US6099961A - Synthetic cable provided with protection against soil ingress - Google Patents

Synthetic cable provided with protection against soil ingress Download PDF

Info

Publication number
US6099961A
US6099961A US09/073,238 US7323898A US6099961A US 6099961 A US6099961 A US 6099961A US 7323898 A US7323898 A US 7323898A US 6099961 A US6099961 A US 6099961A
Authority
US
United States
Prior art keywords
core
cable
strip
protective layer
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/073,238
Inventor
Cesar Jose Moraes Del Vecchio
Adolfo Tsuyoshi Komura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petroleo Brasileiro SA Petrobras
Original Assignee
Petroleo Brasileiro SA Petrobras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleo Brasileiro SA Petrobras filed Critical Petroleo Brasileiro SA Petrobras
Assigned to PETROLEO BRASILEIRO S.A. - PETROBRAS reassignment PETROLEO BRASILEIRO S.A. - PETROBRAS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEL VECCHIO, CESAR JOSE' MORAES, KOMURA, ADOLFO TSUYOSHI
Application granted granted Critical
Publication of US6099961A publication Critical patent/US6099961A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • D07B1/167Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay having a predetermined shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1092Parallel strands
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2071Spacers
    • D07B2201/2074Spacers in radial direction
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/209Jackets or coverings comprising braided structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2065Reducing wear
    • D07B2401/207Reducing wear internally
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/2942Plural coatings
    • Y10T428/2947Synthetic resin or polymer in plural coatings, each of different type

