US3925597A - Electrical conductors with strippable insulation and method of making the same - Google Patents

Electrical conductors with strippable insulation and method of making the same Download PDF

Info

Publication number
US3925597A
US3925597A US468397A US46839774A US3925597A US 3925597 A US3925597 A US 3925597A US 468397 A US468397 A US 468397A US 46839774 A US46839774 A US 46839774A US 3925597 A US3925597 A US 3925597A
Authority
US
United States
Prior art keywords
ethylene
propylene
copolymer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US468397A
Inventor
Thaddeus Dominick Misiura
Joseph Edward Vostovich
Ralph Edward Wahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vulkor Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US468397A priority Critical patent/US3925597A/en
Priority to DE19752510510 priority patent/DE2510510A1/en
Priority to HU75GE972A priority patent/HU173995B/en
Priority to ES436350A priority patent/ES436350A1/en
Priority to CA224,706A priority patent/CA1060769A/en
Priority to NL7504448A priority patent/NL7504448A/en
Priority to JP50053943A priority patent/JPS50150886A/ja
Priority to SE7505361A priority patent/SE7505361L/en
Priority to FR7514302A priority patent/FR2270285B1/fr
Priority to US05/608,447 priority patent/US4051298A/en
Application granted granted Critical
Publication of US3925597A publication Critical patent/US3925597A/en
Assigned to VULKOR, INCORPORATED, A CORP. OF MA reassignment VULKOR, INCORPORATED, A CORP. OF MA ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GENERAL ELECTRIC COMPANY, A CORP. OF NY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/20Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for coatings strippable as coherent films, e.g. temporary coatings strippable as coherent films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • ABSTRACT A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue on one from the other, and which comprises the combination of a previously cured body of a copolymer of ethylene and propylene adjoined to a subsequently cured body of an elastomeric blend of a copolymer of ethylene and propylene admixed with chlorosulfonated polyethylene.
  • the combination of materials is especially advantageous when used in electrically conducting wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.
  • a common type of construction for electrical wires or cables designed for medium-to-high voltage applications, for example about to 69 KV, as well as other classes of electrical service, comprises combinations of one or more insulating layers and semiconductive layers.
  • the metallic conductor may be provided with an organic polymeric insulation such as a crosslinked polymer comprising ethylene, and an overlying body of semiconducting material comprising an organic polymeric material which has been rendered electroconductive by the inclusion therein of electrical conductivity imparting agents or fillers such as carbon black.
  • these cable constructions may vary in certain elements, and often include intermediate components disposed between the metallic conductor and the primary body of dielectric insulation, such as a layer of separating tape and/or inner layer of semiconductive material, or the overall cable assembly is enclosed within a covering sheath, all such cable constructions conventionally include therein at least a body of primary dielectric insulation surrounding the conductor and an overlying body of semiconducting material in physical contact with the insulation.
  • this arrangement of a layer of insulation with a superimposed layer of semiconductive material thereover incurs certain handicaps.
  • the insulation layer and overlying semiconductive layer for electrical cable can be formed concurrently about the wire or metal conductor by means of a continuous simultaneous extrusion process with one extruder, such as shown in US. Pat. No. 3,646,248, or these layers can be formed in sequence employing tandem extruders such as shown in US. Pat. No. 3,569,610, and both layers are thereafter cured at the same time in a single operation and unit to minimize manufacturing steps and apparatus.
  • the simultaneous curing of both layers together, or even the curing of only one layer alone while it is in a contiguous arrangement with the other layer can result in the apparent formation of crosslinking bonds bridging across the interface between the adjoining surfaces of each phase as noted in US. Pat. Nos.
  • This invention comprises a combination of specific organic polymeric materials coupled with a curing sequence whereby an elastomeric blend, which may comprise a body of semiconductive material, can be adheringly united to a contacting surface of a body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight of the copolymer, a conventional material for dielectric insulations.
  • an elastomeric blend which may comprise a body of semiconductive material, can be adheringly united to a contacting surface of a body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight of the copolymer, a conventional material for dielectric insulations.
  • the materials and curing sequence of this invention provide a substantially continuous and secure union of their contacting surfaces extending over their common interface and thereby effectively obviating the occurrence of intermediate void spaces, while at the same time providing an interface union between the phases which is easily separated with a relatively small pulling force whereupon the components part from each other with clean surfaces each free of any residue from the other.
  • the invention includes the combination of a first body of a copolymer of ethylene and propylene of approximately equal parts by weight of copolymerized ethylene and propylene, adheringly joined with a sec ond body composed of an elastomeric blend of a minor portion of ethylene-propylene rubber admixed with a major portion of chlorosulfonated polyethylene, wherein said second body of an elastomeric blend is in an uncured condition and is applied to the first body of the copolymer in a cured condition and said uncured second body of the elastomeric blend is cured while a surface thereof is in physical contact with a surface of 3 the cured first body of copolymer.
  • compositions and their attributes of this combination are uniquely suitable and advantageous for use in the construction of electrical wires and cables in the function of a composite of an insulation of ethylenepropylene copolymer or terpolymer with an easily and cleanly strippable semiconductive material superimposed over the insulation when the polymeric material comprising the elastomeric blend is rendered suitably electroconductive by appropriate filling with a typical electrical-conductivity-imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, and the like, in such amounts so as to impart the desired degree of conductivity.
  • a typical electrical-conductivity-imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, and the like, in such amounts so as to impart the desired degree of conductivity.
