, the fin portions 211 formed by a part of the semiconductor substrate 200 are formed in lower portions of the sidewall insulating films 212 on the side surfaces of the trenches 203 gt 1, 203 gt 2, and 203 dgt, respectively.
As shown in FIGS. 14A to 14D, while the second mask layer 214 is left, a photoresist 215 including openings 215 op exposing upper portions of the dummy gate trenches 203 dgt is formed. As shown in FIGS. 15A to 15D, by using the photoresist 215 and the second mask layer 214 as a mask, the fin portions 211 formed on side surfaces of the dummy gate trenches 203 dgt are removed by etching. At this time, the dummy gate trenches 203 dgt slightly expand in the X direction (see FIGS. 7A to 7D) and a height direction.
As shown in FIGS. 16A to 16D, the photoresist 215 and the second mask layer 214 are removed. Thereafter, similarly to the first embodiment, the first gate electrodes 204 g 1, the second gate electrodes 204 g 2, the dummy gate electrodes 204 dg, the first to fourth diffusion layers 105 a 1, 105 a 2, 105 b 1, and 105 b 2, the sidewall insulating films 107, and the contact plugs 108 at least a part of which are buried in the cap insulating films 106, the first gate trenches 203 gt 1, the second gate trenches 203 gt 2, and the dummy gate trenches 203 dgt, respectively are sequentially formed, thereby obtaining the configuration shown in FIGS. 17A to 17D.
As described above, the second embodiment can exhibit effects identical to those of the first embodiment. Furthermore, the fin portions 211 are formed at least a part of the side surfaces of the first and second gate electrodes 204 g 1 and 204 g 2 in the X direction (lower side surfaces of the first and second gate electrodes 204 g 1 and 204 g 2) respectively. By this arrangement, while the first and second transistors 209 and 210 are turned on, each of the fin portions 211 serves as a channel region. It is, therefore, possible to reduce threshold voltages of the first and second transistors 209 and 210. Further, no fin portions are formed on the side surfaces of the dummy gate trenches 203 dgt in the X direction (the fin portions are removed at the process shown in FIGS. 15A to 15D). It is, therefore, possible to set a threshold voltage of a transistor including each dummy gate electrode 204 dg to be higher than those of the first and second transistors 209 and 210. It is, therefore, possible to ensure that each dummy gate electrode 204 dg functions as an element isolation region between the first and second transistors 209 and 210.
A third embodiment of the present invention is described next. The third embodiment is a modification of the second embodiment and different from the second embodiment in a manufacturing process for not providing fin portions on side surfaces of dummy gate trenches. Due to this difference, there are some parts in configuration that are different from the second embodiment; however, the configurations of the second and third embodiments are functionally almost identical.
FIGS. 18A to 18D show a configuration of a semiconductor device 30 according to the third embodiment, where FIG. 18A is a schematic plan view, FIG. 18B is a schematic cross-sectional view taken along a line B-B of FIG. 18A, FIG. 18C is a schematic cross-sectional view taken along a line C-C of FIG. 18A, and FIG. 18D is a schematic cross-sectional view taken along a line D-D of FIG. 18A. In the third embodiment, constituent elements identical to those in the semiconductor device 10 according to the first embodiment are denoted by like reference numerals and explanations thereof will be omitted.