Definitions

  • This invention relates to the internal composition and manufacture of synthetic cables used to anchor floating platforms designed for offshore oil production. More specifically, the invention relates to a new construction concept for synthetic anchor cables, which are particularly advantageous for use in deep water, and their corresponding manufacturing process.
  • the new cables are provided with a layer protecting their internal nucleus, normally referred to as the core, against the action of soil from the sea floor and of other damaging agents.
  • Cables manufactured of synthetic materials as a replacement for the ordinary steel cables or chains previously used are currently being specified for anchoring floating oil drilling, production, storage and transfer units in deep water. This is due mainly to the advantages which synthetic cables offer in respect of reduced radiuses and the cost of the anchoring system, and the reduced vertical force imposed by anchorage lines on the floating unit. Reducing the radius of anchoring systems is of growing importance in deep water oil production, to reduce the congestion on the sea bed caused by equipment which tends to occur with this type of operation. Similarly, when depths increase, the immersed weight supported by anchorage systems based on steel cables, of the order of 20 to 50 kg/m, or chains, of the order of 100 to 300 kg/m, can increase the cost of manufacturing floating structures excessively.
  • Synthetic cables weighing of the order of 3 to 6 kg/m used in anchoring systems can be manufactured using some types of synthetic fibre, such as for example polyester, nylon, polypropylene, aramides or ultra high molecular weight polyethylenes. They basically comprise an inner core of fibres arranged parallel to or in a manufactured pattern in which the fibres make small angles with the axis of the cable, taking up the entire load, and a braided layer without a structural function which only provides protection for the nucleus. The inner nucleus is also known as the core. These cables are of an external diameter which typically lies between 100 and 200 mm, with a tensile strength of about 500 MPa. The core may be formed of a large and variable number of fibres, which may reach a total of the order of 20 million filaments. The thickness of the external braided layer is of the order of 10 mm.
  • the life of synthetic cables is affected by loading conditions and by various other factors which may be classified into three principal groups: environmental effects, surface wear effects, and those due to other mechanical stresses.
  • the purpose of the invention is to increase the life of these cables by reducing the internal abrasion produced by the ingress of foreign material, and the occurrence of cyclic stresses.
  • This invention relates to means applied to synthetic cables to prevent contact between soil particles which might pass through the braided layer and the core material, or penetration by these particles into the core, without affecting any of the main desirable characteristics of these cables such as weight and cost.
  • a possible way of avoiding soil particle ingress into cables would be to apply a sealing layer above the external braided layer of the cable, for example in the form of a continuous polyethylene jacket, or through the application of polyurethane elastomer.
  • U.S. Pat. No. 4,640,212 of Mar. 2, 1987 discloses an elastomer cable which has the property of becoming progressively more rigid as elongation increases.
  • This comprises a solid core of elastomer material surrounded by a solid helically wound reinforcing strip manufactured of a material which is considerably less elongatable than the core material, and an outer covering layer also manufactured of solid elastomer material.
  • the progressive increase in cable strength is achieved because the reinforcing layer is helically wound onto the core, forming an angle with the longitudinal axis of the cable within the range from 50 to 65.
  • the reinforcement may optionally be formed of two helically wound layers having the same angle, but proceeding in opposite directions.
  • the core is of synthetic rubber
  • the reinforcing layer has a structural function and the outer layer is not braided, unlike synthetic fibre cables.
  • this type of cable it must be borne in mind that although the core is protected, it is very heavy and expensive for application in the anchoring of deepwater platforms. In reality, this core, through being solid, does not require protection against soil particle ingress.
  • the American patent refers to a product which reduces the movement of the floating body by amounts very much greater (by from 40 to 100%) than those which are acceptable (from 1 to 20%) in most of the applications for which this invention is suitable.
  • the purpose of the invention according to this description is to provide protection for the core of synthetic cable without incurring the above-mentioned disadvantages.
  • the invention described here consists of the application of a coating in the form of a non-rigid polymer strip applied in helical form to the core of a synthetic cable and beneath its outer braided layer.
  • This protective layer is to prevent particles from the sea bed reaching the cable core, causing deterioration. If the polymer is impermeable, application should be such that a watertight layer does not form over the core, to avoid the occurrence of hydrostatic pressure on it.
  • the present invention provides a synthetic cable as defined in claim 1 and a process for manufacturing a synthetic cable as defined in claim 6.
  • FIG. 1 presents a diagrammatic cut-away side view showing a construction of a synthetic cable as currently manufactured.
