US5274205A - Gas blast, puffer type circuit breaker with improved nozzle - Google Patents

Gas blast, puffer type circuit breaker with improved nozzle Download PDF

Info

Publication number
US5274205A
US5274205A US08/037,529 US3752993A US5274205A US 5274205 A US5274205 A US 5274205A US 3752993 A US3752993 A US 3752993A US 5274205 A US5274205 A US 5274205A
Authority
US
United States
Prior art keywords
nozzle
arc
circuit breaker
amount
slanting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/037,529
Inventor
Masanori Tsukushi
Akira Hashimoto
Minori Satoh
Yukio Kurosawa
Kunio Hirasawa
Fumihiro Endo
Tokio Yamagiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2205003A external-priority patent/JPH0495322A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US08/037,529 priority Critical patent/US5274205A/en
Application granted granted Critical
Publication of US5274205A publication Critical patent/US5274205A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • H01H33/703Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle having special gas flow directing elements, e.g. grooves, extensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7076Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by the use of special materials

Definitions

  • This invention relates to a gas blast circuit breaker and more particularly to a gas blast circuit breaker provided with an insulation nozzle disposed in the vicinity of an arc generating section so as to blast extinguishing gas, such as SF 6 gas, to an arc generated between a movable contact and a stationary contact when large electric current is interrupted.
  • a gas blast circuit breaker provided with an insulation nozzle disposed in the vicinity of an arc generating section so as to blast extinguishing gas, such as SF 6 gas, to an arc generated between a movable contact and a stationary contact when large electric current is interrupted.
  • a new nozzle construction has been proposed differing from a conventional nozzle with the new nozzle construction being achieved by advanced techniques of analysis such as a gas flow analysis.
  • a high-pressure gas region space is formed at a downstream side of a throat section of the nozzle by a normally-slanting surface which extends along the direction of flow of an extinguishing gas and a reversely-slanting surface intersecting this normally-slanting surface, and a region near a distal end portion of a stationary contact constitutes the high-pressure gas region until the stationary contact passes through this space position, thereby making it possible to enhance voltage performance.
  • the present invention provides a gas blast circuit breaker comprising an insulation nozzle for blowing extinguishing gas to an arc generated between a stationary contact with and a movable contact, the nozzle having a throat section into and out of which one of the two contacts is movable.
  • a divergent section is provided down-stream of the throat section, and a slanting surface for increasing a reflectivity of energy intensity of the arc is formed on the divergent section of the nozzle.
  • the nozzle is formed by adding not more than 15 vol. % of boron nitride powder as a filler to a fluoroplastic material.
  • the energy lines readily radiated from the arc generated between these two contacts are decreased in an amount of intrusion of these energy lines into the nozzle by the slanting surface provided downstream of the throat section of the nozzle.
  • an amount of boron nitride to be added can be reduced, and even in this case, the internal arc resistance of generally the same level as conventionally achieved can be maintained.
  • the surface deformation due to the consumption of the nozzle can be restrained, and therefore the same performance as obtained with a new nozzle can be achieved even after large electric current is interrupted many times.
  • FIG. 1 is a vertical cross-sectional view of one embodiment of a gas blast circuit breaker of the present invention
  • FIG. 2 is an enlarged, cross-sectional view of slanting surfaces of a nozzle of the embodiment shown in FIG. 1;
  • FIG. 3 is a graphical illustration of the relationship between the angle of the slanting surface of the nozzle of the gas blast circuit breaker of the present invention and the reflectivity of intensity of an arc energy line;
  • FIG. 4 is a graphical illustration of the relationship between the amount of boron nitride and the reflectivity of intensity of the arc energy line in the present invention
  • FIG. 5 is a graphical illustration of the relationship between the amount of boron nitride and the amount of consumption of the nozzle in the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing another embodiment of slanting surfaces in a gas blast circuit breaker of the present invention.
  • a movable contact 2 is disposed in opposed relation to a stationary contact 1, and is movable into and out of contact with the stationary contact 1.
  • a drive shaft 3 is connected to the movable contact 2, and a fixed piston 4 slidably supports the drive shaft 3.
  • a movable cylinder 5 is mounted on the drive shaft 3 and encloses the fixed piston 4.
  • a cylinder chamber 6 is defined by the fixed piston 4 and the movable cylinder 5.
  • An opening 7 is formed through one end wall of the movable cylinder 5 disposed adjacent to the movable contact 2.
  • a nozzle 8 is mounted on the movable cylinder 5, and this nozzle 8 serves to blow extinguishing gas, discharged from the cylinder chamber 6 through the opening 7, to an arc 9 generated between the contacts 1 and 2.
