US832120A - Tunnel and means for constructing the same. - Google Patents

Tunnel and means for constructing the same. Download PDF

Info

Publication number
US832120A
US832120A US109512A US1902109512A US832120A US 832120 A US832120 A US 832120A US 109512 A US109512 A US 109512A US 1902109512 A US1902109512 A US 1902109512A US 832120 A US832120 A US 832120A
Authority
US
United States
Prior art keywords
shield
tunnel
head
compartments
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US109512A
Inventor
Jules Breuchaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US9533002A external-priority patent/US706380A/en
Application filed by Individual filed Critical Individual
Priority to US109512A priority Critical patent/US832120A/en
Application granted granted Critical
Publication of US832120A publication Critical patent/US832120A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/063Tunnels submerged into, or built in, open water
    • E02D29/067Floating tunnels; Submerged bridge-like tunnels, i.e. tunnels supported by piers or the like above the water-bed

Definitions

  • the shield has been de' vised and equipped more especially for the construction of the foundations and walls of a subaqueous tunnel and from within the working chamber of the shield itself, arrangements being made for the forming of an airtight connection at the sides and walls of the tunnel, so as to permit of a horizontal move ment of the shield in the direction of the line of the tunnel upon Wheels or rollers properly placed on the foundation formed from within the shield, hydraulic jacks or other power being employed to advance the shield progressively as the foundation-work is constructed.
  • the air-tight connection between the outer walls of the tunnel and the shield may be maintained by means of a suitable packing or calking composed of a plastic substance, preferably stiif clay.
  • suitable airtight partitions provided with air-locks for maintaining a connection between the shield and the completed portion of the tunnel and for the passage of the men and the bringing in and sending out of material and for all other purposes and requirements of the work: men.
  • the forward or leading end of the shield is provided with means for excavating and displacing and removing mud, silt, or other obstructions that may be in the line of travel of the shield.
  • Foundations constructed from within the shield may extend through water, and over, through, or under soft material, so as to provide trestles, bridges, or foundations, or supports for the structure to be built, the shield traveling step by step over and on the permanent artificial foundation built from Within its own walls, thus enabling the shield to travel safely in a true line and be guided by the portion of the completed work over which it travels, and thereby making it possible to build tunnels and other subaqueous structures in places hitherto impossible.
  • firm material such as rock or stiff clay
  • the shield may be provided with a detachable superimposed caisson provided with numerous air and water tight compartments, thus providing accessible and convenient places for the carrying of necessary weight to overcome the buoyancy of the shield when compressed air is used for expelling the water from the interior of the shield orchamber, water-tight compartments affording a ready means for increasing or decreasing the weight, as they can be readily filled with water or emptied, as may be necessary.
  • Ample provision is also made for the carrying of ballast in the lower part and within compartments in the shield proper, thus enabling the shield to be operated at considerable depth beneath the water when desired.
  • Within the shield are numerous air-tight compartments provided with suitable connections and communicating one with another, so as to afford ready access thereto.
  • the shield is also provided with a telescopic shaft fitted with airlocks and which shaft may be projected upward to the surface of the water to enable workmen to enter and leave .the chamber therethrough, and also to enable the bringing in and sending out of material.
  • the traveling shield On the completion of the tunnel the traveling shield may be brought to the surface by the removal of the ballast, whereupon it .will float and may be towed to any convenient place.
  • My invention consists in the construction of the shield and in the construction of the tunnel, all as will be hereinafter more fully described, and particularly pointed out in the appended claims.
  • Figure 1 is a longitudinal section of a subaqueous tunnel constructed in accordance with my improvements.
  • Fig. 2 is a longitudinal sec tional view illustrating the method of constructing the tunnel.
  • Fig. 3 is a cross-sec- Fig. 4 is a similar section taken at the line y y of Fig. 1.
  • Fig. 5 is a longitudinal section somewhat similar to Fig. 2, but on a larger scale, so as to show more fully the construction of the shield and the mode of operating therefrom in the construction of a subaqueous tunnel.
  • Fig. 6 is a vertical cross-section taken at the line :1: c of Fig. 5, but showing only one-half of the width of the shield thereat.
  • Fig. 1 is a longitudinal section of a subaqueous tunnel constructed in accordance with my improvements.
  • Fig. 2 is a longitudinal sec tional view illustrating the method of constructing the tunnel.
  • Fig. 7 is a vertical cross-section taken at the line to w of Fig. and showing the other half of the width of the shield, the two views, Figs. 6 and 7, being preferably joined.
  • Fig. 8 is an inside elevation of'the front wall of the shield.
  • Fig. 9 is an outside elevation of the front wall or head of the shield, the two views, Figs. 8 and 9, being preferably united and showing each one-half of the wall from the inside and the outside; and
  • Fig. 10 is a bottom plan view of the shield.
  • the shield is constructed without a bottom or is open on its under side, and it is owing to this fact that I am enabled to build the proper foundation-work for the tunnel and to build the tunnel itself, as will hereinafter more fully appear.
  • the shield is rectangular in contour and comprises two longitudinal sides 1 1, a front side or head 2, and a top 3, there being no rear end. and no bottom to theshield.
  • suitable air and water tight compartments which may be utilized for various purposes.
  • a series of large compartments 4 extending transversely and longitudinally of the shield, there being three such compartments extending longitudinally on each side and three in the middle, making nine altogether; but these may of course be varied 1n number as may be desired and in accordance with the necessities of the work in hand.
  • These various compartments communicate one with the other through suitable doors or air-locks 5 in an ordinary manner and so that workmen may go from one compartment to another and may carry material therethrough or store it therein, as may be found necessary.
  • each side of the shield there are provided at each side of the shield a number of smaller compartments 6, nine in number, which may communicate with each other through doors or air-locks and which may also communicate with the main working chamber or portion 7, extending between the said'compartments 4 and 6 and the head 2 and rearmost open-ended portion of the shield.
  • the various compartments are preferably constructed of sheet iron or steel with flanged edges at which they are securely bolted together and to the shield.
  • Each of the lower and side longitudinallyarranged compartments 6 has its innerwalls 6 inclined or sloping downwardly and. outwardly, so that the bottom portion of the compartment is narrower than the upper portion, thus giving more working room within the chamber 7, while at the same time said compartment affords a firm and substantial brace or support for the upper compartments 4.
  • the lower portions of the compartment '6 bear upon a series of antifriction-rollers 8, which are adapted to travel on the upper surfaces of vertically-arranged I-beams 9, which are laid longitudinally upon the substructure as it is constructed and as will be hereinafter more fully explained.
  • Tie-bolts 10 may be secured at their upper ends to eyes 11, projecting inwardly from the walls 6 of the compartment 6 and at their lower ends to the upper ends of anchor-bolts 12, secured in the substructure at desired places as the latter is built, these tie and anchor bolts being adapted to hold the shield or caisson down and steady it during the work of constructing the tunnel and the foundations therefor, the tie-bolts 10 being removed when it may be desired to advance the shield by sliding or forcing itforward on the supporting antifriction-rollers 8.
  • the forward movement of the shield is preferably accomplished by one or more series of hydraulic jacks.
  • I have shown two series of such jacks, one, 13, at the rear portion of the shield and one, 14, at the front portion of the shield.
  • the jacks 13 are arranged in acurve or arc conforming substantially to the contour of the tunnel.
  • a curved plate or wall 15 against which the forward endsof all of the end .of the tunnel proper in course of construction, as shown more clearly at Fig. 5.
  • the top and sides of the shield extend rearwardly from this plate and partially surround the forward end 17 of the constructed tunnel and in a manner such that the said end 17will act as a guide to the shield when it is moved forward.
  • Thej oint between the rear end portion of the shield and the forward end 17 of the tunnel is maintained air and water tight by means of suitable packing devices, as indicated at 18.
  • the jacks 14 are arranged horizontally and longitudinally of the shield and at the lower forward portion thereof.