As shown in FIG. 18D, the semiconductor device 30 according to the third embodiment includes fin portions 311 provided in lower portions of side surfaces of first and second gate trenches 303 gt 1 and 303 gt 2 in an X direction, formed by a part of a semiconductor substrate 300, and constituting a part of channel regions, respectively. Sidewall insulating films 312 are provided on upper portions of the side surfaces of the first and second gate trenches 303 gt 1 and 303 gt 2 in the X direction, respectively. Therefore, upper portions of the first and second gate trenches 303 gt 1 and 303 gt 2 contact with STI regions 301 via the sidewall insulating films 312, respectively. In a first transistor 309 and a second transistor 310, channel regions formed when a predetermined bias is applied to each of first and second gate electrodes 304 gt 1 and 304 gt 2 are formed not only on side surfaces and bottom surfaces of the first and second gate trenches 303 gt 1 and 303 gt 2 in a Y direction but also on the fin portions 311 provided on the side surfaces thereof in the X direction. By this arrangement, it is possible to reduce threshold voltages of the first and second transistors 309 and 310. Meanwhile, as shown in FIG. 18C, no fin portions are formed on side surfaces of dummy gate trenches 303 dgt in the X direction. The above configuration is identical to that of the semiconductor device 20 according to the second embodiment.
Differences between the second embodiment and the third embodiment are explained next. In the case of the semiconductor device 30 according to the third embodiment, the entire side surfaces of the dummy gate trenches 303 dgt in the X direction contact with the STI regions 301 without via a part of the semiconductor substrate 300, as shown in FIG. 18C. That is, the sidewall insulating films 312 are not formed on upper surfaces of the side surfaces of the dummy gate trenches 303 dgt in the X direction. By this configuration, as shown in FIG. 18A, active regions 302 defined and divided by the STI regions 301 are made narrower in the X direction near dummy gate electrodes 304 dg. Further, a width of each dummy gate electrode 304 dg in a height direction is identical from an upper portion to a lower portion thereof.
The third embodiment configurationally differs from the second embodiment as described above. However, the presence of the fin portions 311 enable the threshold voltage of the transistor including each dummy gate electrode 304 dg to be set higher than those of the first and second transistors 309 and 310, and ensures that each dummy gate electrode 304 dg functions as an element isolation region between the first and second transistors 309 and 310. These effects are common in the second embodiment and the third embodiment.
A manufacturing method of the semiconductor device 30 according to the third embodiment is described next.
FIGS. 18A to 18D to FIGS. 25A to 25D show manufacturing processes of the manufacturing method of the semiconductor device 30 according to the third embodiment. In FIGS. 18A to 18D to FIGS. 25A to 25D, each drawing tagged as “A” is a schematic plan view, each drawing tagged as “B” is a schematic cross-sectional view taken along a line B-B of “A”, each drawing tagged as “C” is a schematic cross-sectional view taken along a line C-C of “A”, and each drawing tagged as “D” is a schematic cross-sectional view taken along a line D-D of “A”. When the schematic cross-sectional view taken along the line D-D is identical to that taken along the line C-C, the drawing tagged as “D” will be omitted.
First, as shown in FIGS. 19A to 19D, a first mask layer 313 having line-and-space patterns is formed on the semiconductor substrate 300. The region indicated by a one-dot chain line is to serve as the active region 302 later. In the third embodiment, the first mask layer 313 is formed so that a width of the first mask layer 313 is smaller than a largest width of the active region 302. By using the first mask layer 313 as a mask, the semiconductor substrate 300 is etched to form trenches.