  • the nozzle 8 includes a throat section 10 which fits on the stationary contact 1 with a slight gap therebetween upon movement of the movable cylinder 5, a first slanting surface 11 disposed downstream of the throat section 10 and extending along the direction of flow of the extinguishing gas so as to increase the reflectivity of the energy intensity of the arc, a second slanting surface 12 intersecting the first slanting surface 11, and a divergent section 13 extending from the second slanting surface 12.
  • the nozzle 8 is composed of a fluoroplastic material, and boron nitride (BN) is added to this fluoroplastic material as later described.
  • ⁇ 1 represents the dielectric constant of the gas
  • ⁇ 2 represents the dielectric constant of the nozzle
  • k is a optical constant
  • the characteristics of the reflectivity of the energy line intensity shown in FIG. 3 are obtained when an amount of the boron nitride is 0%.
  • the reflectivity of the arc energy line intensity obtained, for example, with the angle ⁇ of 40° is twice as large as that obtained when the angle ⁇ is equal to zero, and therefore with respect to the same arc energy line, the intensity of the energy line incident into the nozzle can be halved because the total arc energy is constant.
  • the angle ⁇ of the slanting surface should preferably be in a range of between 25° and 45°.
  • the angle ⁇ of the slanting surface is larger.
  • the angle ⁇ is too large, a vortex flow of the gas is produced in a space defined by the first and second slanting surfaces 11 and 12, and the gas density is decreased, and the withstanding voltage characteristics is decreased. Therefore, it has been determined from the gas flow analysis that the maximum angle ⁇ the slanting surface should not be greater than 45°.
  • FIG. 4 illustrates a relationship of the amount of boron nitride (BN) added and the reflectivity of the arc energy line intensity with respect to the angle ⁇ is the slanting surface of the nozzle.
  • the reflectivity in the ordinate axis of FIG. 4 is expressed as the relative value obtained when the reflectivity at the angle (FIG. 3) of 0° is "1".
  • FIG. 4 when the amount of addition of the boron nitride is up to about 10 vol. %, the reflectivity at each angle shown in FIG. 3 is maintained, even when the angle ⁇ of the slanting surface 11 is in the range of between 25° and 45°.
  • the amount of added boron nitride is 15 vol. %, the reflectivity is slightly decreased, but an effect similar to the effect that the rated interrupting current is decreased by one grade can be maintained. However, when the amount of boron nitride added is 20 vol.
  • the reflectivity at each angle of the slanting surface is decreased, and the effect similar to the effect that the rated interrupting current is decreased by one grade cannot be maintained.
  • the amount of boron nitride added is kept to not more than 15 vol. %, the reflectivity at each angle of the slanting surface can be maintained.
  • the amount of surface consumption of the nozzle cylindrical test pieces were prepared, and an arc of 10 kAp was ignited in each test piece at a frequency of 0.5 cycle (60 Hz), and the nozzle consumption amount W (P.U./kA.S) at the electrode gap of 10 mm was measured.
  • the results thereof are shown in FIG. 5.
  • the amount of boron nitride added is not more than 15 vol. %, there is no large difference in the consumption amount.
  • the consumption amount at 20 vol. % of boron nitride is greatly different from the consumption amount at 15 vol. %.
  • the consumption amount is increased, and this is due to the formation of voids in the interior of the nozzle and a partial peeling at the surface, because the internal arc resistance of the nozzle is not provided.
  • the amount of boron nitride added should be in the range of between 5 vol. % and 15 vol. %.
  • the extinguishing gas can be always applied to the surface of that portion of the stationary contact subjected to an increased electric field, and the transient withstanding voltage after the current interruption can be maintained.
  • the internal arc resistance of the nozzle can be enhanced, and the consumption amount can be restrained.
  • a gas blast circuit breaker is provided which enables the interruption of small capacitive current after a frequent interruption of a large current.
  • the above-mentioned embodiment of the invention has been described without particularly distinguishing between the angles ⁇ 1 and ⁇ 2 of the end portions of the first and second slanting surfaces 11 and 12 as shown in FIG. 6.
  • the effects can be expected even if only one of the angles ⁇ l and ⁇ 2 is set to the above range of the present invention. Namely, if the internal arc resistance is increased at the first slanting surface 11 or the second slanting surface 12, the dielectric interrupting performance is enhanced at the surface thereof. Further, by such setting, the degree of freedom of setting of the angles ⁇ l and ⁇ 2 of the slanting surfaces is increased, and the angle-setting for controlling the flow of gas to the stationary contact can be easily done.
  • a plurality of pairs of first and second slanting surface 11, 12 can be provided.
  • the angle-setting is done in the same manner as described above.
  • the amount of boron nitride added at the throat section 10 can be 20 vol. % to increase the internal arc resistance at the throat section 10 so as to restrain the surface deformation due to the consumption.
  • a nozzle capable of withstanding high voltages which is free from deformation of its surface configuration which would be caused by the consumption after a frequent interruption of large electric current.