  • the forward ends of the jacks 14 bear against a hollow struc ture or box-beam 19, secured on the rear side of the head or front plate 2 of the shield, and the rear ends of the jacks abut against the forward end or last completed portion of the foundation-work, which will presently be more fully explained.
  • the head of the shield is composed of separate flange-plates riveted together and is formed or provided at its lower portion with numerous small holes or apertures 20, through which air and water, or either, may be ejected for the purpose of agitating and loosening the mud, silt, or the like at the front side of the shield, and thus displacing such matter, so as to facilitate the advance of the shield.
  • the head of the shield is likewise formed with several transverse series of openings 21, provided each interiorly of the shield with a cover 22, which may be clamped or bolted over the opening.
  • These openings 21 are provided for the purpose of enabling any material to be carried into the shield which would not be easily displaced by the jets and which might have to be otherwise removed to enable the shield to be advanced.
  • These covers are preferably provided with central outlets 23, controlled by valves 24 and which may be used for the ejection of air or water, or both, to loosen or displace the mud or other material in advance of the head.
  • Transversely of the head of the shield is still another series of openings 27, each of which is provided with a stuffing-box or gland and through which may be introduced a drill, as 28, operable by hand or by compressed air from within the shield and for the purpose of drilling holes in rock or boulders which may be ahead of the shield and which may be necessary to blast away for the purpose of enabling the advancement of the shield.
  • a drill as 28 operable by hand or by compressed air from within the shield and for the purpose of drilling holes in rock or boulders which may be ahead of the shield and which may be necessary to blast away for the purpose of enabling the advancement of the shield.
  • a superimposed caisson 29 which may be bolted or otherwise secured to the shield, but which is preferably detachable therefrom.
  • This caisson may, however, form a permanent part of the shield, and in such case would constitute the top of the same.
  • it is formed of three longitudinal series of compartments 30, there being six compartments in each series. These compartments all communicate with each other by means of doors 31, and these doors have valve-controlled apertures 32, so as to let the air or water in from one compartment to the next when this may be desired.
  • compartments are to be used, primarily, for the storage of weight, either water or pig-iron or the like, where the shield is in operation at some considerable distance below the surface of the water and where the buoyancy of the shield is greatest.
  • the for- .ward chambers or compartments of the superimposed caisson may be provided with glass-covered openings or ports 33, through any one of which by the aid of an electric light applied at one of the other glass-covered openings or ports the workmen may observe the character of the material immediately in front of the shield, and, ifdesired, some of the lower openings 21 in the head of the shield may likewise be provided with glass covers for the same purpose.
  • the rearmost compartment 4 of the middle series is provided with a telescopic tubular shaft 34, some of whose sections are adapted to pass out through one of the compartments inthe superimposed caisson and be extended up above water-level, so that in case of emergency the workmen could escape through said shaft, or, if desired, material carried into the shield through the head may be elevated through said shaft to the surface of the water, at which may be located scows or the like for receiving the same.
  • a telescopic tubular shaft 34 some of whose sections are adapted to pass out through one of the compartments inthe superimposed caisson and be extended up above water-level, so that in case of emergency the workmen could escape through said shaft, or, if desired, material carried into the shield through the head may be elevated through said shaft to the surface of the water, at which may be located scows or the like for receiving the same.
  • the plates of which thehead of the shield is composed ITS are formed with deep or wide flanges, which greatly strengthen the head; but in addition thereto I prefer to employ a series of removable or adjustable stiffening bars or braces 35 (shown in dotted lines) and which extend from said flanges in truss-like form to the front face of the upper series of compartments 4, thus effectually resisting any liability of the head buckling or distorting.
  • this bracing serves to transmit the force of the jacks 13, exerted through the walls, tops, and bottoms of the compartments 4 to the head of the shield, it being understood that the wall 15 is specially strengthened or stiffened to resist the pressure of the jacks, so as to prevent injury to said wall.
  • the side walls of the shield extend slightly below the lower or cutting edge of the head of the shield in order that any escape of air from the shield may be under the head or forward portion. thereof, where it is desirable to displace or dissipate the material rather than at the sides of the shield, where it may be desirable to have the material remain intact.
  • the initial or first work of constructing the foundation of the tunnel is performed at the forward end of the shield and near the head thereof, and for this reason there is provided at this locality a pile-driving mechanism (represented generally at 36) and which may be of any suitable construction.
  • a pile-driving mechanism represented generally at 36
  • the driving mechanism for piles is represented as being adapted to be moved progressively longitudinally of the carrier and shield so as to enable it to drive successive forward lines of piles until the requisite number have been driven to renew or continue the constructional work of the flooring or platform of the tunnel-foundation.
  • jet-openings 20 there is a line of piping 39 with branches 40 extending to said openings.
  • branches 40 For the next tier of et-openings 20 there is a line of piping 41 and branches 42.
  • transverse supplypipes are connected by hose or like flexible connections to the longitudinally-arranged main supply-pipes 44, of which, as will be seen at Fig. 7, ten are shown.
  • main supply-pipes 44 are, however, used to conduct air or water at different pressures to the compartments 4, 6, 7, and 30, said main supply-pipes 44 being built into or laid in the masonry or foundation in sections as the work progresses and being connected at their outermost ends to air-compressors and water-pumps.
  • a larger centrally-arranged water-pipe 45 In addition to these main supply-pipes there is a larger centrally-arranged water-pipe 45, likewise laid in sections and which is similarly connected by hose to the jet-pipes and to the pipes leading to the compartments and to any other portion of the shield or any other device therein which may require the water from this pipe.
  • a suction or sand pipe is placed near the bottom of the bed of the shield and connected to the exhaust-pipe 48.
  • Said pipe may be supported on the jacking-timbers, or it may be suspended within the shield or otherwise sultably supported, and the suction end of the pipe may be either passed out through one of the holes 25 or inserted below the lower edge of the head of the shield. It is perhaps unnecessary further to describe in detail the arrangement of the pipes or of the valves which control said pipes or of the valves which control the passage of the air and water from one compartment to another, these systems being well understood by those skilled in the art.
  • the shield being unprovided with a rear end is for the purpose of sinking or submerging the same temporarily provided with a rear end or wall which may be made of timber and which may be removed after the shield has been brought down to the proper depth and in alinement with the shore end of the tunnel.
  • To sink the shield it is filled or partially filled with water or other weights, such as pig-iron, depending upon the depth to which the shield must be submerged, and the shield is permitted to descend until it rests upon the mud or other material below the surface of the water.
  • the shield or caisson When the shield or caisson has finally been brought into alinement with the shore-opening of the tunnel, the latter may be built forward the required extent to connect with and enter the rear end of the shield, whereupon the temporary rear end of the shield may be re moved and open communication established between the interior of the shield and the tunnel, and the air andwater: pipes running through the tunnel from suitable pumps, and air-compressors may then be connected with the shield either at this time or subsequently, depending upon whether the pipes leading from above which were used in the sinking of the shield have or have not been disconnected.
  • the parts are now in condition for the workmen to proceed with the operations of removing the mud, silt, &c., and building or constructing and forming a suitable founda tion and bottom for the tunnel.
  • the order of the operations may vary under different circumstances; but ordinarily the first operation would be to drive into the mud or sand a series of transverse lines of piles to a sufficient depth to enable a foundation of the requisite strength to be built thereupon.
  • the sinking of the said several rows of piles may be accomplished by jacks or other devices employed within the shield, instead of by pile-driver shown; but after the line of piling has been constructed up to near the forward end of the shield the piles will then, preferably, be driven by the piledriver shown, and after two or three transverse rows of piles have been driven by the piledriver and the beams and concrete or other masonry laid thereon the shields will then be moved forward, as will presently be explained.