As shown in FIGS. 21A to 21D, while the first mask layer 313 is left, a photoresist 314 including openings 314 op exposing regions, where the dummy gate trenches 303 dgt are formed, is formed. By using the photoresist 314 as a mask, the sidewall insulating films 312 are etched. Only the sidewall insulating films 312 formed in the regions, where the dummy gate trenches 303 dgt are formed, are thereby removed.
After removing the photoresist 314, by using the first mask layer 313 and the sidewall insulating film 312 as a mask, the semiconductor substrate 300 is etched to make the trenches deeper, thereby forming STI trenches 301 t, as shown in FIGS. 22A to 22C.
After removing the first mask layer 313, the STI trenches 301 t are buried with an insulating film and subjected to planarization, thereby forming the STI regions 301, as shown in FIGS. 23A to 23C. In this way, the STI regions 301 define and divide the active regions 302.
As shown in FIGS. 24A to 24D, a second mask layer 315 exposing regions, where the first gate trenches 303 gt 1, the second gate trenches 303 gt 2, and the dummy gate trenches 303 dgt are formed, is formed. By using the second mask layer 315, the sidewall insulating films 312, and the STI regions 301 as a mask, the semiconductor substrate 300 is etched. The first gate trenches 303 gt 1, the second gate trenches 303 gt 2, and the dummy gate trenches 303 dgt are thereby formed. At the same time, the fin portions 311 formed by a part of the semiconductor substrate 300 are formed in lower portions of the sidewall insulating films 312 on the side surfaces of the first gate trenches 303 gt 1 and second gate trenches 303 gt 2, respectively.
Similarly to the first and second embodiments, the first gate electrodes 304 gt 1, the second gate electrodes 304 g 2, the dummy gate electrodes 304 dg, first to fourth diffusion layers 105 a 1, 105 a 2, 105 b 1, and 105 b 2, sidewall insulating films 107, and contact plugs 108 at least a part of which are buried in cap insulating films 106, the first gate trenches 303 gt 1, the second gate trenches 303 gt 2, and the dummy gate trenches 303 dgt, respectively are sequentially formed, thereby obtaining a configuration shown in FIGS. 25A to 25D.
As described above, according to the third embodiment, the semiconductor device 30 capable of achieving the same effects as those of the first and second embodiments can be formed by manufacturing processes different from those of the second embodiment.
It is apparent that the present invention is not limited to the above embodiments, but may be modified and changed without departing from the scope and spirit of the invention.
For example, in the above embodiments, each dummy gate electrode can be formed out of polycrystalline silicon having a conduction type (for example, P type) identical to that of the semiconductor substrate, and the first and second gate electrodes can be formed out of polycrystalline silicon having a different conduction type (for example, N type) from that of the semiconductor substrate. By this configuration, it is possible to further increase the threshold voltage of the transistor including each dummy gate electrode due to the difference in work function. To configure the semiconductor device as described in the alternative, an undoped polycrystalline silicon film is formed on an entire surface so as to be buried in the gate trenches and dummy trenches, and N impurity ions, for example, are then implanted into the polycrystalline silicon film on the gate trenches by using a mask layer that covers the dummy trenches. Next, another mask layer that covers the gate trenches is formed, P impurity ions, for example, are implanted into the polycrystalline silicon film on the dummy trenches, and the polycrystalline silicon film is then patterned into shapes of gate electrodes and dummy gate electrodes. By this arrangement, gate electrodes made of N+ polycrystalline silicon and dummy gate electrodes made of P+ polycrystalline silicon can be formed.