  • FIG. 2 presents a diagrammatic cut-away side view showing a synthetic cable manufactured as proposed in this invention.
  • FIG. 3 presents a schematic view of the manufacturing process used to produce a cable according to the present invention.
  • the invention comprises an improved synthetic cable for, among other applications, anchoring floating structures for the production, storage and transfer of oil in deep water. Its purpose is to increase the durability of these cables, impeding the effect of deterioration of the core material caused by contact between it and aggressive substances contained in particles from the sea bed which infiltrate through the outer braided protective layer.
  • synthetic anchorage cables comprise a nucleus (1), also referred to as a core, which is responsible for withstanding tensile forces imposed on the cable, and which is surrounded by an outer braided layer (2). It is desirable that these cables should have great resistance to tensile forces and a low unit weight.
  • the core (1) is normally manufactured of nylon or polyester, in constructions of the steel cable type, as parallel wires or parallel strands.
  • the core diameter is typically only slightly smaller than the final external diameter which is usually between 100 and 200 mm.
  • Protecting core (1) has an outer braided layer (2) which is normally manufactured using the same material as the cable, which has a thickness of the order of 10 mm.
  • this layer (2) is to provide mechanical protection for core (1), mainly against damage which may occur during launching or recovery of the anchoring system. On these occasions the cable is subjected to wear and other adverse mechanical effects through being wound on drums and passed through pulleys or other items of handling equipment. This layer (2) is also necessary because of possible ship collisions with the cables, and also to perform the function of providing protection against environmental effects.
  • a length of cable comes into contact with the sea bed, which happens when the preinstalled anchoring system is temporarily on the sea bed awaiting arrival of the floating unit, the possibility of soil particle ingress into the cable increases.
  • braided layer (2) facilitating soil ingress, particularly when the cable is moved over the sea bed. As already mentioned, this is a cause of premature deterioration of cable core (1) and consequent loss of its ability to withstand envisaged forces.
  • FIG. 2 illustrates the solution described in this invention to overcome the above-mentioned disadvantage.
  • the application of a coating in the form of a strip of polymer material which is helically wound forming an additional layer (3) between core (1) and braided outer layer (2) is proposed.
  • the strip of polymer material may be for example a strip of polyethylene having an approximate thickness of 0.1 mm and a width of 100 mm. As this material is impermeable, the polyethylene strip should be applied in such a way that a watertight layer over the core is not formed. A slight amount of overlap may be accepted when the strip is applied provided that this does not cause the layer to be watertight.
  • Another possibility is to leave a small gap on the core surface which is not covered by the strip between two adjacent turns.
  • a spacing of the order of 5 mm, corresponding to 5% of the width, is considered to be reasonable for the above-mentioned gap width, but this will depend on the cables envisaged depth class and may be determined more precisely by means of specific tests. In this way flow of water into core (1) is not in any way impeded, avoiding the generation of undesired hydrostatic pressures upon it, which would happen if the core was completely insulated from the environment.
  • the material of the core protection layer would be use of a porous polymer so that seawater would be able to pass through the polymer layer, leaving soil particles behind. In this case there is no need for any spacing between the turns of strip, and there is normally a slight overlap. Water naturally penetrates core (1) through this material, avoiding the possibility of generating hydrostatic pressures. The soil particles, which are of larger diameter than those of the pores in the polymer, are prevented from reaching the core.
  • the outer protective layer is braided onto the core.
  • a mechanical system moves the core storage reel, drawing out the core in a coordinated way, and at the same time the protective layer is braided onto the core, completing manufacture of the cable, which is then wound onto the cable storage reel.
  • a strip of polymer material may additionally be applied to core (1) before the outer layer (2) is braided.
  • this is achieved by fitting a device known as a strip winder (6) before the braiding machine (7).
  • This device is capable of effecting circular orbiting movements around core (1) in a plane perpendicular to the axis of movement of the cable.
  • the speed of longitudinal movement of the cable and circular translation of the strip winding device (6) are coordinated to form a helix of strip on core (1) with an appropriate pitch.
  • a cable which has already been provided with a protective layer (3) for core (1) and an outer braided protective layer (2) is manufactured.
  • the core (1) is stored on a reel (4) at the beginning of the production line and the manufactured cable is stored on another reel (8) at the end of the same line.
  • a system comprising pulleys (5), motors and other auxiliary mechanical, electrical and electronic elements, not shown in the drawings, are placed along the production line wherever needed.
  • layer (3) of polymer material which protects core (1) remains protected from damage during installation or movement of the anchoring system by the cables outer braided layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