  • the piles may be of wood or of iron in sections.
  • the piles When the piles are driven, they are preferably laid on true lines longitudinally and transversely, and at the proper times longitudinal I-beams 49 are bolted to the sides thereof, as shown more particularly at Figs. 6 and 7, and transverse I-beams 50 are also bolted to the sides of said piles and additionally secured thereto by straps 51, which pass around said transverse beams and over the top of the pile, their ends being secured to the pile below the longitudinal beam.
  • the tops of the supporting-piles are embedded in a masonry base and anchored thereby and that a masonry superstructure is built upon said base.
  • the pipes 44 and 45 are inserted or laid, and at the same time the sectional bottom plates 54 are laid transversely upon the crossbeams 50 and covered with concrete. They are, however, first bolted together and to the cross-beams.
  • the bottom plates are put down the end plates 55 are also erected and also surrounded by concrete.
  • end plates project slightly above the concrete and support theseries of arching plates 56, which are subsequently put in in sections and filled with concrete between their flanged ends, the said plates 56 constituting when completed the inner walls of the subaqueous tunnel.
  • the concrete 57 on the outer side of said plates is laid to accurately conform to the contour of the rear end of the shield, and which is preferably constructed so as to provide a working space at the portion marked 58.
  • the ports28 are opened for this purpose or a suctionpump is employed, as before explained.
  • the acks 13 and 14 are moved forward by means of the acks 13 and 14, or either of them, depending upon the resistance ahead of the shield and also the friction on the sides of the shield.
  • the jacks 13 are always arranged'in the position shown; but the jacks 14 are only placed in their positions when it becomes necessary to move the shield.
  • One of the lower compartments 6 is shown as partially filled with pig-iron 59, which may be used with other weights to keep the shield down in bearing contact with the rollers 8, and these rollers and their tracks or rails, firmly fixed in the bed-foundation built within the shield, prevent any depression of the shield and insure its moving forward in the proper line or path, while at the same time the said foundation-work, including the rails, prevent any lateral movement of the shield, owing to the sides of the latter extending down to and past the flooring or covering of the foundation-piling, and which flooring or covering constitutes the bottom of the completed tunnel.
  • the shield having been moved forward the desired extent or to, say, the position.
  • the tunnel is provided with a suitable bulkhead 60, provided with an air-lock forming com munication between the forward portion of the tunnel and the shield, so that workmen may from time to time pass from one structure to the other, so that piles and other material may be taken from the tunnel into the shield for the building of the foundation, and so that, if desired or necessary, excavated matter may be taken fromthe shield back into and through the tunnel.
  • a suitable bulkhead 60 provided with an air-lock forming com munication between the forward portion of the tunnel and the shield, so that workmen may from time to time pass from one structure to the other, so that piles and other material may be taken from the tunnel into the shield for the building of the foundation, and so that, if desired or necessary, excavated matter may be taken fromthe shield back into and through the tunnel.
  • openings 61 may be formed in the front and sides of the shield for ropes or cables which from the front may extend forward from the shield to the opposite shore and be there secured and which from the sides may be connected to anchors, all for the purpose of relieving the shield from side strains from swiftly-running or strong currents and which might tend to displace it laterally or cause it to bind onthe tunnel. Also, if desired, there may be arranged a series of temporary emergency air and water pipes 62 to connect with'the various compartments from the pumps and air-compressors on the shore.
  • the view represents the tunnel as having been constructed from one shore to the other under the water, and said view shows in dotted lines where the mud and rock have had to be removed and also those places where it was necessary to drive piles in order to secure a firm and stable foundation for the tunnel itself.
  • FIG. 2 is represented on a small scale the work of constructing the tunnel and the foundations from within the shield, While at Figs. 3 and 4 cross-sections of the tunnel and riverbed are shown at portions of the tunnels represented, respectively, by the lines 2 z and q y, Fig. 1.
  • This covering of rock or the like preferably extends for the entire length of the submerged portion of the tunnel and may be formed by dropping the material from scows or the like anchored over or alongside of the tunnel.
  • anchor-rods 63 extend from the flooring or base of the tunnel down into the rock, where said rods are provided with spreaded ends, which by means of wedges retain a firm hold in holes drilled in the rock, thus further securing the tunnel against rising or upward displacement by reason of its own buoyancy.
  • These anchor-rods may be provided at such points as will permit of their use during the entire length of the tunnel. If desired, at various points in the structure where the nature of the river-bed will admit screw-piles may be driven into the soil and secured at their upper ends to the bottom of the tunnel, so as more effectually to hold it in position. It will thus be seen that by the use of piling and anchor-rods ample provision is made for immovably holding the tunnel in its proper position not only against upward movement, but lateral movement as well.
  • N 0 one, so far asI am aware, has previously made and employed in connection with the building of tunnels a bottomless shield constructed and adapted to enable workmen to construct a suitable foundation for a tunnel and to construct the tunnel progressively from within such shield and then to advance such shield in the line of the tunnel for the building of additional foundations and addi tional sections of the tunnel, and this construction of shield I desire to claim as broadly as possible.
  • a bottomless pneumatic shield provided interiorly with means whereby foundations may be constructed on or in the bed of a river from within said shield, with means for keeping said shield under water, and with means for advancing the shield horizontally as the foundations therebelow are constructed.
  • a pneumatic shield having a head, sides and top but no bottom and no rear end and provided interiorly with integral appliances for building a foundation for the structure beneath said shield and from Within the same, substantially as set forth.
  • a pneumatic shield provided with means for moving it forwardly horizontally progressively and also provided with means for enabling the foundation for the structure to be built from within the shield.
  • a pneumatic shield having means at its head for displacing andwemoving the mud, rock or other material in advance of the shield and having at or near the head of the shield pile-driving mechanism for driving piles downwardly into the bed of the stream or river from within the shield, and ahead of the tunnel to form a foundation upon which to build the tunnel.
  • a pneumatic shield having means at its head for displacing and removing the mud, rock or other material in advance of the shield and having within the shield at or near the head thereof in advance of the head of the tunnel constructed within the shield suitable mechanism for inserting into the river-bed from withthe shield foundation-piles, tubes or the 1 (e.
  • a pneumatic shield having at or near the head thereof an open bottom and provided thereat with suitable means for inserting foundationpil ing into the bed of the river from within the shield and in advance of the head of the tunnel constructed therein.
  • a pneumatic shield adapted to be forced forward horizontally and constructed without a bottom and without a rear wall and provided interiorly at its head with material displacing and removing devices and with pile-inserting devices, to enable the building of foundationwork in advance of the head of the tunnel, and alsoprovided with a series of jacks for forcing the shield forwardly over and while supported upon the foundation-work previously constructed from within the shield and at the head thereof.
  • a pneumatic shield having a head and an open bottom to enable the insertion of foundationpiling from within the shield and to enable the flooring or covering to be placed upon said piling, and said shield having means for inserting said foundation-piling and also means for advancing the shield over said piling and flooring or covering and while supported thereupon.
  • a .pneumatic shield comprising a head, top and sides, and being open from end to end at its bottom,
  • a pneumatic shield having an open bottom, a foundation and flooring or covering thereto constructed from Within said shield, rails built longitudinally of said. foundation, rollers on said rails and supporting said, shield, closed weight-contaming compartments Within said shield, and means for moving the shield forwardly in the line of construction of the foundation.
  • a subaqueous-tunnel structure comprising a series of supporting-piles, a series of longitudinal and a series of transverse beams secured to the tops of said piles, a masonry base embedding said beams and the tops of said piles, and a masonry superstructure upon said base.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