Landscapes

  • Circuit Breakers (AREA)

Abstract

A gas blast circuit breaker comprises an insulation nozzle for blowing extinguishing gas to an arc generated between a stationary contact and a movable contact. The nozzle has a throat section into and out of which one of the two contacts is movable and a divergent section provided downstream of the throat section. A slanting surface for increasing a reflectivity of energy intensity of the arc is formed on the divergent section of the nozzle. The nozzle is formed of a fluoroplastic material and boron nitride powder of not more than 15 vol. % is added as a filler.

Description

This application is a continuation of application Ser. No. 07/735,837, filed Jul. 25, 1991 now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to a gas blast circuit breaker and more particularly to a gas blast circuit breaker provided with an insulation nozzle disposed in the vicinity of an arc generating section so as to blast extinguishing gas, such as SF6 gas, to an arc generated between a movable contact and a stationary contact when large electric current is interrupted.
Recently, with an increasing consumption of electric power, electric devices have been required to operate under high voltage and large electric current. In a gas blast circuit breaker, which is a final protective device for an electric power system, it is necessary to provide an insulation nozzle capable of withstanding high voltages.
To meet this requirement, a new nozzle construction has been proposed differing from a conventional nozzle with the new nozzle construction being achieved by advanced techniques of analysis such as a gas flow analysis.
In such a nozzle construction disclosed, for example, in Japanese Patent Unexamined Publication No. 60-218722 corresponding U.S. Pat. No. 4,667,072, a high-pressure gas region space is formed at a downstream side of a throat section of the nozzle by a normally-slanting surface which extends along the direction of flow of an extinguishing gas and a reversely-slanting surface intersecting this normally-slanting surface, and a region near a distal end portion of a stationary contact constitutes the high-pressure gas region until the stationary contact passes through this space position, thereby making it possible to enhance voltage performance.
One method of enhancing the internal arc resistance of the nozzle has been proposed, for example, in Japanese Patent Unexamined Publication No. 57-210507, in which 20% by volume of boron nitride (BN) is mixed as a filler in a fluoroplastic material of the nozzle.
With respect to the nozzle disclosed in the above-mentioned Japanese Publication 60-218722, it has been experimentally determined, as described in the specification thereof, that, the shape of the reversely-slanting surface and the diameter of the throat section greatly influence the dielectric interrupting performance.
On the other hand, in this type of nozzle, in order to enhance the internal arc resistance, it is necessary that boron nitride should be mixed in the nozzle material, as disclosed in the above-mentioned Japanese Publication 57-210507. In this case, however, it is not considered how much the energy lines of the arc intrude into the nozzle, and there exists a portion on the surface of the nozzle where the absorption of the arc energy is increased. This results in a drawback that the surface consumption by the arc is increased, and the above-mentioned nozzle construction suffers from the problems that the shape and size of the reversely-slanting surface are changed by the consumption with the surface result being that the intended performance can not be achieved after large electric current is interrupted many times.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a gas blast circuit breaker having a nozzle construction which is capable of withstanding high voltages and is free from the lowering of its performance due to a consumption deformation even after the interruption of a large electric current.
In order to achieve the above object, the present invention provides a gas blast circuit breaker comprising an insulation nozzle for blowing extinguishing gas to an arc generated between a stationary contact with and a movable contact, the nozzle having a throat section into and out of which one of the two contacts is movable. A divergent section is provided down-stream of the throat section, and a slanting surface for increasing a reflectivity of energy intensity of the arc is formed on the divergent section of the nozzle. The nozzle is formed by adding not more than 15 vol. % of boron nitride powder as a filler to a fluoroplastic material.
When the movable contact moves away from the stationary contact, the energy lines readily radiated from the arc generated between these two contacts are decreased in an amount of intrusion of these energy lines into the nozzle by the slanting surface provided downstream of the throat section of the nozzle. As a result, an amount of boron nitride to be added can be reduced, and even in this case, the internal arc resistance of generally the same level as conventionally achieved can be maintained. Further, with the reduced amount of boron nitride, the surface deformation due to the consumption of the nozzle can be restrained, and therefore the same performance as obtained with a new nozzle can be achieved even after large electric current is interrupted many times.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a vertical cross-sectional view of one embodiment of a gas blast circuit breaker of the present invention;
