US4102918A - Anionic phenylcarboxamide complement inhibitors - Google Patents

Anionic phenylcarboxamide complement inhibitors Download PDF

Info

Publication number
US4102918A
US4102918A US05/802,339 US80233977A US4102918A US 4102918 A US4102918 A US 4102918A US 80233977 A US80233977 A US 80233977A US 4102918 A US4102918 A US 4102918A
Authority
US
United States
Prior art keywords
complement
acid
nitro
group
carbonylimino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/802,339
Inventor
Gerald Joseph Siuta
Seymour Bernstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US05/802,339 priority Critical patent/US4102918A/en
Application granted granted Critical
Publication of US4102918A publication Critical patent/US4102918A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/41Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton
    • C07C309/42Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton having the sulfo groups bound to carbon atoms of non-condensed six-membered aromatic rings

Definitions

  • This invention is concerned with compounds of the formula: ##STR1## wherein R 1 is selected from the group consisting of nitro and amino; R 2 is selected from the group consisting of hydrogen and carboxy; R 3 is selected from the group consisting of carboxy and --SO 3 X, wherein X is selected from the group consisting of alkalimetal; with the proviso that when R 3 is carboxy, then R 2 must be hydrogen and the pharmaceutically acceptable salts thereof.
  • a preferred embodiment of the instant invention consists of these compounds wherein R 1 is amino; R 2 is carboxy; and R 3 is selected from the group consisting of --SO 3 X, wherein X is selected from the group consisting of alkali metal.
  • nitro compounds of the present invention may be prepared by treating the appropriate aminosalicylic and aminosulfosalicylic acid in aqueous medium with 5-nitroisophthaloyl chloride (in acetonitrile) in the presence of alkali metal carbonate for 10-24 hours. After acidification with dilute hydrochloric acid, the product is isolated by conventional means from ethanol and ethanol and water as the diacid and the dialkali metal salt respectively.
  • amino compounds of the present invention may be prepared by hydrogenating the corresponding nitro compound described above with 10% palladium on carbon catalyst in aqueous medium.
  • the product is isolated by conventional means from ethanol and water as the dialkali metal salt.
  • complement refers to a complex group of proteins in body fluids that, working together with antibodies or other factors, play an important role as mediators of immune, allergic, immunochemical and/or immunopathological reactions.
  • the reactions in which complement participates take place in blood serum or in other body fluids, and hence are considered to be humoral reactions.
  • complement protein C1 is actually an assembly of subunits designated C1q, C1r and C1s.
  • the numbers assigned to the complement proteins reflect the sequence in which they become active, with the exception of complement protein C4, which reacts after C1 and before C2.
  • the numerical assignments for the proteins in the complement system were made before the reaction sequence was fully understood.
  • the complement system can be considered to consist of three sub-systems: (1) a recognition unit (C1q) which enables it to combine with antibody molecules that have detected a foreign invader; (2) an activation unit (Clr, Cls, C2, C4, C3) which prepares a site on the neighboring membrane; and (3) and attack unit (C5, C6, C7, C8 and C9) which creates a "hole" in the membrane.
  • the membrane attack unit is non-specific; it destroys invaders only because it is generated in their neighborhood.
  • its activity must be limited in time. This limitation is accomplished partly by the spontaneous decay of activated complement and partly by interference by inhibitors and destructive enzymes.
  • the control of complement is not perfect, and there are times when damage is done to the host's cells. Immunity is therefore a double-edged sword.
  • complement-mediated release of a clotting factor from platelets The biologically active complement fragments and complexes can become involved in reactions that damage the host's cells, and these pathogenic reactions can result in the development of immune-complex diseases. For example, in some forms of nephritis, complement damages the basal membrane of the kidney, resulting in the escape of protein from the blood into the urine.
  • the disease disseminated lupus erythematosus belongs in this category; its symptoms inlcude nephritis, visceral lesions and skin eruptions.
  • Rheumatoid arthritis also involves immune complexes. Like disseminated lupus erythematosus, it is an autoimmune disease in which the disease symptoms are caused by pathological effects of the immune system in the host's tissues.
  • the complement system has been shown to be involved with inflammation, coagulation, fibrinolysis, antibody-antigen reactions and other metabolic processes.
  • complement proteins are involved in a series of reactions which may lead to irreversible membrane damage if they occur in the vicinity of biological membranes.
  • complement constitutes a part of the body's defense mechanism against infection it also results in inflammation and tissue damage in the immunopathological process.
  • the nature of certain of the complement proteins, suggestions regarding the mode of complement binding to biological membranes and the manner in which complement effects membrane damage are discussed in Annual Review in Biochemistry, 38, 389 (1969).
  • a variety of substances have been disclosed as inhibiting the complement system, i.e., as complement inhibitors.
  • the compounds 3,3'-ureylenebis-[6-(2-amino-8-hydroxy-6-sulfo-1-naphthylazo)]benzenesulfonic acid, tetrasodium salt (chlorazol fast pink), heparin and a sulphated dextran have been reported to have an anticomplementary effect, British Journal of Experimental Pathology, 33, 327-339 (1952).
  • the compound 8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonic acid (Suramin) is described as a competitive inhibitor of the complement system, Clin. Exp.
  • German Patent No. 2,254,893 or South African Patent No. 727,923 discloses certain 1-(diphenylmethyl)-4-(3-phenylallyl)piperazines useful as complement inhibitors.
  • Other chemical compounds having complement inhibiting activity are disclosed in, for example, Journal of Medicinal Chemistry, 12, 415-419; 902-905; 1049-1052; 1053-1056 (1969); Canadian Journal of Biochemistry, 47, 547-552 (1969); The Journal of Immunology, 93, 629-640 (1964); The Journal of Immunology, 104, 279-288 (1970); The Journal of Immunology, 106, 241-245 (1971); and The Journal of Immunology, 111, 1061-1066 (1973).