N0. 832,120. PATENTED OCT. 2, 1906.
J. BREUGHAUD.
TUNNEL AND MEANS FOR OONSTRUGTING THE SAME.
APPLICATION FILED MAY 29; 1902.
4 SHEETS-SHEET 1.
M'fzzesses: 4
a 7%Mea PATENTED OCT. 2, 1906.
. v J. BREUOHAUD. TUNNEL AND MEANS FOR GONSTRUGTING THE SAME.
APPLICATION FILED MAY29, 1902.
, HEPTS-BHEET 2.
'fnven 601':
71 3671 e55 es 4 SHEETS-SHEET a.
PATENTED'OOT. 2, 1906.
J. BREUGHAUD.
APPLICATION FILED MAYZQ, 902.
TUNNEL AND MEANS FOR GONSTRUGTING THE SAME.
N 3.- @m .UQQQ WU q a a: 0 n -0- a on a a 5 6@ Z mw mw m =5 @235: O m m No. 832,120 PATENTED OUT. 2, 1906;
J. BREUGHAUD. TUNNEL'AND MEANS FOR UONSTRUGTING THE SAME.
APPLICATION FILED MAY 29, 1902.
I 4 SHEETS-SHEET 4.
wlvmwlmlal. mm.Iwzlm I!lwmmiwmmwu m PVz'tnesses:
UNITED STATES PATENT OFFICE.
J ULES BREUCHAUD. OF YONKERS, NEW YORK.
Specification of Letters Patent.
Patented. Oct. 2,1906.
Original application filed February 24, 1902, Serial No. 95 ,3 30. Divided and this application filed May 29, 1902. Serial No. 109,5 12.
As shown herein the shield has been de' vised and equipped more especially for the construction of the foundations and walls of a subaqueous tunnel and from within the working chamber of the shield itself, arrangements being made for the forming of an airtight connection at the sides and walls of the tunnel, so as to permit of a horizontal move ment of the shield in the direction of the line of the tunnel upon Wheels or rollers properly placed on the foundation formed from within the shield, hydraulic jacks or other power being employed to advance the shield progressively as the foundation-work is constructed. The air-tight connection between the outer walls of the tunnel and the shield may be maintained by means of a suitable packing or calking composed of a plastic substance, preferably stiif clay. Within the walls of the tunnel are placed suitable airtight partitions provided with air-locks for maintaining a connection between the shield and the completed portion of the tunnel and for the passage of the men and the bringing in and sending out of material and for all other purposes and requirements of the work: men. The forward or leading end of the shield is provided with means for excavating and displacing and removing mud, silt, or other obstructions that may be in the line of travel of the shield. Foundations constructed from within the shield may extend through water, and over, through, or under soft material, so as to provide trestles, bridges, or foundations, or supports for the structure to be built, the shield traveling step by step over and on the permanent artificial foundation built from Within its own walls, thus enabling the shield to travel safely in a true line and be guided by the portion of the completed work over which it travels, and thereby making it possible to build tunnels and other subaqueous structures in places hitherto impossible. Heretofore it has been necessary in tunneling under rivers to have firm material, such as rock or stiff clay, through which to drive the tunnel. To obtain this condition it often necessitates going to a great depth, which requires objectionable steep inclines and long approaches in order to get under the soft material forming the bed of the river. Ac cording to my invention it is required only that the tunnel be located at a suflicient depth for the safe navigation of the streams or other bodies of water under which the tunnel is to be built, since I am enabled to construct the tunnel in mud, silt, or other like soft material previously considered quite impracticable. Being able now to build the tunnel in and through soft materials, the work of constructing it is thereby greatly facilitated and cheapened. The shield is adapted to penetrate throughandremove the .mud in the line of its travel by the use of air and water jets and. other apparatus hereinafter described.
The shield may be provided with a detachable superimposed caisson provided with numerous air and water tight compartments, thus providing accessible and convenient places for the carrying of necessary weight to overcome the buoyancy of the shield when compressed air is used for expelling the water from the interior of the shield orchamber, water-tight compartments affording a ready means for increasing or decreasing the weight, as they can be readily filled with water or emptied, as may be necessary. Ample provision is also made for the carrying of ballast in the lower part and within compartments in the shield proper, thus enabling the shield to be operated at considerable depth beneath the water when desired. Within the shield are numerous air-tight compartments provided with suitable connections and communicating one with another, so as to afford ready access thereto. The shield is also provided with a telescopic shaft fitted with airlocks and which shaft may be projected upward to the surface of the water to enable workmen to enter and leave .the chamber therethrough, and also to enable the bringing in and sending out of material. On the completion of the tunnel the traveling shield may be brought to the surface by the removal of the ballast, whereupon it .will float and may be towed to any convenient place.
tion taken at the line 2 2 of Fig. 1.
Various other features are provided, all of which will be hereinafter more fully described.
My invention consists in the construction of the shield and in the construction of the tunnel, all as will be hereinafter more fully described, and particularly pointed out in the appended claims.
In the accompanying drawings, Figure 1 is a longitudinal section of a subaqueous tunnel constructed in accordance with my improvements. Fig. 2 is a longitudinal sec tional view illustrating the method of constructing the tunnel. Fig. 3 is a cross-sec- Fig. 4 is a similar section taken at the line y y of Fig. 1. Fig. 5 is a longitudinal section somewhat similar to Fig. 2, but on a larger scale, so as to show more fully the construction of the shield and the mode of operating therefrom in the construction of a subaqueous tunnel. Fig. 6 is a vertical cross-section taken at the line :1: c of Fig. 5, but showing only one-half of the width of the shield thereat. Fig. 7 is a vertical cross-section taken at the line to w of Fig. and showing the other half of the width of the shield, the two views, Figs. 6 and 7, being preferably joined. Fig. 8 is an inside elevation of'the front wall of the shield. Fig. 9 is an outside elevation of the front wall or head of the shield, the two views, Figs. 8 and 9, being preferably united and showing each one-half of the wall from the inside and the outside; and Fig. 10 is a bottom plan view of the shield.
In the various views the same parts will be found designated by the same numerals of reference.
"It will perhaps be best to describe first the general construction of my novel shield and then subsequently the mode of using the same in the operations of building subaqueous tunnels, &c.
The most noteworthy feature to be observed is that the shield is constructed without a bottom or is open on its under side, and it is owing to this fact that I am enabled to build the proper foundation-work for the tunnel and to build the tunnel itself, as will hereinafter more fully appear.
The shield is rectangular in contour and comprises two longitudinal sides 1 1, a front side or head 2, and a top 3, there being no rear end. and no bottom to theshield. At various places Within the shield are constructed suitable air and water tight compartments, which may be utilized for various purposes. For example, at the upper portion of the shield are shown a series of large compartments 4, extending transversely and longitudinally of the shield, there being three such compartments extending longitudinally on each side and three in the middle, making nine altogether; but these may of course be varied 1n number as may be desired and in accordance with the necessities of the work in hand. These various compartments communicate one with the other through suitable doors or air-locks 5 in an ordinary manner and so that workmen may go from one compartment to another and may carry material therethrough or store it therein, as may be found necessary.
Below the series of compartments 4 there are provided at each side of the shield a number of smaller compartments 6, nine in number, which may communicate with each other through doors or air-locks and which may also communicate with the main working chamber or portion 7, extending between the said'compartments 4 and 6 and the head 2 and rearmost open-ended portion of the shield.
The various compartments are preferably constructed of sheet iron or steel with flanged edges at which they are securely bolted together and to the shield.
Each of the lower and side longitudinallyarranged compartments 6 has its innerwalls 6 inclined or sloping downwardly and. outwardly, so that the bottom portion of the compartment is narrower than the upper portion, thus giving more working room within the chamber 7, while at the same time said compartment affords a firm and substantial brace or support for the upper compartments 4.
The lower portions of the compartment '6 bear upon a series of antifriction-rollers 8, which are adapted to travel on the upper surfaces of vertically-arranged I-beams 9, which are laid longitudinally upon the substructure as it is constructed and as will be hereinafter more fully explained. Tie-bolts 10 may be secured at their upper ends to eyes 11, projecting inwardly from the walls 6 of the compartment 6 and at their lower ends to the upper ends of anchor-bolts 12, secured in the substructure at desired places as the latter is built, these tie and anchor bolts being adapted to hold the shield or caisson down and steady it during the work of constructing the tunnel and the foundations therefor, the tie-bolts 10 being removed when it may be desired to advance the shield by sliding or forcing itforward on the supporting antifriction-rollers 8.