FIG. 2 is an enlarged, cross-sectional view of slanting surfaces of a nozzle of the embodiment shown in FIG. 1;
FIG. 3 is a graphical illustration of the relationship between the angle of the slanting surface of the nozzle of the gas blast circuit breaker of the present invention and the reflectivity of intensity of an arc energy line;
FIG. 4 is a graphical illustration of the relationship between the amount of boron nitride and the reflectivity of intensity of the arc energy line in the present invention;
FIG. 5 is a graphical illustration of the relationship between the amount of boron nitride and the amount of consumption of the nozzle in the present invention; and
FIG. 6 is an enlarged cross-sectional view showing another embodiment of slanting surfaces in a gas blast circuit breaker of the present invention.
DESCRIPTION OF THE EMBODIMENTS
As shown in FIG. 1, a movable contact 2 is disposed in opposed relation to a stationary contact 1, and is movable into and out of contact with the stationary contact 1. A drive shaft 3 is connected to the movable contact 2, and a fixed piston 4 slidably supports the drive shaft 3. A movable cylinder 5 is mounted on the drive shaft 3 and encloses the fixed piston 4. A cylinder chamber 6 is defined by the fixed piston 4 and the movable cylinder 5. An opening 7 is formed through one end wall of the movable cylinder 5 disposed adjacent to the movable contact 2. A nozzle 8 is mounted on the movable cylinder 5, and this nozzle 8 serves to blow extinguishing gas, discharged from the cylinder chamber 6 through the opening 7, to an arc 9 generated between the contacts 1 and 2. The nozzle 8 includes a throat section 10 which fits on the stationary contact 1 with a slight gap therebetween upon movement of the movable cylinder 5, a first slanting surface 11 disposed downstream of the throat section 10 and extending along the direction of flow of the extinguishing gas so as to increase the reflectivity of the energy intensity of the arc, a second slanting surface 12 intersecting the first slanting surface 11, and a divergent section 13 extending from the second slanting surface 12. In order that the nozzle 8 can have insulating properties, the nozzle 8 is composed of a fluoroplastic material, and boron nitride (BN) is added to this fluoroplastic material as later described.
Next, the condition of reflection of an energy line 14 of the arc 9 by the first and second slanting surfaces 11 and 12 will be described with reference to FIG. 2. In FIG. 2, assuming that the angle between the first slanting surface 11 and the centerline (axis) of the nozzle 8 is 6, an energy line 14 from the arc 9 becomes an energy line 14A directed into the nozzle 8 and an energy line 14B obtained as a result of reflection by the first slanting surface 11. A reflectivity Io of the energy line intensity at this time is generally expressed by the following equations: ##EQU1##
where ε1 represents the dielectric constant of the gas, ε2 represents the dielectric constant of the nozzle and k is a optical constant.
From the equations (1) and (2), in FIG. 3 is shown a relative value I (P.U.) of the reflectivity Io of the arc energy line intensity with respect to the angle θ of the slanting surface when the reflectivity at θ=0 is equal to 1. The characteristics of the reflectivity of the energy line intensity shown in FIG. 3 are obtained when an amount of the boron nitride is 0%. The reflectivity of the arc energy line intensity obtained, for example, with the angle θ of 40° is twice as large as that obtained when the angle θ is equal to zero, and therefore with respect to the same arc energy line, the intensity of the energy line incident into the nozzle can be halved because the total arc energy is constant. Preferably, based on the characteristics curve shown in FIG. 3, the angle θ of the slanting surface should preferably be in a range of between 25° and 45°. When the angle θ of the slanting surface is 25°, the reflectivity of the energy line intensity is 1.4 times greater, as can be seen from FIG. 3. Therefore, by increasing the reflectivity of the energy line intensity 1.4 times in this manner, there can be obtained the effect equal to or greater than the effect that the incident energy line into the nozzle 8 is decreased by one grade with respect to the rated interrupting, current, for example, when the rating is decreased from 50 KA to 40 KA, this is represented by 50/40=1.3 times on the contrary, if the some energy line is maintained, the arc energy line must be increase, for example, from 40 kA to 50 kA. Therefore, there can be provided an ample margin of the performance for an internal arc resistance of the nozzle. On the other hand, from the viewpoint of the reflectivity of the energy line intensity, it is preferable that the angle θ of the slanting surface is larger. However, if the angle θ is too large, a vortex flow of the gas is produced in a space defined by the first and second slanting surfaces 11 and 12, and the gas density is decreased, and the withstanding voltage characteristics is decreased. Therefore, it has been determined from the gas flow analysis that the maximum angle θ the slanting surface should not be greater than 45°.