  • the compounds of the present invention may be administered internally, e.g., orally, intra-articularly or parenterally, e.g., intra-articular, to a warm-blooded animal to inhibit complement in the body fluid of the animal, such inhibition being useful in the amelioration or prevention of those reactions dependent upon the function of complement, such as inflammatory process and cell membrane damage induced by antigen-antibody complexes.
  • a range of doses may be employed depending on the mode of administration, the condition being treated and the particular compound being used. For example, for intravenous or subcutaneous use from about 5 to about 50 mg/kg/day, or every six hours for more rapidly excreted salts, may be used.
  • the dosage range is to be adjusted to provide optimum therapeutic response in the warm-blooded animal being treated.
  • the amount of compound administered can vary over a wide range to provide from about 5 mg/kg to about 100 mg/kg of body weight of animal per day.
  • the usual daily dosage for a 70 kg subject may vary from about 350 mg to about 3.5 g.
  • Unit doses of the acid or salt can contain from about 0.5 mg to about 500 mg.
  • sodium salts of the acids of the invention are suitable for parenteral use
  • other salts may also be prepared, such as those of primary amines, e.g., ethylamine; secondary amines, e.g., diethylamine or diethanol amine; tertiary amines, e.g., pyridine or triethylamine or 2-dimethylaminomethyl-dibenzofuran; aliphatic diamines, e.g., decamethylenediamine; and aromatic diamines, can be prepared.
  • Some of these are soluble in water, others are soluble in saline solution, and still others are insoluble and can be used for purposes of preparing suspensions for injection.
  • sodium salt those of the alkali metals, such as potassium and lithium; of ammonia; and of the alkaline earth metals, such as calcium or magnesium, may be employed. It will be apparent, therefore, that these salts embrace, in general derivatives of salt-forming cations.
  • the compounds of this invention may be administered in the form of conventional pharmaceutical compositions.
  • Such compositions may be formulated so as to be suitable for oral or parenteral administration.
  • the active ingredient may be combined in admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, i.e., oral or parenteral.
  • the compounds can be used in compositions such as tablets.
  • the principal active ingredient is mixed with conventional tabletting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate, gums, or similar materials as non-toxic pharmaceutically acceptable diluents or carriers.
  • the tablets or pills of the novel compositions can be laminated or otherwise compounded to provide a dosage form affording the advantage of prolonged or delayed action or predetermined successive action of the enclosed medication.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids or mixtures of polymeric acids with such materials as shellac, shellac and cetyl alcohol, cellulose acetate and the like.
  • a particularly advantageous enteric coating comprises a styrene maleic acid copolymer together with known materials contributing to the enteric properties of the coating.
  • the tablet or pill may be colored through the use of an appropriate non-toxic dye, so as to provide a pleasing appearance.
  • liquid forms in which the novel compositions of the present invention may be incorporated for administration include suitable flavored emulsions with edible oils, such as, cottonseed oil, sesame oil, coconut oil, peanut oil, and the like, as well as elixirs and similar pharmaceutical vehicles.
  • suitable flavored emulsions with edible oils such as, cottonseed oil, sesame oil, coconut oil, peanut oil, and the like
  • Sterile suspensions or solutions can be prepared for parenteral use. Isotonic preparations containing suitable preservatives are also desirable for injection use.
  • dosage form refers to physically discrete units suitable as unitary dosage for warm-blooded animal subjects, each unit containing a predetermined quantity of active component calculated to produce the desired therapeutic effect in association with the required pharmaceutical diluent, carrier or vehicle.
  • the specification for the novel dosage forms of this invention are indicated by characteristics of the active component and the particular therapeutic effect to be achieved or the limitations inherent in the art of compounding such an active component for therapeutic use in warm-blooded animals as disclosed in this specification.
  • suitable oral dosage forms in accord with this invention are tablets, capsules, pills, powder packets, granules, wafers, cachets, teaspoonfuls, dropperfuls, ampules, vials, segregated multiples of any of the foregoing and other forms as herein described.
  • Test Code 026 (C1 inhibitor) -- This test measures the ability of activated human Cl to destroy fluid phase human C2 in the presence of C4 and appropriate dilutions of the test compound. An active inhibitor protects C2 from C1 and C4;
  • Test Code 035 (C3-C9 inhibitor) -- This test determines the ability of the late components of human complement (C3-C9) to lyse EAC 142 in the presence of appropriate dilutions of the test compound.
  • the lesion is measured in terms of diameter, edema and hemorrhage and the extent to which a combined index of these is inhibited by prior intraperitoneal injection of the test compound at 200 mg/kg is then reported, unless otherwise stated;
  • Forssman Shock Test Lethal shock is produced in guinea pigs by an i.v. injection of anti-Forssman antiserum and the harmonic mean death time of treated guinea pigs is compared with that of simultaneous controls;
  • Complement Level Reduction Test In this test, the above dosed guinea pigs, or others, are bled for serum and the complement level is determined in undiluted serum by the capillary tube method of U.S. Pat. No.
  • guinea pigs weighing about 300 g were dosed intravenously (i.v.) or intraperitoneally (i.p.) with 200 mg/kg of the test compound dissolved in saline and adjusted to pH 7-8.
  • the guinea pigs were decapitated, blood was collected and the serum separated. The serum was tested for whole complement using the capillary tube assay. Percent inhibition was calculated by comparison with simultaneous controls. The results appear in Table 1 together with results of tests, code 026, 035, 036, Cap 50, % inhibition and Forssman shock.
  • Table I shows that the compounds of the invention possess highly significant in vitro and in vivo, complement inhibiting activity in warm-blooded animals.
  • a mixture of 10.0 g of 5-nitroisophthalic acid, 50 ml of thionyl chloride and 0.2 ml of dimethylformamide is refluxed with stirring for 21/2 hours.
  • the solution is allowed to stand 48 hours at room temperature then is evaporated to an oil in vacuo.
  • the evaporation step is repeated several times with cyclohexane and then toluene. Finally, hexane is added and partial evaporation produces crystals.
  • the mixture is cooled and the filtered. The crystals are washed with cool hexane to give 5-nitroisophthaloyl chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