The forward movement of the shield is preferably accomplished by one or more series of hydraulic jacks. I have shown two series of such jacks, one, 13, at the rear portion of the shield and one, 14, at the front portion of the shield. The jacks 13 are arranged in acurve or arc conforming substantially to the contour of the tunnel. In rear of the compartments 4 and 6 is a curved plate or wall 15, against which the forward endsof all of the end .of the tunnel proper in course of construction, as shown more clearly at Fig. 5. The top and sides of the shield extend rearwardly from this plate and partially surround the forward end 17 of the constructed tunnel and in a manner such that the said end 17will act as a guide to the shield when it is moved forward. Thej oint between the rear end portion of the shield and the forward end 17 of the tunnel is maintained air and water tight by means of suitable packing devices, as indicated at 18.
The jacks 14 are arranged horizontally and longitudinally of the shield and at the lower forward portion thereof. The forward ends of the jacks 14 bear against a hollow struc ture or box-beam 19, secured on the rear side of the head or front plate 2 of the shield, and the rear ends of the jacks abut against the forward end or last completed portion of the foundation-work, which will presently be more fully explained.
The head of the shield, like the sides and top, is composed of separate flange-plates riveted together and is formed or provided at its lower portion with numerous small holes or apertures 20, through which air and water, or either, may be ejected for the purpose of agitating and loosening the mud, silt, or the like at the front side of the shield, and thus displacing such matter, so as to facilitate the advance of the shield. I have shown three transverse lines or series of apertures 20 at the lower portions of the head of the shield; but of course there may be more or less of these apertures, as may be found. desirable. I have also shown at about the middle of the head a single series of similar jetopenings 20, which may be employed advantageously for the same purpose as the lower series. A system of piping communicates with these openings and with the various compartments, aswill hereinafter be more fully described. The head of the shield is likewise formed with several transverse series of openings 21, provided each interiorly of the shield with a cover 22, which may be clamped or bolted over the opening. These openings 21 are provided for the purpose of enabling any material to be carried into the shield which would not be easily displaced by the jets and which might have to be otherwise removed to enable the shield to be advanced. These covers are preferably provided with central outlets 23, controlled by valves 24 and which may be used for the ejection of air or water, or both, to loosen or displace the mud or other material in advance of the head.
At suitable intervals transversely of the head of the shield are provided a series of openings 25, provided with suitable covers on the inside of the head, and these are employed in connection with a pumping or suction apparatus for the purpose of enabling material to be drawn into the shield which may not be readily displaced and moved out laterally of the head of the shield, and such material may subsequently be either carted away or discharged through pipes at the point 26 or elsewhere, as may be found most expedient. Transversely of the head of the shield is still another series of openings 27, each of which is provided with a stuffing-box or gland and through which may be introduced a drill, as 28, operable by hand or by compressed air from within the shield and for the purpose of drilling holes in rock or boulders which may be ahead of the shield and which may be necessary to blast away for the purpose of enabling the advancement of the shield.
If desired, there may be provided on the top of the shield a superimposed caisson 29, which may be bolted or otherwise secured to the shield, but which is preferably detachable therefrom. This caisson may, however, form a permanent part of the shield, and in such case would constitute the top of the same. As here shown, it is formed of three longitudinal series of compartments 30, there being six compartments in each series. These compartments all communicate with each other by means of doors 31, and these doors have valve-controlled apertures 32, so as to let the air or water in from one compartment to the next when this may be desired. These compartments are to be used, primarily, for the storage of weight, either water or pig-iron or the like, where the shield is in operation at some considerable distance below the surface of the water and where the buoyancy of the shield is greatest. The for- .ward chambers or compartments of the superimposed caisson may be provided with glass-covered openings or ports 33, through any one of which by the aid of an electric light applied at one of the other glass-covered openings or ports the workmen may observe the character of the material immediately in front of the shield, and, ifdesired, some of the lower openings 21 in the head of the shield may likewise be provided with glass covers for the same purpose.
Referring to Fig. 5, it will be observed that the rearmost compartment 4 of the middle series is provided with a telescopic tubular shaft 34, some of whose sections are adapted to pass out through one of the compartments inthe superimposed caisson and be extended up above water-level, so that in case of emergency the workmen could escape through said shaft, or, if desired, material carried into the shield through the head may be elevated through said shaft to the surface of the water, at which may be located scows or the like for receiving the same. There may of course be as many of these telescopic shafts as may be necessary.
It will be observed at Fig. 5 that the plates of which thehead of the shield is composed ITS are formed with deep or wide flanges, which greatly strengthen the head; but in addition thereto I prefer to employ a series of removable or adjustable stiffening bars or braces 35 (shown in dotted lines) and which extend from said flanges in truss-like form to the front face of the upper series of compartments 4, thus effectually resisting any liability of the head buckling or distorting. At the same time this bracing serves to transmit the force of the jacks 13, exerted through the walls, tops, and bottoms of the compartments 4 to the head of the shield, it being understood that the wall 15 is specially strengthened or stiffened to resist the pressure of the jacks, so as to prevent injury to said wall.
By referring to Figs. 5 to 9, inclusive,it will be observed that the side walls of the shield extend slightly below the lower or cutting edge of the head of the shield in order that any escape of air from the shield may be under the head or forward portion. thereof, where it is desirable to displace or dissipate the material rather than at the sides of the shield, where it may be desirable to have the material remain intact.
The initial or first work of constructing the foundation of the tunnel is performed at the forward end of the shield and near the head thereof, and for this reason there is provided at this locality a pile-driving mechanism (represented generally at 36) and which may be of any suitable construction. I have illustrated a carrier 37, which may be supported to travel transversely of the shield with the driving mechanism and so as to drive successively crosswise of the shield a line of piles 38. The driving mechanism for piles is represented as being adapted to be moved progressively longitudinally of the carrier and shield so as to enable it to drive successive forward lines of piles until the requisite number have been driven to renew or continue the constructional work of the flooring or platform of the tunnel-foundation.
The system of piping for the various compartments and for the jet-openings, piledriver, &c., will be readily understood and is easily installed by the hydraulic engineer, but is difficult of illustration herein. 1 have, however, endeavored to show such a system, although it may be varied in aocordance'with the detail construction of the shield and in accordance with the various working devices which may be employed therein. jet-openings 20 there is a line of piping 39 with branches 40 extending to said openings. For the next tier of et-openings 20 there is a line of piping 41 and branches 42. For the topmost series of jet-openings 20 there is a line of piping 43. These transverse supplypipes are connected by hose or like flexible connections to the longitudinally-arranged main supply-pipes 44, of which, as will be seen at Fig. 7, ten are shown. Some of these For the pipes are, however, used to conduct air or water at different pressures to the compartments 4, 6, 7, and 30, said main supply-pipes 44 being built into or laid in the masonry or foundation in sections as the work progresses and being connected at their outermost ends to air-compressors and water-pumps. In addition to these main supply-pipes there is a larger centrally-arranged water-pipe 45, likewise laid in sections and which is similarly connected by hose to the jet-pipes and to the pipes leading to the compartments and to any other portion of the shield or any other device therein which may require the water from this pipe. Various branch pipes, as 46 47, connect with the supply-pipes 44 and. 45, so as to conduct the air and water to and from the various compartments. When it may be desired to draw in the mud or other material through the suction-holes 25 or from under the cutting edge of the shield, a suction or sand pipe is placed near the bottom of the bed of the shield and connected to the exhaust-pipe 48. Said pipe may be supported on the jacking-timbers, or it may be suspended within the shield or otherwise sultably supported, and the suction end of the pipe may be either passed out through one of the holes 25 or inserted below the lower edge of the head of the shield. It is perhaps unnecessary further to describe in detail the arrangement of the pipes or of the valves which control said pipes or of the valves which control the passage of the air and water from one compartment to another, these systems being well understood by those skilled in the art.