Next, reference is now made to the relation between the reflectivity of the arc energy line intensity and the amount of addition of the boron nitride.
When an amount boron nitride added to the nozzle is increased, the dielectric constant of the nozzle is increased, On the other hand, as is clear from equations (1) and (2), a square root of the dielectric constant of a substance is proportional to the index of refraction of the substance. This means that in the case of the same incident angle of the arc energy line, the greater the dielectric constant of the substance is, that is, the greater the amount of boron nitride added, the greater refraction the arc energy line penetrates into the substance. FIG. 4 illustrates a relationship of the amount of boron nitride (BN) added and the reflectivity of the arc energy line intensity with respect to the angle θ is the slanting surface of the nozzle. The reflectivity in the ordinate axis of FIG. 4 is expressed as the relative value obtained when the reflectivity at the angle (FIG. 3) of 0° is "1". As is clear from FIG. 4, when the amount of addition of the boron nitride is up to about 10 vol. %, the reflectivity at each angle shown in FIG. 3 is maintained, even when the angle θ of the slanting surface 11 is in the range of between 25° and 45°. When the amount of added boron nitride is 15 vol. %, the reflectivity is slightly decreased, but an effect similar to the effect that the rated interrupting current is decreased by one grade can be maintained. However, when the amount of boron nitride added is 20 vol. %, the reflectivity at each angle of the slanting surface is decreased, and the effect similar to the effect that the rated interrupting current is decreased by one grade cannot be maintained. In other words, by keeping the amount of boron nitride added to not more than 15 vol. %, the reflectivity at each angle of the slanting surface can be maintained.
To determine, the amount of surface consumption of the nozzle cylindrical test pieces were prepared, and an arc of 10 kAp was ignited in each test piece at a frequency of 0.5 cycle (60 Hz), and the nozzle consumption amount W (P.U./kA.S) at the electrode gap of 10 mm was measured. The results thereof are shown in FIG. 5. As is clear from FIG. 5, when the amount of boron nitride added is not more than 15 vol. %, there is no large difference in the consumption amount. However, particularly, the consumption amount at 20 vol. % of boron nitride is greatly different from the consumption amount at 15 vol. %. Incidentally, even at 0 vol. % of the boron nitride, the consumption amount is increased, and this is due to the formation of voids in the interior of the nozzle and a partial peeling at the surface, because the internal arc resistance of the nozzle is not provided.
In view of the above consumption amount, it is preferred that the amount of boron nitride added should be in the range of between 5 vol. % and 15 vol. %.
With the above construction, by providing the first and second slanting surfaces 11 and 12 downstream of the throat section 10 of the nozzle, the extinguishing gas can be always applied to the surface of that portion of the stationary contact subjected to an increased electric field, and the transient withstanding voltage after the current interruption can be maintained. And besides, by suitably determining the angles of the first and second slanting surfaces and the amount of boron nitride, the internal arc resistance of the nozzle can be enhanced, and the consumption amount can be restrained. As a result, a gas blast circuit breaker is provided which enables the interruption of small capacitive current after a frequent interruption of a large current.
The above-mentioned embodiment of the invention has been described without particularly distinguishing between the angles θ1 and θ2 of the end portions of the first and second slanting surfaces 11 and 12 as shown in FIG. 6. However, the effects can be expected even if only one of the angles θl and θ2 is set to the above range of the present invention. Namely, if the internal arc resistance is increased at the first slanting surface 11 or the second slanting surface 12, the dielectric interrupting performance is enhanced at the surface thereof. Further, by such setting, the degree of freedom of setting of the angles θl and θ2 of the slanting surfaces is increased, and the angle-setting for controlling the flow of gas to the stationary contact can be easily done.
In the present invention, as shown in FIG. 6, a plurality of pairs of first and second slanting surface 11, 12 can be provided. In this case, the angle-setting is done in the same manner as described above.
Since the amount of incidence of the arc energy line is larger at the throat section 10 of the nozzle 8 than at the slanting surfaces in the present invention, the amount of boron nitride added at the throat section 10 can be 20 vol. % to increase the internal arc resistance at the throat section 10 so as to restrain the surface deformation due to the consumption.
According to the present invention, by suitably determining the angle of the slanting surface disposed downstream of the throat section of the nozzle, as well as the amount of boron nitride, there can be provided a nozzle capable of withstanding high voltages which is free from deformation of its surface configuration which would be caused by the consumption after a frequent interruption of large electric current.