Claims (11)

1. A semiconductor device comprising:
an active region provided in a semiconductor substrate, defined by an STI region, and extending in a first direction;
a first gate trench, a second gate trench, and a dummy gate trench formed in the active region;
a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction, at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode being buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively;
first and second diffusion layers formed in the active region provided on both sides of the first gate electrode, respectively; and
third and fourth diffusion layers formed in the active region provided on both sides of the second gate electrode, respectively, wherein
the first gate electrode and the first and second diffusion layers constitute a first transistor,
the second gate electrode and the third and fourth diffusion layers constitute a second transistor, and
the dummy gate electrode is arranged between the second diffusion layer and the third diffusion layer, and electrically isolates the first transistor from the second transistor.
2. The semiconductor device as claimed in claim 1, wherein
the active region includes first and second fin shaped portions that work as channel regions of the first and second transistors, respectively, the first and second fin portions having side surfaces along the first direction,
the first and second gate electrodes having side surfaces along the first direction buried in the first and second gate trenches, respectively,
the side surfaces of the first fin shaped portion and the side surfaces of the first gate electrode are in contact with each other, and
the side surfaces of the second fin shaped portion and the side surfaces of the second gate electrode are in contact with each other.
3. The semiconductor device as claimed in claim 2, further comprising sidewall insulating films formed in the first and second gate trenches, the sidewall insulating films being interposed between upper portions of the side surfaces of the first and second gate electrodes and the STI region.
4. The semiconductor device as claimed in claim 2, wherein side surfaces of the dummy gate trench in the first direction contacts with the STI region without intervention of a part of the semiconductor substrate.
5. The semiconductor device as claimed in claim 2, further comprising sidewall insulating films formed in the dummy gate trench, the sidewall insulating films being interposed between the dummy gate electrode and the STI region.
6. The semiconductor device as claimed in claim 1, wherein a transistor constituted by the dummy gate electrode and the second and third diffusion layers is always turned off.
7. A method of manufacturing a semiconductor device comprising:
forming STI trenches in a semiconductor substrate to define an active region extending in a first direction in the semiconductor substrate;
burying the STI trenches with an insulating film;
forming a first gate trench, a second gate trench, and a dummy gate trench in the active region;
forming a first gate electrode, a second gate electrode, and a dummy gate electrode extending in a second direction crossing the first direction so that at least a part of the first gate electrode, the second gate electrode, and the dummy gate electrode are buried in the first gate trench, the second gate trench, and the dummy gate trench, respectively; and
forming first and second diffusion layers in the active region on both sides of the first gate electrode, respectively so as to form a first transistor constituted by the first gate electrode and the first and second diffusion layers, and forming third and fourth diffusion layers in the active region on both sides of the second gate electrode, respectively so as to form a second transistor constituted by the second gate electrode and the third and fourth diffusion layers, wherein
the dummy gate electrode is arranged between the second diffusion layer and the third diffusion layer, and electrically isolates the first transistor from the second transistor.
8. The method of manufacturing a semiconductor device as claimed in claim 7, wherein forming the STI trenches includes:
forming a first mask layer having line-and-space patterns on the semiconductor substrate extending in the first direction;
forming first trench portions in the semiconductor substrate to constitute a part of the STI trenches by using the first mask layer;
forming sidewall insulating films on inner side surfaces of the first trench portions at least in each of regions where the first and second gate trenches are formed; and
forming second trench portions below the first trench portions in the semiconductor substrate to constitute at least remaining part of the STI trenches by using the first mask layer and the sidewall insulating film as a mask.
9. The method of manufacturing a semiconductor device as claimed in claim 8, wherein forming the gate trenches includes:
forming a second mask layer exposing regions where the first gate trench, the second gate trench, and the dummy gate trench are formed, respectively; and
forming fin shaped portions formed by a part of the semiconductor substrate below the sidewall insulating films by forming the first gate trench, the second gate trench, and the dummy gate trench in the semiconductor substrate by using the second mask layer and the sidewall insulating film as a mask.
10. The method of manufacturing a semiconductor device as claimed in claim 9, wherein forming the gate trenches further includes removing the fin shaped portions formed in the region where the dummy gate trench is formed.
11. The method of manufacturing a semiconductor device as claimed in claim 8, wherein
the sidewall insulating films are formed on the inner side surface of the first trench portions also in the region where the dummy gate trench is formed, and
the method further comprises removing the sidewall insulating films formed in the region where the dummy gate trench is formed, after forming the gate trenches and before forming the gate electrodes.
US12/635,309 2008-12-11 2009-12-10 Semiconductor device having gate trenches and manufacturing method thereof Active 2031-12-08 US8390064B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-315679 2008-12-11
JP2008315679A JP2010141107A (en) 2008-12-11 2008-12-11 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
US20100148248A1 US20100148248A1 (en) 2010-06-17
US8390064B2 true US8390064B2 (en) 2013-03-05