Having now described specifically the construction of the shield and its appurtenances, I will now describe more articularly the manner of its use in the bui ding of the tunnel and the foundation therefor. v
The shield being unprovided with a rear end is for the purpose of sinking or submerging the same temporarily provided with a rear end or wall which may be made of timber and which may be removed after the shield has been brought down to the proper depth and in alinement with the shore end of the tunnel. To sink the shield, it is filled or partially filled with water or other weights, such as pig-iron, depending upon the depth to which the shield must be submerged, and the shield is permitted to descend until it rests upon the mud or other material below the surface of the water. It may then be necessary to excavate from under the shield in order to get it down in alinement with the shore-opening of the tunnel, and to accomplish this it may be necessary to pump air into the working chamber 7, and thus drive the water therefrom, whereupon workmen may descend into the shield and proceed with the work of excavating by suitable means, and for this purpose a sand or suction pump may be connected with the pipe 48 and the material all blown out or exhausted at 26. As the material is thus expelled from under the shield, it may be necessary from time to time to add more weight to the shield to maintain it in its depressed condition and en able it to follow down on the bed of material, as will be readily understood by those familiar with pneumatic caisson-work. When the shield or caisson has finally been brought into alinement with the shore-opening of the tunnel, the latter may be built forward the required extent to connect with and enter the rear end of the shield, whereupon the temporary rear end of the shield may be re moved and open communication established between the interior of the shield and the tunnel, and the air andwater: pipes running through the tunnel from suitable pumps, and air-compressors may then be connected with the shield either at this time or subsequently, depending upon whether the pipes leading from above which were used in the sinking of the shield have or have not been disconnected. The parts are now in condition for the workmen to proceed with the operations of removing the mud, silt, &c., and building or constructing and forming a suitable founda tion and bottom for the tunnel.
The order of the operations may vary under different circumstances; but ordinarily the first operation would be to drive into the mud or sand a series of transverse lines of piles to a sufficient depth to enable a foundation of the requisite strength to be built thereupon. The sinking of the said several rows of piles may be accomplished by jacks or other devices employed within the shield, instead of by pile-driver shown; but after the line of piling has been constructed up to near the forward end of the shield the piles will then, preferably, be driven by the piledriver shown, and after two or three transverse rows of piles have been driven by the piledriver and the beams and concrete or other masonry laid thereon the shields will then be moved forward, as will presently be explained. The piles may be of wood or of iron in sections. When the piles are driven, they are preferably laid on true lines longitudinally and transversely, and at the proper times longitudinal I-beams 49 are bolted to the sides thereof, as shown more particularly at Figs. 6 and 7, and transverse I-beams 50 are also bolted to the sides of said piles and additionally secured thereto by straps 51, which pass around said transverse beams and over the top of the pile, their ends being secured to the pile below the longitudinal beam. Then concrete is laid between and over said I-beams and the top portions of the piles, as represented at 52, the bed of the river or stream usually being firm enough to support the concrete between the beams and piles; but,'if it should be too soft, buckle-plates or supports may be placed under the lower flanges of the I-beams to hold and retain the concrete. When the longitudinal and transverse beams 49 and 50 have been secured and concrete laid thereupon and therebetween, the longitudinally-arranged I-beams or rails 9 9 are laid upon the cross-beams 50, and concrete 53 is laid upon said transverse beams and also around the lower portions of the beams or rails 9 9, so as to embed them therein and maintain them in proper position for the anti,- friction-rolls 8. It will thus be seen that the tops of the supporting-piles are embedded in a masonry base and anchored thereby and that a masonry superstructure is built upon said base. During the laying of the concrete 53 the pipes 44 and 45 are inserted or laid, and at the same time the sectional bottom plates 54 are laid transversely upon the crossbeams 50 and covered with concrete. They are, however, first bolted together and to the cross-beams. At the same time the bottom plates are put down the end plates 55 are also erected and also surrounded by concrete. These end plates project slightly above the concrete and support theseries of arching plates 56, which are subsequently put in in sections and filled with concrete between their flanged ends, the said plates 56 constituting when completed the inner walls of the subaqueous tunnel. The concrete 57 on the outer side of said plates is laid to accurately conform to the contour of the rear end of the shield, and which is preferably constructed so as to provide a working space at the portion marked 58. The section of the tunnel having now been built within the rear portion of the shield and just back of the jacks 13, and piles having been driven at the forward end of the shield, and longitudinal and transverse beams and flooring-concrete having been laid, and the rails 9 9 and the bottom plates 54 of the tunnel and the end plates 55 thereof, and the pipes 44 and 45 having also been laid or placed in position, the next operation will be to move the shield horizontally forward a suitable distancefor example, such as that represented at Fig. 5. To do this, the water and air jets 20 are first permitted to operate on the mud or silt in advance of the shield, and if rock is to be removed drills28 are operated. Also if some of the material is to be brought in through the shield the ports28 are opened for this purpose or a suctionpump is employed, as before explained. When the material has been sufficiently removed or displaced from in front of the shield, the latter is moved forward by means of the acks 13 and 14, or either of them, depending upon the resistance ahead of the shield and also the friction on the sides of the shield. The jacks 13 are always arranged'in the position shown; but the jacks 14 are only placed in their positions when it becomes necessary to move the shield. It will be understood by those skilled in the art that when water is admitted to all of the series of jacks which it may be necessary to employ said jacks Wlll operate to press the shield forward, theseries of jacks 13 having for their abutment the forward end of the previously constructed tunnel and pressing against part of the shield at the forward end thereof, and the jacks 14 having for their abutment the foundation or crib work of the piling and pressing at their forward ends against the box-beam secured near the lower edge of the head of the shield. During this movement of the shield it is steadied and guided by the front end of the tunnel, which telescopes into the rear end of the shield, and owing to the employment of the antifriction-rollers 8, which support the weight of the shield, the resistance to the movement of the shield is greatly reduced. One of the lower compartments 6 is shown as partially filled with pig-iron 59, which may be used with other weights to keep the shield down in bearing contact with the rollers 8, and these rollers and their tracks or rails, firmly fixed in the bed-foundation built within the shield, prevent any depression of the shield and insure its moving forward in the proper line or path, while at the same time the said foundation-work, including the rails, prevent any lateral movement of the shield, owing to the sides of the latter extending down to and past the flooring or covering of the foundation-piling, and which flooring or covering constitutes the bottom of the completed tunnel. The shield having been moved forward the desired extent or to, say, the position. shown at Fig.5, and the air and water jets and other mud displacing and removing devices having ceased their operati ons and the jacks 14 having been removed, the operation of driving piles will again be resumed, and then the work of laying beams and concrete will be repeated until another section of the tunnel has been added. Thus the work is continued progressively until the completion of the tunnel.
As shown at Fig. 5, and as customary, the tunnel is provided with a suitable bulkhead 60, provided with an air-lock forming com munication between the forward portion of the tunnel and the shield, so that workmen may from time to time pass from one structure to the other, so that piles and other material may be taken from the tunnel into the shield for the building of the foundation, and so that, if desired or necessary, excavated matter may be taken fromthe shield back into and through the tunnel.