5,5'-[5-Nitro-1,3-phenylenebis(carbonylimino)]disalicyclic acid and 5,5'-[5-amino and nitro-1,3-phenylenebis(carbonylimino)]bis[3-sulfosalicylic acid]dialkali metal salts useful as complement inhibitors.

Description

DESCRIPTION OF THE INVENTION
This invention is concerned with compounds of the formula: ##STR1## wherein R1 is selected from the group consisting of nitro and amino; R2 is selected from the group consisting of hydrogen and carboxy; R3 is selected from the group consisting of carboxy and --SO3 X, wherein X is selected from the group consisting of alkalimetal; with the proviso that when R3 is carboxy, then R2 must be hydrogen and the pharmaceutically acceptable salts thereof.
A preferred embodiment of the instant invention consists of these compounds wherein R1 is amino; R2 is carboxy; and R3 is selected from the group consisting of --SO3 X, wherein X is selected from the group consisting of alkali metal.
The nitro compounds of the present invention may be prepared by treating the appropriate aminosalicylic and aminosulfosalicylic acid in aqueous medium with 5-nitroisophthaloyl chloride (in acetonitrile) in the presence of alkali metal carbonate for 10-24 hours. After acidification with dilute hydrochloric acid, the product is isolated by conventional means from ethanol and ethanol and water as the diacid and the dialkali metal salt respectively.
Additionally, the amino compounds of the present invention may be prepared by hydrogenating the corresponding nitro compound described above with 10% palladium on carbon catalyst in aqueous medium. The product is isolated by conventional means from ethanol and water as the dialkali metal salt.
The term "complement" refers to a complex group of proteins in body fluids that, working together with antibodies or other factors, play an important role as mediators of immune, allergic, immunochemical and/or immunopathological reactions. The reactions in which complement participates take place in blood serum or in other body fluids, and hence are considered to be humoral reactions.
With regard to human blood, there are at present more than 11 proteins in the complement system. These complement proteins are designated by the letter C and by number: C1, C2, C3 and so on up to C9. The complement protein C1 is actually an assembly of subunits designated C1q, C1r and C1s. The numbers assigned to the complement proteins reflect the sequence in which they become active, with the exception of complement protein C4, which reacts after C1 and before C2. The numerical assignments for the proteins in the complement system were made before the reaction sequence was fully understood. A more detailed discussion of the complement system and its role in body processes can be found in, for example, Bull. World Health Org., 39, 935-938 (1968); Ann. Rev. Medicine, 19, 1-24 (1968); The John Hopkins Med. J., 128, 57-74 (1971); Harvey Lectures, 66, 75-104 (1972); The New England Journal of Medicine, 287, 452-454; 489-495; 545-549; 592-596; 642-646 (1972); Scientific American, 229, (No. 5), 54-66 (1973); Federation Proceedings, 32, 134-137 (1973); Medical World News, Oct. 11, 1974, pp. 53-58; 64-66; J. Allergy Clin. Immunol., 53, 298-302 (1974); Cold Spring Harbor Conf. Cell Proliferation 2/Proteases Biol. Control/229-241 (1975); Annals of Internal Medicine, 84, 580-593 (1976); "Complement: Mechanisms and Functions", Prentice-Hall, Englewood Cliffs, N.J. (1976).
The complement system can be considered to consist of three sub-systems: (1) a recognition unit (C1q) which enables it to combine with antibody molecules that have detected a foreign invader; (2) an activation unit (Clr, Cls, C2, C4, C3) which prepares a site on the neighboring membrane; and (3) and attack unit (C5, C6, C7, C8 and C9) which creates a "hole" in the membrane. The membrane attack unit is non-specific; it destroys invaders only because it is generated in their neighborhood. In order to minimize damage to the host's own cells, its activity must be limited in time. This limitation is accomplished partly by the spontaneous decay of activated complement and partly by interference by inhibitors and destructive enzymes. The control of complement, however, is not perfect, and there are times when damage is done to the host's cells. Immunity is therefore a double-edged sword.
Activation of the complement system also accelerates blood clotting. This action comes about by way of the complement-mediated release of a clotting factor from platelets. The biologically active complement fragments and complexes can become involved in reactions that damage the host's cells, and these pathogenic reactions can result in the development of immune-complex diseases. For example, in some forms of nephritis, complement damages the basal membrane of the kidney, resulting in the escape of protein from the blood into the urine. The disease disseminated lupus erythematosus belongs in this category; its symptoms inlcude nephritis, visceral lesions and skin eruptions. The treatment of diphtheria or tetanus with the injection of large amounts of antitoxin sometimes results in serum sickness, an immune-complex disease. Rheumatoid arthritis also involves immune complexes. Like disseminated lupus erythematosus, it is an autoimmune disease in which the disease symptoms are caused by pathological effects of the immune system in the host's tissues. In summary, the complement system has been shown to be involved with inflammation, coagulation, fibrinolysis, antibody-antigen reactions and other metabolic processes.
In the presence of antibody-antigen complexes the complement proteins are involved in a series of reactions which may lead to irreversible membrane damage if they occur in the vicinity of biological membranes. Thus, while complement constitutes a part of the body's defense mechanism against infection it also results in inflammation and tissue damage in the immunopathological process. The nature of certain of the complement proteins, suggestions regarding the mode of complement binding to biological membranes and the manner in which complement effects membrane damage are discussed in Annual Review in Biochemistry, 38, 389 (1969).
A variety of substances have been disclosed as inhibiting the complement system, i.e., as complement inhibitors. For example, the compounds 3,3'-ureylenebis-[6-(2-amino-8-hydroxy-6-sulfo-1-naphthylazo)]benzenesulfonic acid, tetrasodium salt (chlorazol fast pink), heparin and a sulphated dextran have been reported to have an anticomplementary effect, British Journal of Experimental Pathology, 33, 327-339 (1952). The compound 8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonic acid (Suramin) is described as a competitive inhibitor of the complement system, Clin. Exp. Immunol., 10, 127-138 (1972). German Patent No. 2,254,893 or South African Patent No. 727,923 discloses certain 1-(diphenylmethyl)-4-(3-phenylallyl)piperazines useful as complement inhibitors. Other chemical compounds having complement inhibiting activity are disclosed in, for example, Journal of Medicinal Chemistry, 12, 415-419; 902-905; 1049-1052; 1053-1056 (1969); Canadian Journal of Biochemistry, 47, 547-552 (1969); The Journal of Immunology, 93, 629-640 (1964); The Journal of Immunology, 104, 279-288 (1970); The Journal of Immunology, 106, 241-245 (1971); and The Journal of Immunology, 111, 1061-1066 (1973).