Claims (6)

What is claimed is:
1. A gas blast circuit breaker comprising:
an insulation nozzle for blowing an extinguishing gas to an arc generated between a stationary contact and a movable contact, said insulation nozzle having a throat section into and out of which one of said two contacts is movable and a divergent section provided downstream of said throat section,
wherein at least one slanting surface for increasing a reflectivity of energy intensity of the arc is formed intermediate said throat section and said divergent section of said nozzle, and
wherein said nozzle is fashioned of a fluoroplastic material impregnated with a filler material of boron nitride powder in an amount not more than 15 vol. %, whereby an amount of surface deformation of the nozzle due to consumption of the nozzle by the arc can be restrained.
2. A gas blast circuit breaker according to claim 1, wherein said slanting surface includes a first slanting surface extending in a flow direction of said extinguishing gas, and a second slanting surface intersecting said first slanting surface.
3. A gas blast circuit breaker according to claim 2, wherein one of an angle between said first slanting surface and a centerline of said nozzle and an angle between said second slanting surface and the centerline of said nozzle is in a range of between 25° and 45°.
4. A gas blast circuit breaker according to claim 1, wherein the amount of boron nitride is in the range of 5 vol. % to 15 vol. %.
5. A gas blast circuit breaker comprising:
an insulation nozzle for blowing an extinguishing gas to an arc generated between a stationary contact and a movable contact, said nozzle having a throat section into and out of which one of said two contacts is movable; and
a divergent section provided downstream of said throat section,
wherein a slanting surface for restraining arc energy intruding into said nozzle is provided intermediate said throat section, and said divergent section of said nozzle, and wherein said nozzle is fashioned of a fluoroplastic material impregnated with a filter material of boron nitride powder in an amount not more than 15 vol. %, and a dielectric constant of said nozzle is greater than that of said extinguishing gas, whereby an amount of surface deformation of the nozzle due to consumption of the nozzle by the arc can be restrained.
6. A gas blast circuit breaker according to claim 4, wherein the amount of boron nitride is in the range of 5 vol. % to 15 vol. %.
US08/037,529 1990-08-03 1993-03-26 Gas blast, puffer type circuit breaker with improved nozzle Expired - Fee Related US5274205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/037,529 US5274205A (en) 1990-08-03 1993-03-26 Gas blast, puffer type circuit breaker with improved nozzle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2205003A JPH0495322A (en) 1990-08-03 1990-08-03 Gas blast circuit breaker
JP2-205003 1990-08-03
US73583791A 1991-07-25 1991-07-25
US08/037,529 US5274205A (en) 1990-08-03 1993-03-26 Gas blast, puffer type circuit breaker with improved nozzle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US73583791A Continuation 1990-08-03 1991-07-25