If desired, openings 61 may be formed in the front and sides of the shield for ropes or cables which from the front may extend forward from the shield to the opposite shore and be there secured and which from the sides may be connected to anchors, all for the purpose of relieving the shield from side strains from swiftly-running or strong currents and which might tend to displace it laterally or cause it to bind onthe tunnel. Also, if desired, there may be arranged a series of temporary emergency air and water pipes 62 to connect with'the various compartments from the pumps and air-compressors on the shore.
Of course if at certain places it should be desired to construct a foundation of columns instead of piles tubular iron or steel sections may be sunken into the bed of the river by the well-known pneumatic process or by the equally well-known process involving the use of jets of air or water at the leading end of the column, and the column may be formed of sections screwed or bolted together, depending upon the depth to which it is to be sunken. After the column or columns have thus been driven they may be filled with concrete or other suitable material. In such work, of course, in line of the piledriving apparatus, suit able pneumatic or jetting app aratus would be employed and at about the locality at which the pile driving apparatus is now shown as arranged.
Referring to Fig. 1, the view represents the tunnel as having been constructed from one shore to the other under the water, and said view shows in dotted lines where the mud and rock have had to be removed and also those places where it was necessary to drive piles in order to secure a firm and stable foundation for the tunnel itself.
At Fig. 2 is represented on a small scale the work of constructing the tunnel and the foundations from within the shield, While at Figs. 3 and 4 cross-sections of the tunnel and riverbed are shown at portions of the tunnels represented, respectively, by the lines 2 z and q y, Fig. 1.
As will be observed from Figs. 3 and 4, I prefer to surround or cover the completed tunnel on the top and two sides with broken rock, coarse gravel, or other suitable material 64, so as more firmly to maintain the tunnel upon its foundation and in proper position and at the same time protect the tunnel against damage as, for instance, by sunken vessels or the dragging anchors of passing boats. This covering of rock or the like preferably extends for the entire length of the submerged portion of the tunnel and may be formed by dropping the material from scows or the like anchored over or alongside of the tunnel.
At Fig. 3 anchor-rods 63 extend from the flooring or base of the tunnel down into the rock, where said rods are provided with spreaded ends, which by means of wedges retain a firm hold in holes drilled in the rock, thus further securing the tunnel against rising or upward displacement by reason of its own buoyancy. These anchor-rods may be provided at such points as will permit of their use during the entire length of the tunnel. If desired, at various points in the structure where the nature of the river-bed will admit screw-piles may be driven into the soil and secured at their upper ends to the bottom of the tunnel, so as more effectually to hold it in position. It will thus be seen that by the use of piling and anchor-rods ample provision is made for immovably holding the tunnel in its proper position not only against upward movement, but lateral movement as well.
N 0 one, so far asI am aware, has previously made and employed in connection with the building of tunnels a bottomless shield constructed and adapted to enable workmen to construct a suitable foundation for a tunnel and to construct the tunnel progressively from within such shield and then to advance such shield in the line of the tunnel for the building of additional foundations and addi tional sections of the tunnel, and this construction of shield I desire to claim as broadly as possible.
While I have shown and thus far described my improvements more particularly in connection with the building of tunnels, it will be understood that they may be employed for the building of subaqueous pipe-lines and aqueducts and in connection with the construction of suitable foundations for bridges, piers, docks, and other submarine structures where the work has got to be carried on linearly and progressively. The nature of the operations from within the movable shield will of course vary according to the kind of structure and foundation to be built or provided, and it will therefore be understood that various changes in the construction of the shield and in the mode of its employment may be made without departing from the spirit of my invention.
I do not claim herein the hereinbeforedescribed improvements in the art of constructing subaqueous tunnels, since the same are made the subject-matter of claims in my aforesaid application, filed February 24,1902, Serial No. 95,330.
\Vhat I claim as new, and desire to secure by Letters Patent, is
1. A bottomless pneumatic shield provided interiorly with means whereby foundations may be constructed on or in the bed of a river from within said shield, with means for keeping said shield under water, and with means for advancing the shield horizontally as the foundations therebelow are constructed.
2. As a means for constructing foundations for subaqueous structures, a pneumatic shield having a head, sides and top but no bottom and no rear end and provided interiorly with integral appliances for building a foundation for the structure beneath said shield and from Within the same, substantially as set forth.
3. As a means for constructing foundations for subaqueous structures, a pneumatic shield provided with means for moving it forwardly horizontally progressively and also provided with means for enabling the foundation for the structure to be built from within the shield.
4. As a means for constructing foundations for subaqueous structures, a pneumatic shield having means at its head for displacing andwemoving the mud, rock or other material in advance of the shield and having at or near the head of the shield pile-driving mechanism for driving piles downwardly into the bed of the stream or river from within the shield, and ahead of the tunnel to form a foundation upon which to build the tunnel.
5. As a means for constructing foundations for subaqueous structures, a pneumatic shield having means at its head for displacing and removing the mud, rock or other material in advance of the shield and having within the shield at or near the head thereof in advance of the head of the tunnel constructed within the shield suitable mechanism for inserting into the river-bed from withthe shield foundation-piles, tubes or the 1 (e.
6. As a means for constructing foundations for subaqueous structures, a pneumatic shield having at or near the head thereof an open bottom and provided thereat with suitable means for inserting foundationpil ing into the bed of the river from within the shield and in advance of the head of the tunnel constructed therein.
7. As a means for constructing foundations for subaqueous structures, a pneumatic shield adapted to be forced forward horizontally and constructed without a bottom and without a rear wall and provided interiorly at its head with material displacing and removing devices and with pile-inserting devices, to enable the building of foundationwork in advance of the head of the tunnel, and alsoprovided with a series of jacks for forcing the shield forwardly over and while supported upon the foundation-work previously constructed from within the shield and at the head thereof.
8. As a means for constructing foundations for subaqueous structures, a pneumatic shield having a head and an open bottom to enable the insertion of foundationpiling from within the shield and to enable the flooring or covering to be placed upon said piling, and said shield having means for inserting said foundation-piling and also means for advancing the shield over said piling and flooring or covering and while supported thereupon.
9. As a means for constructing foundations for subaqueous structures, a .pneumatic shield comprising a head, top and sides, and being open from end to end at its bottom,
the lower edges of the sides being arranged to extend slightly below the plane of the lower edge of the head so that the air can escape at the head of the shield 10. The combination of a pneumatic shield having an open bottom, a foundation and flooring or covering thereto constructed from Within said shield, rails built longitudinally of said. foundation, rollers on said rails and supporting said, shield, closed weight-contaming compartments Within said shield, and means for moving the shield forwardly in the line of construction of the foundation.
11. A subaqueous-tunnel structure comprising a series of supporting-piles, a series of longitudinal and a series of transverse beams secured to the tops of said piles, a masonry base embedding said beams and the tops of said piles, and a masonry superstructure upon said base.
Signed at the borough of Manhattan, in the city of New York, in the county of New York and State of New York, this 23d day of May,
JULES BREUCHAUD. Vitnesses K. V. DONOVAN, E. M. WVELLs.
US109512A 1902-02-24 1902-05-29 Tunnel and means for constructing the same. Expired - Lifetime US832120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US109512A US832120A (en) 1902-02-24 1902-05-29 Tunnel and means for constructing the same.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9533002A US706380A (en) 1902-02-24 1902-02-24 Method of constructing tunnels.
US109512A US832120A (en) 1902-02-24 1902-05-29 Tunnel and means for constructing the same.