It has been reported that the known complement inhibitors epsilon-aminocaproic acid, Suramin and tranexamic acid all have been used with success in the treatment of hereditary angioneurotic edema, a disease state resulting from an inherited deficiency or lack of function of the serum inhibitor of the activated first component of complement (C1 inhibitor), The New England Journal of Medicine, 286, 808-812 (1972). It has also been reported that the drug, pentesan-poly-sulfoester, has anticomplementary activity on human serum both in vitro and in vivo, as judged by the reduction in the total hemolytic complement activity; Pathologie Biologie, 25 33-36 (1977).
The compounds of the present invention may be administered internally, e.g., orally, intra-articularly or parenterally, e.g., intra-articular, to a warm-blooded animal to inhibit complement in the body fluid of the animal, such inhibition being useful in the amelioration or prevention of those reactions dependent upon the function of complement, such as inflammatory process and cell membrane damage induced by antigen-antibody complexes. A range of doses may be employed depending on the mode of administration, the condition being treated and the particular compound being used. For example, for intravenous or subcutaneous use from about 5 to about 50 mg/kg/day, or every six hours for more rapidly excreted salts, may be used. For intra-articular use for large joints such as the knee, from about 2 to about 20 mg/joint per week may be used, with proportionally smaller doses for smaller joints. The dosage range is to be adjusted to provide optimum therapeutic response in the warm-blooded animal being treated. In general, the amount of compound administered can vary over a wide range to provide from about 5 mg/kg to about 100 mg/kg of body weight of animal per day. The usual daily dosage for a 70 kg subject may vary from about 350 mg to about 3.5 g. Unit doses of the acid or salt can contain from about 0.5 mg to about 500 mg.
While in general the sodium salts of the acids of the invention are suitable for parenteral use, other salts may also be prepared, such as those of primary amines, e.g., ethylamine; secondary amines, e.g., diethylamine or diethanol amine; tertiary amines, e.g., pyridine or triethylamine or 2-dimethylaminomethyl-dibenzofuran; aliphatic diamines, e.g., decamethylenediamine; and aromatic diamines, can be prepared. Some of these are soluble in water, others are soluble in saline solution, and still others are insoluble and can be used for purposes of preparing suspensions for injection. Furthermore as well as the sodium salt, those of the alkali metals, such as potassium and lithium; of ammonia; and of the alkaline earth metals, such as calcium or magnesium, may be employed. It will be apparent, therefore, that these salts embrace, in general derivatives of salt-forming cations.
In therapeutic use, the compounds of this invention may be administered in the form of conventional pharmaceutical compositions. Such compositions may be formulated so as to be suitable for oral or parenteral administration. The active ingredient may be combined in admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, i.e., oral or parenteral. The compounds can be used in compositions such as tablets. Here, the principal active ingredient is mixed with conventional tabletting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate, gums, or similar materials as non-toxic pharmaceutically acceptable diluents or carriers. The tablets or pills of the novel compositions can be laminated or otherwise compounded to provide a dosage form affording the advantage of prolonged or delayed action or predetermined successive action of the enclosed medication. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids or mixtures of polymeric acids with such materials as shellac, shellac and cetyl alcohol, cellulose acetate and the like. A particularly advantageous enteric coating comprises a styrene maleic acid copolymer together with known materials contributing to the enteric properties of the coating. The tablet or pill may be colored through the use of an appropriate non-toxic dye, so as to provide a pleasing appearance.
The liquid forms in which the novel compositions of the present invention may be incorporated for administration include suitable flavored emulsions with edible oils, such as, cottonseed oil, sesame oil, coconut oil, peanut oil, and the like, as well as elixirs and similar pharmaceutical vehicles. Sterile suspensions or solutions can be prepared for parenteral use. Isotonic preparations containing suitable preservatives are also desirable for injection use.
The term dosage form, as described herein, refers to physically discrete units suitable as unitary dosage for warm-blooded animal subjects, each unit containing a predetermined quantity of active component calculated to produce the desired therapeutic effect in association with the required pharmaceutical diluent, carrier or vehicle. The specification for the novel dosage forms of this invention are indicated by characteristics of the active component and the particular therapeutic effect to be achieved or the limitations inherent in the art of compounding such an active component for therapeutic use in warm-blooded animals as disclosed in this specification. Examples of suitable oral dosage forms in accord with this invention are tablets, capsules, pills, powder packets, granules, wafers, cachets, teaspoonfuls, dropperfuls, ampules, vials, segregated multiples of any of the foregoing and other forms as herein described.