A new form of construction for synthetic cables used for the anchoring of floating platforms in offshore oil production is described. A desirable requisite for this application is that the durability of the cable is not affected by deterioration of its strong core by virtue of the aggressive mechanical action of particles of the sea bed which might penetrate the cable and reach its core. For this purpose a layer (2) to protect the core (1) comprising a strip of polymer material placed in helical fashion which permits the passage of water and prevents the passage of particles of the sea bed towards the core (1) is placed between the cable core (1) and its outer braided protective layer (2).

Description

SCOPE OF THE INVENTION
This invention relates to the internal composition and manufacture of synthetic cables used to anchor floating platforms designed for offshore oil production. More specifically, the invention relates to a new construction concept for synthetic anchor cables, which are particularly advantageous for use in deep water, and their corresponding manufacturing process. The new cables are provided with a layer protecting their internal nucleus, normally referred to as the core, against the action of soil from the sea floor and of other damaging agents.
BASIS OF THE INVENTION
Cables manufactured of synthetic materials as a replacement for the ordinary steel cables or chains previously used are currently being specified for anchoring floating oil drilling, production, storage and transfer units in deep water. This is due mainly to the advantages which synthetic cables offer in respect of reduced radiuses and the cost of the anchoring system, and the reduced vertical force imposed by anchorage lines on the floating unit. Reducing the radius of anchoring systems is of growing importance in deep water oil production, to reduce the congestion on the sea bed caused by equipment which tends to occur with this type of operation. Similarly, when depths increase, the immersed weight supported by anchorage systems based on steel cables, of the order of 20 to 50 kg/m, or chains, of the order of 100 to 300 kg/m, can increase the cost of manufacturing floating structures excessively. Synthetic cables weighing of the order of 3 to 6 kg/m used in anchoring systems can be manufactured using some types of synthetic fibre, such as for example polyester, nylon, polypropylene, aramides or ultra high molecular weight polyethylenes. They basically comprise an inner core of fibres arranged parallel to or in a manufactured pattern in which the fibres make small angles with the axis of the cable, taking up the entire load, and a braided layer without a structural function which only provides protection for the nucleus. The inner nucleus is also known as the core. These cables are of an external diameter which typically lies between 100 and 200 mm, with a tensile strength of about 500 MPa. The core may be formed of a large and variable number of fibres, which may reach a total of the order of 20 million filaments. The thickness of the external braided layer is of the order of 10 mm.
The life of synthetic cables is affected by loading conditions and by various other factors which may be classified into three principal groups: environmental effects, surface wear effects, and those due to other mechanical stresses. The purpose of the invention is to increase the life of these cables by reducing the internal abrasion produced by the ingress of foreign material, and the occurrence of cyclic stresses.
In many situations it is advantageous for reasons of an operational order to have part of the anchorage system installed even before the floating unit arrives at its selected operating location. In such situations a natural and economic arrangement would be to leave the synthetic anchoring cables supported on the sea bed for the time between preinstallation and arrival of the floating unit for connection to the preestablished anchoring system. Nevertheless, the possibility of soil particle ingress within cables through the braided protective layer, giving rise to possible deterioration in the capacity of the core to withstand static and dynamic loads, has prevented these cables from being left in contact with the sea bed, as would be desirable. These soil particles mechanically wear away the core material through abrasion effects and can seriously affect its ability to withstand envisaged forces.
This invention relates to means applied to synthetic cables to prevent contact between soil particles which might pass through the braided layer and the core material, or penetration by these particles into the core, without affecting any of the main desirable characteristics of these cables such as weight and cost.
STATE OF THE ART
A possible way of avoiding soil particle ingress into cables would be to apply a sealing layer above the external braided layer of the cable, for example in the form of a continuous polyethylene jacket, or through the application of polyurethane elastomer. These solutions have already been tested and it has been found that they have disadvantages, such as:
a difference in extension between the jacket and the cable, due to the difference between the elasticities of the materials, so that the jacket becomes detached from the cable,
in the event of damage to the jacket, there is a localized concentration of stresses in the cable body giving rise to a reduction in cable strength,
hydrostatic pressure on the cable, if the protective coating is impermeable, and
difficulty for the cable to exchange heat generated by hysteresis when subjected to cyclic loading, given that there is yet another thick insulating layer between the cable and the water.
As far as economic and manufacturing aspects are concerned the following disadvantages may also be mentioned:
the additional cost of the cable, resulting from the cost of the layer, and
the difficulty of applying polyurethane elastomer coating to long lengths of cable.
U.S. Pat. No. 4,640,212 of Mar. 2, 1987 discloses an elastomer cable which has the property of becoming progressively more rigid as elongation increases. This comprises a solid core of elastomer material surrounded by a solid helically wound reinforcing strip manufactured of a material which is considerably less elongatable than the core material, and an outer covering layer also manufactured of solid elastomer material. The progressive increase in cable strength is achieved because the reinforcing layer is helically wound onto the core, forming an angle with the longitudinal axis of the cable within the range from 50 to 65. The reinforcement may optionally be formed of two helically wound layers having the same angle, but proceeding in opposite directions. Preferably the core is of synthetic rubber, the reinforcing layer has a structural function and the outer layer is not braided, unlike synthetic fibre cables. As for the use of this type of cable, it must be borne in mind that although the core is protected, it is very heavy and expensive for application in the anchoring of deepwater platforms. In reality, this core, through being solid, does not require protection against soil particle ingress. It should also be borne in mind that the American patent refers to a product which reduces the movement of the floating body by amounts very much greater (by from 40 to 100%) than those which are acceptable (from 1 to 20%) in most of the applications for which this invention is suitable.
The purpose of the invention according to this description is to provide protection for the core of synthetic cable without incurring the above-mentioned disadvantages.
SUMMARY OF THE INVENTION