Family

ID=42239479

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/635,309 Active 2031-12-08 US8390064B2 (en) 2008-12-11 2009-12-10 Semiconductor device having gate trenches and manufacturing method thereof

Country Status (2)

Country Link
US (1) US8390064B2 (en)
JP (1) JP2010141107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012983B2 (en) 2010-11-05 2015-04-21 Ps4 Luxco S.A.R.L. Semiconductor device and method of forming the same
US10411013B2 (en) 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US10861934B2 (en) 2012-11-30 2020-12-08 Samsung Electronics Co., Ltd. Semiconductor devices including protruding insulation portions between active fins

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077185A (en) * 2009-09-29 2011-04-14 Elpida Memory Inc Semiconductor device, method of manufacturing semiconductor device, and data processing system
KR101096907B1 (en) 2009-10-05 2011-12-22 주식회사 하이닉스반도체 Semiconductor device and method of fabricating the same
US8378419B2 (en) 2010-11-22 2013-02-19 International Business Machines Corporation Isolation FET for integrated circuit
KR101095739B1 (en) 2010-12-17 2011-12-21 주식회사 하이닉스반도체 Semiconductor device and method for forming the same
JP2012134395A (en) 2010-12-22 2012-07-12 Elpida Memory Inc Semiconductor device and semiconductor device manufacturing method
JP2012174790A (en) * 2011-02-18 2012-09-10 Elpida Memory Inc Semiconductor device and manufacturing method of the same
US20120306005A1 (en) * 2011-06-04 2012-12-06 Kimihiro Satoh Trough channel transistor and methods for making the same
US8519462B2 (en) * 2011-06-27 2013-08-27 Intel Corporation 6F2 DRAM cell
US8975137B2 (en) * 2011-07-11 2015-03-10 Nanya Technology Corporation Process of forming slit in substrate
US8546208B2 (en) 2011-08-19 2013-10-01 International Business Machines Corporation Isolation region fabrication for replacement gate processing
US9373641B2 (en) 2014-08-19 2016-06-21 International Business Machines Corporation Methods of forming field effect transistors using a gate cut process following final gate formation
US9293374B1 (en) * 2015-06-12 2016-03-22 International Business Machines Corporation Self-aligned low defect segmented III-V finFET
KR102564385B1 (en) * 2015-12-30 2023-08-08 에스케이하이닉스 주식회사 Fin transistor, method for fabricating the same and electornic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322880A (en) 2004-05-06 2005-11-17 Hynix Semiconductor Inc Method of manufacturing semiconductor element having recessed channel region
US20060134858A1 (en) 2004-12-17 2006-06-22 Elpida Memory, Inc. Method of manufacturing semiconductor device
JP2006261627A (en) 2005-03-14 2006-09-28 Hynix Semiconductor Inc Manufacturing method of semiconductor device with recess channel and asymmetrical bonding structure
US20070018239A1 (en) * 2005-07-20 2007-01-25 International Business Machines Corporation Sea-of-fins structure on a semiconductor substrate and method of fabrication
US20070052037A1 (en) * 2005-09-02 2007-03-08 Hongfa Luan Semiconductor devices and methods of manufacture thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322880A (en) 2004-05-06 2005-11-17 Hynix Semiconductor Inc Method of manufacturing semiconductor element having recessed channel region
US7232727B2 (en) 2004-05-06 2007-06-19 Hynix Semiconductor, Inc. Method for fabricating semiconductor device with recessed channel region
US20060134858A1 (en) 2004-12-17 2006-06-22 Elpida Memory, Inc. Method of manufacturing semiconductor device
JP2006173429A (en) 2004-12-17 2006-06-29 Elpida Memory Inc Manufacturing method of semiconductor device
JP2006261627A (en) 2005-03-14 2006-09-28 Hynix Semiconductor Inc Manufacturing method of semiconductor device with recess channel and asymmetrical bonding structure
US7381612B2 (en) 2005-03-14 2008-06-03 Hynix Semiconductor Inc. Method for manufacturing semiconductor device with recess channels and asymmetrical junctions
US20070018239A1 (en) * 2005-07-20 2007-01-25 International Business Machines Corporation Sea-of-fins structure on a semiconductor substrate and method of fabrication
US20070052037A1 (en) * 2005-09-02 2007-03-08 Hongfa Luan Semiconductor devices and methods of manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012983B2 (en) 2010-11-05 2015-04-21 Ps4 Luxco S.A.R.L. Semiconductor device and method of forming the same
US10861934B2 (en) 2012-11-30 2020-12-08 Samsung Electronics Co., Ltd. Semiconductor devices including protruding insulation portions between active fins
US11955517B2 (en) 2012-11-30 2024-04-09 Samsung Electronics Co., Ltd. Semiconductor devices including protruding insulation portions between active fins
US10411013B2 (en) 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device