The complement inhibiting activity of the compounds of this invention has been demonstrated by one or more of the following identified tests: (i) Test, Code 026 (C1 inhibitor) -- This test measures the ability of activated human Cl to destroy fluid phase human C2 in the presence of C4 and appropriate dilutions of the test compound. An active inhibitor protects C2 from C1 and C4; (ii) Test, Code 035 (C3-C9 inhibitor) -- This test determines the ability of the late components of human complement (C3-C9) to lyse EAC 142 in the presence of appropriate dilutions of the test compound. An active inhibitor protects EAC 142 from lysis by human C3-C9; (iii) Test, Code 036 (C-shunt inhibitor) -- In this test human erythrocytes rendered fragile are lysed in autologous serum via the shunt pathway activated by cobra venom factor in the presence of appropriate dilutions of the test compound. Inhibition of the shunt pathway results in failure of lysis; (iv) Forssman Vasculitis Test -- Here, the well known complement dependent lesion, Forssman vasculitis, is produced in guinea pigs by intradermal injection of rabbit anti-Forssman antiserum. The lesion is measured in terms of diameter, edema and hemorrhage and the extent to which a combined index of these is inhibited by prior intraperitoneal injection of the test compound at 200 mg/kg is then reported, unless otherwise stated; (v) Forssman Shock Test -- Lethal shock is produced in guinea pigs by an i.v. injection of anti-Forssman antiserum and the harmonic mean death time of treated guinea pigs is compared with that of simultaneous controls; (vi) Complement Level Reduction Test -- In this test, the above dosed guinea pigs, or others, are bled for serum and the complement level is determined in undiluted serum by the capillary tube method of U.S. Pat. No. 3,876,376 and compared to undosed control guinea pigs; and (vii) Cap 50 Test -- Here, appropriate amounts of the test compound are added to a pool of guinea pig serum in vitro, after which the undiluted serum capillary tube assay referred to above is run. The concentration of compound inhibiting 50% is reported.
With reference to Table I, guinea pigs weighing about 300 g were dosed intravenously (i.v.) or intraperitoneally (i.p.) with 200 mg/kg of the test compound dissolved in saline and adjusted to pH 7-8. One hour after dosing, the guinea pigs were decapitated, blood was collected and the serum separated. The serum was tested for whole complement using the capillary tube assay. Percent inhibition was calculated by comparison with simultaneous controls. The results appear in Table 1 together with results of tests, code 026, 035, 036, Cap 50, % inhibition and Forssman shock. Table I shows that the compounds of the invention possess highly significant in vitro and in vivo, complement inhibiting activity in warm-blooded animals.
              TABLE I                                                     
______________________________________                                    
Biological Activities                                                     
                                     Shunt                                
                                     Inhib-                               
                     Cl      C-Late  ition                                
                     026*    035*    036*                                 
Compound             Wells   Wells   Wells                                
______________________________________                                    
5,5'-[5-Nitro-                                                            
m-phenylenebis-      .sub.α**                                       
                             N       N                                    
(carbonylimino)] -                                                        
disalicylic acid                                                          
5,5'-[(5-Nitro-                                                           
1,3-phenylene)bis(carbonyli-                                              
                     +2      N       N                                    
mino)]bis[3-sulfosalicylic                                                
acid]disodium salt                                                        
5,5'-[5-Amino-                                                            
1,3-phenylenebis(carbonyli-                                               
                     +2      N       N                                    
mino)]bis[3-sulfosalicylic                                                
acid]disodium salt                                                        
______________________________________                                    
 *Code designation for tests employed as referred herein.                 
 **Activity in wells a serial dilution assay. Higher well number indicates
 higher activity. The serial dilutions are two-fold.                      
 N = Negative                                                             
EXAMPLE 1 5,5'-[5-Nitro-m-phenylenebis(carbonylimino)]disalicylic acid
A mixture of 10.0 g of 5-nitroisophthalic acid, 50 ml of thionyl chloride and 0.2 ml of dimethylformamide is refluxed with stirring for 21/2 hours. The solution is allowed to stand 48 hours at room temperature then is evaporated to an oil in vacuo. The evaporation step is repeated several times with cyclohexane and then toluene. Finally, hexane is added and partial evaporation produces crystals. The mixture is cooled and the filtered. The crystals are washed with cool hexane to give 5-nitroisophthaloyl chloride.
To a solution of 3.2 g of 5-aminosalicylic acid and 4.4 g of sodium carbonate in 60 ml of water (stirred vigourously at room temperature) is added dropwise a solution of 2.5 g of 5-nitroisophthaloyl chloride in a minimum amount of acetonitrile with formation of a gel. The gel is dissolved by acidification with dilute hydrochloric acid and a gray solid is formed. The material is filtered, washed once with dilute hydrochloric acid and several times with water resulting in a gray gum. The gum is crystallized by evaporation with ethanol to give a gray solid. The solid is boiled with ethanol, filtered and dried by conventional means to yield 2.76 g of the product of the example as a light brown powder.
EXAMPLE 2 5,5'-[(5-Nitro-1,3-phenylene)bis(carbonylimino)]bis[3-sulfosalicylic acid]disodium salt
To a solution of 4.9 g of 5-amino-3-sulfosalicylic acid and 6.6 g of sodium carbonate in 100 ml of water (stirred vigorously at room temperature) is added dropwise a solution of 2.5 g of 5-nitroisophthaloyl chloride in a minimum amount of acetonitrile. The reaction mixture is stirred for 16 hours then is acidified with dilute hydrochloric acid. The gray solid is collected by filtration, washed once with dilute hydrochloric acid, 3 times with water and dried in vacuo with ethanol. The material is then isolated again from water and ethanol and dried in vacuo with ethanol to give 1.8 g of the product of the example as a gray powder.
EXAMPLE 3 5,5'-[5-Amino-1,3-phenylenebis(carbonylimino)]bis[3-sulfosalicylic acid]disodium salt
A mixture of 1.5 g of product of Example 2 in 200 ml of water and 150 mg of 10% palladium on carbon catalyst is hydrogenated in a Parr shaker at room temperature until no more hydrogen is absorbed. The resulting mixture is filtered through diatomaceous earth and concentrated to a small volume in vacuo with ethanol. Ethanol is added to the remaining aqueous solution affording a cloudy gray solution which is filtered. The product of the example is dried in vacuo with ethanol to yield 1.08 g of a gray powder.
EXAMPLE 4 Preparation of Compressed Tablet
______________________________________                                    
Ingredient              mg/Tablet                                         
______________________________________                                    
Active Compound          0.5-500                                          