The invention described here consists of the application of a coating in the form of a non-rigid polymer strip applied in helical form to the core of a synthetic cable and beneath its outer braided layer. The purpose of this protective layer is to prevent particles from the sea bed reaching the cable core, causing deterioration. If the polymer is impermeable, application should be such that a watertight layer does not form over the core, to avoid the occurrence of hydrostatic pressure on it.
Accordingly, the present invention provides a synthetic cable as defined in claim 1 and a process for manufacturing a synthetic cable as defined in claim 6.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 presents a diagrammatic cut-away side view showing a construction of a synthetic cable as currently manufactured.
FIG. 2 presents a diagrammatic cut-away side view showing a synthetic cable manufactured as proposed in this invention.
FIG. 3 presents a schematic view of the manufacturing process used to produce a cable according to the present invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION
The invention comprises an improved synthetic cable for, among other applications, anchoring floating structures for the production, storage and transfer of oil in deep water. Its purpose is to increase the durability of these cables, impeding the effect of deterioration of the core material caused by contact between it and aggressive substances contained in particles from the sea bed which infiltrate through the outer braided protective layer.
For a better understanding of the invention it will be presented with reference to the Figures accompanying this description. It should however be pointed out that the Figures illustrate only one preferred embodiment of the invention, and are not therefore of a restrictive nature. In compliance with the concept of the invention described below it will be dear to those skilled in the art that it will be possible to use different materials, formats or arrangements, a fact which is included in the scope of the invention.
As may be seen in FIG. 1, synthetic anchorage cables comprise a nucleus (1), also referred to as a core, which is responsible for withstanding tensile forces imposed on the cable, and which is surrounded by an outer braided layer (2). It is desirable that these cables should have great resistance to tensile forces and a low unit weight. The core (1) is normally manufactured of nylon or polyester, in constructions of the steel cable type, as parallel wires or parallel strands. The core diameter is typically only slightly smaller than the final external diameter which is usually between 100 and 200 mm. Protecting core (1) has an outer braided layer (2) which is normally manufactured using the same material as the cable, which has a thickness of the order of 10 mm. The function of this layer (2) is to provide mechanical protection for core (1), mainly against damage which may occur during launching or recovery of the anchoring system. On these occasions the cable is subjected to wear and other adverse mechanical effects through being wound on drums and passed through pulleys or other items of handling equipment. This layer (2) is also necessary because of possible ship collisions with the cables, and also to perform the function of providing protection against environmental effects. When a length of cable comes into contact with the sea bed, which happens when the preinstalled anchoring system is temporarily on the sea bed awaiting arrival of the floating unit, the possibility of soil particle ingress into the cable increases. It should also be borne in mind that with use there is some deformation of braided layer (2), facilitating soil ingress, particularly when the cable is moved over the sea bed. As already mentioned, this is a cause of premature deterioration of cable core (1) and consequent loss of its ability to withstand envisaged forces.
FIG. 2 illustrates the solution described in this invention to overcome the above-mentioned disadvantage. The application of a coating in the form of a strip of polymer material which is helically wound forming an additional layer (3) between core (1) and braided outer layer (2) is proposed. In this way only core (1) of the cable is protected more effectively without prejudicing its performance. The strip of polymer material may be for example a strip of polyethylene having an approximate thickness of 0.1 mm and a width of 100 mm. As this material is impermeable, the polyethylene strip should be applied in such a way that a watertight layer over the core is not formed. A slight amount of overlap may be accepted when the strip is applied provided that this does not cause the layer to be watertight. Another possibility is to leave a small gap on the core surface which is not covered by the strip between two adjacent turns. A spacing of the order of 5 mm, corresponding to 5% of the width, is considered to be reasonable for the above-mentioned gap width, but this will depend on the cables envisaged depth class and may be determined more precisely by means of specific tests. In this way flow of water into core (1) is not in any way impeded, avoiding the generation of undesired hydrostatic pressures upon it, which would happen if the core was completely insulated from the environment.
Another alternative for the material of the core protection layer would be use of a porous polymer so that seawater would be able to pass through the polymer layer, leaving soil particles behind. In this case there is no need for any spacing between the turns of strip, and there is normally a slight overlap. Water naturally penetrates core (1) through this material, avoiding the possibility of generating hydrostatic pressures. The soil particles, which are of larger diameter than those of the pores in the polymer, are prevented from reaching the core.
Normally the conventional process of manufacturing these cables takes place in two stages.
First the core of the cable is manufactured.
In a second stage the outer protective layer is braided onto the core.
A mechanical system moves the core storage reel, drawing out the core in a coordinated way, and at the same time the protective layer is braided onto the core, completing manufacture of the cable, which is then wound onto the cable storage reel.
In accordance with the cable design according to this invention, during this second stage of the manufacturing process, a strip of polymer material may additionally be applied to core (1) before the outer layer (2) is braided. As can be seen in FIG. 3, this is achieved by fitting a device known as a strip winder (6) before the braiding machine (7). This device is capable of effecting circular orbiting movements around core (1) in a plane perpendicular to the axis of movement of the cable. The speed of longitudinal movement of the cable and circular translation of the strip winding device (6) are coordinated to form a helix of strip on core (1) with an appropriate pitch. In this case a cable which has already been provided with a protective layer (3) for core (1) and an outer braided protective layer (2) is manufactured. The core (1) is stored on a reel (4) at the beginning of the production line and the manufactured cable is stored on another reel (8) at the end of the same line. A system comprising pulleys (5), motors and other auxiliary mechanical, electrical and electronic elements, not shown in the drawings, are placed along the production line wherever needed.
To sum up, the arrangement proposed by the invention has the following advantages:
quite low cost,
flow of water into the cable is not impeded, avoiding problems arising from the pressure difference between the cable core (1) and the environment,
the possibility of ingress by soil particles which might reach core (1) is restricted, and
layer (3) of polymer material which protects core (1) remains protected from damage during installation or movement of the anchoring system by the cables outer braided layer.