Publications (1)

Publication Number Publication Date
US5274205A true US5274205A (en) 1993-12-28

Family

ID=27328440

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/037,529 Expired - Fee Related US5274205A (en) 1990-08-03 1993-03-26 Gas blast, puffer type circuit breaker with improved nozzle

Country Status (1)

Country Link
US (1) US5274205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925863A (en) * 1996-11-05 1999-07-20 Abb Research Ltd. Power breaker
US6696657B2 (en) * 2001-11-21 2004-02-24 Hitachi, Ltd. Puffer type gas circuit breaker

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2072467A5 (en) * 1969-12-02 1971-09-24 Bosch Hausgeraete Gmbh
US4144426A (en) * 1977-02-15 1979-03-13 Westinghouse Electric Corp. Single barrel puffer circuit interrupter with downstream gas coolers
FR2473777A1 (en) * 1980-01-11 1981-07-17 Sprecher & Schuh Ag INSULATING ELEMENT FOR ELECTRICAL SWITCHING DEVICE AND APPLICATION TO A BLOWING NOZZLE OF A COMPRESSED GAS CIRCUIT BREAKER
US4320270A (en) * 1979-04-12 1982-03-16 Sprecher & Schuh Ag Gas-blast switch
US4327262A (en) * 1979-02-13 1982-04-27 Sprecher & Schuh Ag Gas-blast switch
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
US4420662A (en) * 1980-10-31 1983-12-13 Bbc Brown, Boveri & Company Ltd. Compressed-gas circuit breaker
US4471185A (en) * 1982-01-04 1984-09-11 General Electric Company Series multiple nozzles for gas blast circuit interrupter
US4489226A (en) * 1982-09-03 1984-12-18 Mcgraw-Edison Company Distribution class puffer interrupter
EP0135158A2 (en) * 1983-08-24 1985-03-27 Hitachi, Ltd. Gas-insulated circuit breaker
US4562322A (en) * 1981-06-03 1985-12-31 Hitachi, Ltd. SF6 Gas arc extinguishing electric apparatus and process for producing the same
DE3535194A1 (en) * 1985-01-18 1986-07-24 Sprecher & Schuh AG, Aarau, Aargau Gas-blast circuit breaker
EP0191465A2 (en) * 1985-02-15 1986-08-20 Hitachi, Ltd. A puffer type gas blast circuit breaker
US4791256A (en) * 1986-11-07 1988-12-13 Mitsubishi Denki Kabushiki Kaisha Insulated nozzle for use in an interrupter
US4841108A (en) * 1987-11-06 1989-06-20 Cooper Industries, Inc. Recloser plenum puffer interrupter