Dibasic Calcium Phosphate N.F.                                            
                        qs                                                
Starch USP              40                                                
Modified Starch         10                                                
Magnesium Stearate USP  1-5                                               
______________________________________                                    
EXAMPLE 5 Preparation of Compressed Tablet -- Sustained Action
______________________________________                                    
Ingredient             mg/Tablet                                          
______________________________________                                    
Active Compound        0.5-500 (as acid                                   
as Aluminum Lake*, Micronized                                             
                       equivalent)                                        
Dibasic Calcium Phosphate N.F.                                            
                       qs                                                 
Alginic Acid           20                                                 
Starch USP             35                                                 
Magnesium Stearate USP 1-10                                               
______________________________________                                    
 *Complement inhibitor plus aluminum sulfate yields aluminum complement   
 inhibitor. Complement inhibitor content in aluminum lake ranges from     
 5-30%.                                                                   
EXAMPLE 6 Preparation of Hard Shell Capsule
______________________________________                                    
Ingredient            mg/Capsule                                          
______________________________________                                    
Active Compound       0.5-500                                             
Lactose, Spray Dried  qs                                                  
Magnesium Stearate    1-10                                                
______________________________________                                    
EXAMPLE 7 Preparation of Oral Liquid (Syrup)
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
Liquid Sugar           75.0                                               
Methyl Paraben USP     0.18                                               
Propyl Paraben USP     0.02                                               
Flavoring Agent        qs                                                 
Purified Water qs ad   100.0                                              
______________________________________                                    
EXAMPLE 8 Preparation of Oral Liquid (Elixir)
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
Alcohol USP            12.5                                               
Glycerin USP           45.0                                               
Syrup USP              20.0                                               
Flavoring Agent        qs                                                 
Purified Water qs ad   100.0                                              
______________________________________                                    
EXAMPLE 9 Preparation of Oral Suspension (Syrup)
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
as Aluminum Lake, Micronized                                              
                       (acid equivalent)                                  
Polysorbate 80 USP     0.1                                                
Magnesium Aluminum Silicate,                                              
Colloidal              0.3                                                
Flavoring Agent        qs                                                 
Methyl Paraben USP     0.18                                               
Propyl Paraben USP     0.02                                               
Liquid Sugar           75.0                                               
Purified Water qs ad   100.0                                              
______________________________________                                    
EXAMPLE 10 Preparation of Injectable Solution
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
Benzyl Alcohol N.F.    0.9                                                
Water for Injection    100.0                                              
______________________________________                                    
EXAMPLE 11 Preparation of Injectable Oil
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
Benzyl Alcohol         1.5                                                
Sesame Oil qs ad       100.0                                              
______________________________________                                    
EXAMPLE 12 Preparation of Intra-Articular Product
______________________________________                                    
Ingredient               Amount                                           
______________________________________                                    
Active Compound          2-20 mg                                          
NaCl (physiological saline)                                               
                         0.9%                                             
Benzyl Alcohol           0.9%                                             
Sodium Carboxymethylcellulose                                             
                         1-5%                                             
pH adjusted to 5.0-7.5                                                    
Water for Injection qs ad                                                 
                         100%                                             
______________________________________                                    
EXAMPLE 13 Preparation of Injectable Depo Suspension
______________________________________                                    
Ingredient             % W/V                                              
______________________________________                                    
Active Compound        0.05-5                                             
                       (acid equivalent)                                  
Polysorbate 80 USP     0.2                                                
Polyethylene Glycol 4000 USP                                              
                       3.0                                                
Sodium Chloride USP    0.8                                                
Benzyl Alcohol N.F.    0.9                                                
HCl to pH 6-8          qs                                                 
Water for Injection qs ad                                                 
                       100.0                                              
______________________________________                                    