Claims (9)

What is claimed is:
1. A synthetic cable comprising:
a core (1) formed by a plurality of synthetic fibres;
a braided outer protective water permeable layer (2),
characterised in that the cable further comprises a protective layer (3) formed from a strip wound helically around the core and underneath the braided outer protective layer (2), so that water is able to reach the core and soil particles are impeded in their passage to the core (1).
2. A synthetic cable according to claim 1 wherein the strip is wound so as to leave a gap between adjacent turns.
3. A synthetic cable according to claim 2 wherein the helically wound strip is formed from a polymer material.
4. A synthetic cable according to claim 1 wherein the strip is wound so that adjacent turns overlap.
5. A synthetic cable according to claim 4 wherein the helically wound strip is formed from a water permeable material.
6. A process for manufacturing a synthetic cable comprising the steps of:
manufacturing a core (1);
providing said core (1) with a helically wound protective water permeable layer (3); and providing said protective layer (3) with a braided outer protective layer (2).
7. A process according to claim 6 wherein the core (1) is drawn from a reel in a controlled way and the helically wound protective layer (3) is fitted by a strip winding device (6) which is capable of circular orbiting movement around the core (1) in a plane perpendicular to the axis of the core (1), the longitudinal speed of movement of the core (1) and the circular orbiting of the strip winding device (6) being coordinated to form a helix of strip on the cable core having a defined pitch.
8. A process according to claim 7 wherein a braiding machine (7) is provided after the strip winding device (6) and is operated in coordination with the linear speed of movement of the cable so as to weave an outer protective layer on the cable (2).
9. A process according to claim 6 wherein the core manufacturing stage, the stage of fitting the helical protective layer and the stage of fitting the braided protective layer are arranged so as to form a continuous manufacturing line which includes in sequence the equipment necessary for the manufacture of the cable.
US09/073,238 1997-05-07 1998-05-06 Synthetic cable provided with protection against soil ingress Expired - Lifetime US6099961A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR9703101 1997-05-07
BR9703101A BR9703101A (en) 1997-05-07 1997-05-07 Synthetic cable with soil ingress protection

Publications (1)

Publication Number Publication Date
US6099961A true US6099961A (en) 2000-08-08

Family

ID=4067474

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/073,238 Expired - Lifetime US6099961A (en) 1997-05-07 1998-05-06 Synthetic cable provided with protection against soil ingress