Publications (1)

Publication Number Publication Date
US832120A true US832120A (en) 1906-10-02

Family

ID=2900595

Family Applications (1)

Application Number Title Priority Date Filing Date
US109512A Expired - Lifetime US832120A (en) 1902-02-24 1902-05-29 Tunnel and means for constructing the same.

Country Status (1)

Country Link
US (1) US832120A (en)

Similar Documents

Publication Publication Date Title
JP4687713B2 (en) Construction method and equipment for tunnels submerged on the seabed
JP2007537375A5 (en)
US1060271A (en) Method of building subaqueous tunnels.
US832120A (en) Tunnel and means for constructing the same.
US706380A (en) Method of constructing tunnels.
US715768A (en) Method of constructing and laying subaqueous tunnels.
US620101A (en) Art of constructing tunnels
US483697A (en) Dry-dock
US563106A (en) Method of and apparatus foe sinkinc caissons fob
US1394571A (en) Subaqueous structure and method
US784413A (en) Subaqueous tunnel construction.
US933776A (en) Sinking shafts and the like.
US745453A (en) Pilot-sheeting.
US1183352A (en) Building tunnels.
US1151958A (en) Tunnel construction.
US221665A (en) Improvement in processes of-building subaqueous tunnels, conduits
US1010559A (en) Submarine operating apparatus.
US838389A (en) Method of constructing masonry structures.
US764798A (en) Apparatus for building tunnels or the like.
US764797A (en) Tunnel or like construction.
RU2783828C1 (en) Device for strengthening earth structures
US1272479A (en) Method of building foundations for subaqueous tunnels.
US745454A (en) Subaqueous working-chamber.
US561458A (en) walsh
US745457A (en) Subaqueous tunnel.