Claims (5)

We claim:
1. A compound of the formula: ##STR2## wherein R1 is selected from the group consisting of nitro and amino; R2 is selected from the group consisting of hydrogen and carboxy; R3 is selected from the group consisting of carboxy and --SO3 X, wherein X is selected from the group consisting of alkalimetal; with the proviso that when R3 is carboxy, then R2 must be hydrogen; and the pharmaceutically acceptable salts thereof.
2. A compound according to claim 1, wherein R1 is amino; R2 is carboxy; R3 is selected from the group consisting of --SO3 X, wherein X is selected from the group consisting of alkali metal.
3. The compound according to claim 1, 5,5'[5-nitro-m-phenylenebis(carbonylimino)]disalicylic acid.
4. The compound according to claim 1, 5,5'-[5-nitro-1,3-phenylene)bis(carbonylimino)]bis[3-sulfosalicylic acid]disodium salt.
5. The compound according to claim 1, 5,5'-[5-amino-1,3-phenylenebis(carbonylimino)]bis[3-sulfosalicylic acid]disodium salt.
US05/802,339 1977-06-01 1977-06-01 Anionic phenylcarboxamide complement inhibitors Expired - Lifetime US4102918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/802,339 US4102918A (en) 1977-06-01 1977-06-01 Anionic phenylcarboxamide complement inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/802,339 US4102918A (en) 1977-06-01 1977-06-01 Anionic phenylcarboxamide complement inhibitors