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2072467A5 (en) * 1969-12-02 1971-09-24 Bosch Hausgeraete Gmbh
US4144426A (en) * 1977-02-15 1979-03-13 Westinghouse Electric Corp. Single barrel puffer circuit interrupter with downstream gas coolers
US4327262A (en) * 1979-02-13 1982-04-27 Sprecher & Schuh Ag Gas-blast switch
US4320270A (en) * 1979-04-12 1982-03-16 Sprecher & Schuh Ag Gas-blast switch
FR2473777A1 (en) * 1980-01-11 1981-07-17 Sprecher & Schuh Ag INSULATING ELEMENT FOR ELECTRICAL SWITCHING DEVICE AND APPLICATION TO A BLOWING NOZZLE OF A COMPRESSED GAS CIRCUIT BREAKER
US4418256A (en) * 1980-01-11 1983-11-29 Sprecher & Schuh Ag Electrically insulating plastic element for an electrical switching device, especially for use as the blast nozzle of a gas-blast switch
US4420662A (en) * 1980-10-31 1983-12-13 Bbc Brown, Boveri & Company Ltd. Compressed-gas circuit breaker
US4562322A (en) * 1981-06-03 1985-12-31 Hitachi, Ltd. SF6 Gas arc extinguishing electric apparatus and process for producing the same
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
US4471185A (en) * 1982-01-04 1984-09-11 General Electric Company Series multiple nozzles for gas blast circuit interrupter
US4489226A (en) * 1982-09-03 1984-12-18 Mcgraw-Edison Company Distribution class puffer interrupter
EP0135158A2 (en) * 1983-08-24 1985-03-27 Hitachi, Ltd. Gas-insulated circuit breaker
US4667072A (en) * 1983-08-24 1987-05-19 Hitachi, Ltd. Gas-insulated circuit breaker
DE3535194A1 (en) * 1985-01-18 1986-07-24 Sprecher & Schuh AG, Aarau, Aargau Gas-blast circuit breaker
EP0191465A2 (en) * 1985-02-15 1986-08-20 Hitachi, Ltd. A puffer type gas blast circuit breaker
US4791256A (en) * 1986-11-07 1988-12-13 Mitsubishi Denki Kabushiki Kaisha Insulated nozzle for use in an interrupter
US4841108A (en) * 1987-11-06 1989-06-20 Cooper Industries, Inc. Recloser plenum puffer interrupter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE Standard Handbook for Electrical Engineers; Section 4 Properties of Materials Table 4 59 ; p. 4 138; 1969. *
IEEE Standard Handbook for Electrical Engineers; Section 4-Properties of Materials-Table 4-59-; p. 4-138; 1969.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925863A (en) * 1996-11-05 1999-07-20 Abb Research Ltd. Power breaker
US6696657B2 (en) * 2001-11-21 2004-02-24 Hitachi, Ltd. Puffer type gas circuit breaker

Similar Documents

Publication Publication Date Title
US4910632A (en) Lightning arrester
KR20020069090A (en) Gas circuit breaker
US5925863A (en) Power breaker
CA2046262C (en) Gas blast circuit breaker
US5274205A (en) Gas blast, puffer type circuit breaker with improved nozzle
US4791256A (en) Insulated nozzle for use in an interrupter
KR0182773B1 (en) Puffer type gas-insulated circuit breaker
KR900002953B1 (en) A puffer type gas blast circuit bteaker
EP0185250B1 (en) Dead tank type gas circuit breaker
CA1243342A (en) Gas-insulated circuit breaker
US4362915A (en) Electric arc confining device
JP2007073384A (en) Puffer type gas circuit breaker
CN1007944B (en) Gas breaker
JPH05252622A (en) Metallic capsule-type gas insulation breaking system
KR100910839B1 (en) Puffer type gas circuit breaker
CN1097903A (en) Overvoltage protection element
EP1074032B1 (en) An interrupt assembly for a primary circuit breaker
CN210272210U (en) Circuit breaker with arc discharge function and shell thereof
US4883930A (en) Switch mechanism operating rod
JP2740055B2 (en) Puffer type gas circuit breaker
JP2859912B2 (en) Puffer type gas circuit breaker
JPH03245427A (en) Buffer type gas-blast circuit breaker
SU1103298A1 (en) Arc-quenching device for small-oil volume circuit breaker
JPH0355931B2 (en)
CN1042265A (en) Pressure photoelectric protector for explosion-proof of single capacitor

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20051228