Country Status (7)

Country Link
US (1) US6099961A (en)
EP (1) EP0981662B1 (en)
AR (1) AR010158A1 (en)
AU (1) AU7201498A (en)
BR (1) BR9703101A (en)
PT (1) PT981662E (en)
WO (1) WO1998050621A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118465A1 (en) * 2005-04-29 2006-11-09 Scanrope As Rope
US20070163429A1 (en) * 2006-01-13 2007-07-19 Yun-Peng Huang Large-sized compound polyurethane elastomer submarine anchor cable
WO2012134301A1 (en) 2011-03-29 2012-10-04 Mørenot As Jacket for a lengthy body
CN103225222A (en) * 2013-05-08 2013-07-31 九力绳缆有限公司 Deep sea mooring rope
US9627100B2 (en) * 2013-04-24 2017-04-18 Wireco World Group Inc. High-power low-resistance electromechanical cable
US20180100269A1 (en) * 2016-04-13 2018-04-12 Jiangsu Fasten Steel Cable Co., Ltd. Method for fabricating steel wire cable comprising zinc- aluminium alloy plating
US20180327968A1 (en) * 2015-01-15 2018-11-15 Calorflex As Mooring member
CN112342804A (en) * 2020-09-28 2021-02-09 扬州巨神绳缆有限公司 Marine anti-biological-adhesion rope and preparation method thereof
JP2022504114A (en) * 2018-10-02 2022-01-13 イデオル Marine rope with a separate coating on each core
US11346050B2 (en) * 2018-06-19 2022-05-31 Bexco N.V. Underwater mooring rope

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883302B2 (en) 2008-10-23 2014-11-11 Polteco, Inc. Abrasion resistant cords and ropes
WO2010048008A2 (en) * 2008-10-23 2010-04-29 Polteco Inc. Abrasion resistant cords and ropes
EP2518208A3 (en) 2011-04-27 2015-02-11 Polteco Inc. Abrasion resistant cords and ropes
PT3325710T (en) 2015-07-22 2023-02-14 Teufelberger Fiber Rope Gmbh Rope made of textile fiber material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737075A (en) * 1952-09-05 1956-03-06 George H Poirier Cord structure
US3265809A (en) * 1963-01-29 1966-08-09 Rhodeaceta Soc Cables with bonded organic filamentary insulation
US3960050A (en) * 1973-08-01 1976-06-01 Cordes Europe France Method of making impregnated braided rope
US4312260A (en) * 1978-09-22 1982-01-26 Rhone-Poulenc-Textile Flexible cable
US4534163A (en) * 1983-09-19 1985-08-13 New England Ropes, Inc. Rope or cable and method of making same
FR2576045A1 (en) * 1984-12-20 1986-07-18 Cousin Freres Sa Braided cored rope and process for producing such a rope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737075A (en) * 1952-09-05 1956-03-06 George H Poirier Cord structure
US3265809A (en) * 1963-01-29 1966-08-09 Rhodeaceta Soc Cables with bonded organic filamentary insulation
US3960050A (en) * 1973-08-01 1976-06-01 Cordes Europe France Method of making impregnated braided rope
US4312260A (en) * 1978-09-22 1982-01-26 Rhone-Poulenc-Textile Flexible cable
US4534163A (en) * 1983-09-19 1985-08-13 New England Ropes, Inc. Rope or cable and method of making same
FR2576045A1 (en) * 1984-12-20 1986-07-18 Cousin Freres Sa Braided cored rope and process for producing such a rope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.A. McKenna Synthetic fibers can aid deepwater mooring:, Offshore, vol. 47, No. 11, Nov. 1987, Tulsa, OK, USA, pp. 35 36. *
H.A. McKenna Synthetic fibers can aid deepwater mooring:, Offshore, vol. 47, No. 11, Nov. 1987, Tulsa, OK, USA, pp. 35-36.