Also Published As

Publication number Publication date
US20100148248A1 (en) 2010-06-17
JP2010141107A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US8390064B2 (en) Semiconductor device having gate trenches and manufacturing method thereof
US7781285B2 (en) Semiconductor device having vertical transistor and method of fabricating the same
KR100739653B1 (en) Fin field effect transistor and method for forming the same
US7247570B2 (en) Silicon pillars for vertical transistors
US7776692B2 (en) Semiconductor device having a vertical channel and method of manufacturing same
JP3703885B2 (en) Semiconductor memory device and manufacturing method thereof
US20080048333A1 (en) Semiconductor Device Having Buried Word Line Interconnects and Method of Fabricating the Same
US7491603B2 (en) Transistors of semiconductor device having channel region in a channel-portion hole and methods of forming the same
KR100763337B1 (en) Semiconductor device having buried gate line and method of fabricating the same
US7749844B2 (en) Method for fabricating semiconductor device having vertical-type channel
KR100792384B1 (en) Five channel fin transistor device and method of manufacturing the same
JP5718585B2 (en) Semiconductor device, manufacturing method thereof, and data processing system
KR20010112829A (en) Semiconductor memory device removing floating body effect and method of fabricating the same
KR100694973B1 (en) method for fabricating flash memory device
KR100335121B1 (en) Semiconductor memory device and method for fabricating the same
JP3238066B2 (en) Semiconductor storage device and method of manufacturing the same
KR20130073488A (en) Semiconductor device and method for manufacturing the same
US7915113B2 (en) Semiconductor device and method for manufacturing the same
KR101414076B1 (en) Semiconductor device and method for manufacturing the same
JP4160846B2 (en) Semiconductor device and manufacturing method thereof
KR20070047572A (en) Semiconductor device and method for forming the same
US20090127608A1 (en) Integrated circuit and method of manufacturing an integrated circuit
KR100334963B1 (en) Method of forming semiconductor device with contact plug
JP4439429B2 (en) Manufacturing method of semiconductor device
KR20080105621A (en) Semiconductor device and method of forming the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELPIDA MEMORY, INC.,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIKASA, NORIAKI;REEL/FRAME:023636/0757

Effective date: 20091119

Owner name: ELPIDA MEMORY, INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIKASA, NORIAKI;REEL/FRAME:023636/0757

Effective date: 20091119

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ELPIDA MEMORY INC., JAPAN

Free format text: SECURITY AGREEMENT;ASSIGNOR:PS4 LUXCO S.A.R.L.;REEL/FRAME:032414/0261

Effective date: 20130726

AS Assignment

Owner name: PS4 LUXCO S.A.R.L., LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELPIDA MEMORY, INC.;REEL/FRAME:032884/0589

Effective date: 20130726

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: PS5 LUXCO S.A.R.L., LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PS4 LUXCO S.A.R.L.;REEL/FRAME:039818/0506

Effective date: 20130829

Owner name: LONGITUDE SEMICONDUCTOR S.A.R.L., LUXEMBOURG

Free format text: CHANGE OF NAME;ASSIGNOR:PS5 LUXCO S.A.R.L.;REEL/FRAME:039793/0880

Effective date: 20131112

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: LONGITUDE LICENSING LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LONGITUDE SEMICONDUCTOR S.A.R.L.;REEL/FRAME:046865/0667

Effective date: 20180731

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8