Publications (1)

Publication Number Publication Date
US4102918A true US4102918A (en) 1978-07-25

Family

ID=25183431

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/802,339 Expired - Lifetime US4102918A (en) 1977-06-01 1977-06-01 Anionic phenylcarboxamide complement inhibitors

Country Status (1)

Country Link
US (1) US4102918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531430A1 (en) * 1982-08-07 1984-02-10 Sandoz Sa HYDROXY-AROMATIC ACIDS, THEIR PREPARATION AND THEIR USE FOR SEALING ANODIZED ALUMINUM SURFACES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953496A (en) * 1973-03-27 1976-04-27 Chugai Seiyaku Kabushiki Kaisha Bis(benzamido)-benzoic acid derivatives
US4052444A (en) * 1972-01-22 1977-10-04 Hoechst Aktiengesellschaft N-(aminobenzoyl)-aminoarylsulfonic acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052444A (en) * 1972-01-22 1977-10-04 Hoechst Aktiengesellschaft N-(aminobenzoyl)-aminoarylsulfonic acids
US3953496A (en) * 1973-03-27 1976-04-27 Chugai Seiyaku Kabushiki Kaisha Bis(benzamido)-benzoic acid derivatives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531430A1 (en) * 1982-08-07 1984-02-10 Sandoz Sa HYDROXY-AROMATIC ACIDS, THEIR PREPARATION AND THEIR USE FOR SEALING ANODIZED ALUMINUM SURFACES

Similar Documents

Publication Publication Date Title
US4087548A (en) Complement inhibitors
US4046805A (en) Substituted-hydroxy-naphthalenedisulfonic acid compounds
US4051176A (en) Ureidophenylenebis(carbonylimino)dinaphthalenetrisulfonic acid compounds
US4159384A (en) Phenenyltris (carbonylimino)multi-anionic substituted triphenyl acids and salts
US4027038A (en) Complement inhibitors
US4120954A (en) 2,2',2"-[S-Phenenyltris(carbonylimino) ]tris-2-deoxy-D-glucopyranose and salts thereof
US4183929A (en) Tri-substituted triazines
US4120891A (en) Ureylene naphthalene sulfonic acids
US4119784A (en) Anionic substituted sulfonamido biphenyls
US4132730A (en) Ureylene naphthalene sulfonic acids
US4102917A (en) Substituted phenyl naphthalenesulfonic acids
US4089974A (en) 5-Carboxy-phenylenebis(carbonylimino)benzene carboxylic and dicarboxylic acids and salts
US4129590A (en) Ureylenebis(anionic substituted phenylene carbonyl)imino naphthalene sulfonic acids and naphthalene carboxylic acids and their salts
US4102918A (en) Anionic phenylcarboxamide complement inhibitors
US4131684A (en) Complement inhibitors
US4122088A (en) Dicarboxyphenyl substituted bis-sulfonylimino dibenzodithiazepine tetroxides
US4120895A (en) S-phenenyltris (iminocarbonyl) triisophthalic acid salts
US4118585A (en) Anionic benzene tetrakis carbonylimino isophthalic acid salts
US4129591A (en) Ureida-phenylenebis(substituted imino)multianionic substituted dinaphthalene sulfonic acids and salts
US4120894A (en) Sulfo-m-phenylenebis(sulfonylimino)diisophthalic acid salts
US4107202A (en) Substituted 4,4'-biphenylylene bis(2-thioureylene)di-naphthalenetrisulfonic acids and salts thereof
US4229371A (en) Ureylene naphthalene sulfonic acid intermediates
US4120893A (en) Anionic naphthalene thioureido toluenesulfonic acids
US4118418A (en) 5-Phenenyltris (ureylene) triisophthalic acid salts
US4096174A (en) Anionic naphthalene thioureido-diphenyloxides