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118465A1 (en) * 2005-04-29 2006-11-09 Scanrope As Rope
US20070163429A1 (en) * 2006-01-13 2007-07-19 Yun-Peng Huang Large-sized compound polyurethane elastomer submarine anchor cable
US9951447B2 (en) 2011-03-29 2018-04-24 Morenot As Jacket for a lengthy body
US9175426B2 (en) 2011-03-29 2015-11-03 Morenot As Jacket for a lengthy body
WO2012134301A1 (en) 2011-03-29 2012-10-04 Mørenot As Jacket for a lengthy body
US9627100B2 (en) * 2013-04-24 2017-04-18 Wireco World Group Inc. High-power low-resistance electromechanical cable
US10199140B2 (en) 2013-04-24 2019-02-05 Wireco Worldgroup Inc. High-power low-resistance electromechanical cable
CN103225222A (en) * 2013-05-08 2013-07-31 九力绳缆有限公司 Deep sea mooring rope
CN103225222B (en) * 2013-05-08 2015-12-09 九力绳缆有限公司 Deep sea cable
US20180327968A1 (en) * 2015-01-15 2018-11-15 Calorflex As Mooring member
US10633790B2 (en) * 2015-01-15 2020-04-28 Calorflex, AS Mooring member
US20180100269A1 (en) * 2016-04-13 2018-04-12 Jiangsu Fasten Steel Cable Co., Ltd. Method for fabricating steel wire cable comprising zinc- aluminium alloy plating
US11346050B2 (en) * 2018-06-19 2022-05-31 Bexco N.V. Underwater mooring rope
JP2022504114A (en) * 2018-10-02 2022-01-13 イデオル Marine rope with a separate coating on each core
JP7339333B2 (en) 2018-10-02 2023-09-05 イデオル Marine rope with individual coating on each core
CN112342804A (en) * 2020-09-28 2021-02-09 扬州巨神绳缆有限公司 Marine anti-biological-adhesion rope and preparation method thereof

Also Published As

Publication number Publication date
AU7201498A (en) 1998-11-27
EP0981662B1 (en) 2002-07-03
BR9703101A (en) 1998-12-22
AR010158A1 (en) 2000-05-17
EP0981662A1 (en) 2000-03-01
PT981662E (en) 2002-11-29
WO1998050621A1 (en) 1998-11-12

Similar Documents

Publication Publication Date Title
US6099961A (en) Synthetic cable provided with protection against soil ingress
US4402346A (en) Crude oil pipe having layers of graduated permeability to hydrogen sulfide
AU756246B2 (en) Stranded synthetic fiber rope
US4789005A (en) Marine growth retarding hose
US6085799A (en) Use of a buried flexible pipeline
CA2875623C (en) A riser and an offshore system
US8109071B2 (en) Line structure for marine use in contaminated environments
US8967205B2 (en) Anti-extrusion layer with non-interlocked gap controlled hoop strength layer
EP1678436B1 (en) A flexible pipe with a permeable outer sheath and a method of its manufacturing
EP2938913B1 (en) Umbilical
KR20000035654A (en) Sheathless synthetic fiber rope
KR20000029241A (en) Synthetic fiber rope and elevator installations with the synthetic fiber rope
CN114914017A (en) Submarine cable
CA2970930A1 (en) Stranded wire rope
US6385928B1 (en) Tension member
WO2005019525A1 (en) Rope construction
CN210797069U (en) Compound fiber cable of deep sea operation
US11204113B2 (en) Pipe for control and forced circulation of corrosion-inhibiting fluids in the annulus thereof
US11156311B2 (en) Armour for flexible pipe comprising a one-way composite profile section and a reinforcing strip
WO2006118465A1 (en) Rope
CN117604792A (en) Triaxial woven reinforced mooring rope
Karnoski et al. Tension and bending fatigue test results of synthetic ropes
NO783959L (en) MOUNTING DEVICE AND CABLE.
JP2021527767A (en) Underwater mooring line
US20230119220A1 (en) Wire rope and an assembly comprising such wire rope

Legal Events

Date Code Title Description
AS Assignment

Owner name: PETROLEO BRASILEIRO S.A. - PETROBRAS, BRAZIL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEL VECCHIO, CESAR JOSE' MORAES;KOMURA, ADOLFO TSUYOSHI;REEL/FRAME:009153/0286;SIGNING DATES FROM 19980422 TO 19980424

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12