  • FIG. 1 comprises a perspective view of a portion of an insulated conductor having a semiconductive shield thereon;
  • FIG. 2 comprises a cross-sectional view of the insulation and overlying semi-conductive layer about a portion of metallicv conductor.
  • the invention specifically consists of a novel combination of given polymeric materials, or combined bodies composed'thereof, coupled with a sequence of curing and combining such polymeric materials, for adheringly joining them together with unique interfacial characteristics at their mutual contiguous surfaces.
  • Polymeric materials of the invention comprise for the one phase, a body or unit of a copolymer or terpolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight of the polymerized material, and preferably copolymers comprising approximately equal parts by weight of ethylene and propylene, and for the other phase or unit an elastomeric blend of about 20 to about 40 parts by weight of a copolymer or terpolymer of ethylene and propylene admixed with about 60 to about parts by weight of chlorosulfonated polyethylene.
  • copolymers of ethylene and propylene includes terpolymers comprising such monomers.
  • the terpolymers of ethylene-propylene suitable for this invention include commercially available rubbers produced by the copolymerization of ethylene and propylene together with minor proportions of dienes such as ethylidiene nonbornene, dicyclopentadiene or 1,4-hexadiene or combinations thereof.
  • the terpolymers of ethylene-propylene with dienes give greater latitude in the available curing systems in relation to the copolymers of only ethylene and propylene.
  • the copolymers require a free radical curing mechanism as provided by a peroxide compound, whereas the unsaturated phase of the terpolymers enables curing with a conventional sulfuraccelerator curing system, as well as with a peroxide free radical system.
  • An essential aspect of this invention comprises the curing, by conventional means such as curing agents, of the first phase or body of the copolymer of ethylene and propylene prior to the physical combining or joining together of the first and second phases or bodies, and the curing, by conventional means such as curing agents, of the second phase or body of the elastomer blend while in physical contact with the previously cured first phase or body.
  • the advantages and benefits of the invention comprises applying the body or mass of the elastomeric-blend while in an uncured condition to the bodyor mass of the copolymer of ethyl'ene and propylene in a cured condition, and thereafter curing the body or mass of elastomeric blend while a surface thereof is in adjoining physical contact with a surface of the cured copolymer of ethylene and propylene.
  • This sequence of curing and adjoining the respective polymeric components is necessary to prevent formation of a tenacious union and bonding between the interface of the polymeric components which can only be separated with the application of very high pulling forces, and does not separate cleanly with each unit free of residue of the other.
  • organic polymeric materials of each phase of the combination of this invention are typically cured to a substantially thermoset condition by crosslinking with a free radical forming peroxide according to conventional practices such as described in U.S. Pat. Nos. 2,888,424 and 3,079,370, and in subsequent relevant prior art.
  • a free radical forming peroxide such as described in U.S. Pat. Nos. 2,888,424 and 3,079,370, and in subsequent relevant prior art.
  • other curing systems or means known to the art or prescribed by the polymer manufacturers or suppliers can be applied, such as the use of sulfur-based systems with terpolymers comprising ethylene and propylene.
  • the elastomeric blends can be easily rendered electroconductive to any appropriate degree desired by the filling or inclusion therethroughout of a suitable amount of an electrical conductivity imparting agent such as about to about 75 parts of carbon black or metal particles by weight of the polymeric ingredients according to conventional practices.
  • the elastomeric blend When aptly rendered electroconductive with a suitable amount of a conductive material, dispersed therethroughout, the elastomeric blend can fulfill the required electrical functions of a semiconducting mate rial in electrical cable, and when combined with an ethylene-propylene copolymer insulation and cured in accordance with the sequence of this invention, the combination provides the unique interfacial properties which effectively eliminate the occurrence of intermediate void spaces between the interface surfaces of insulation and semiconductive material and also enables an easy and clean separation of the semiconductive material from the insulation.
  • FIG. 1 a typical cable or mediumto-high'voltage capacity of the type to which this invention is especially applicable and advantageous, is shown in perspective in FIG. 1, and a short portion of such a cable is also shown with the insulation and semiconductive layer in longitudinal cross section about the conductor in FIG. 2.
  • the overall cable product 10 primarily comprises a metallic conductor 12, a relatively thick first body of dielectric insulation 14 surrounding the conductor, and overlying the insulation is a second body or layer of semiconductive material 16.
  • Other components can be included in the cable structure following known designs. For example, separating paper or tape can be provided on the conductor or a semiconductive layer can be located between the metallic conductor 12 and the primary insulation 14, such as shown in the aforementioned U.S. Pat. Nos.
  • the following comprise specific examples of suitable and preferred polymeric materials for the application of this invention in the construction of high-voltage cable comprising a body of ethylene-propylene copolymer insulation combined with an overlying body of semiconductive material of a polymeric carrier or matrix comprising an elastomeric blend filled with particulate conductive material.
  • the ethylene-propylene copolymer insulating composition of the following examples consisted of the following ingredients, in parts by weight:
  • the elastomeric blend semiconductive composition of the following examples consisted of the following ingredients, including an electrically conductive carbon black, in parts by weight:
  • Example ll Example ll with the temperature of the mixing ingredients maino layer completely bonded to pulllng force of 2.32 lbs., and tamed below about 250 F. To prevent precurlng the insulation, separated cleanly.
  • peroxide curing agent was added to the admixed ingreclients while at a temperature of below about 200F.
  • the insulating composition was consimultaneously cured laminated samples were tested ti 1 f d on h core conductor b a fi t for ppa ili y- The results are given hefeinaftefsion operation and thereafter continuously cured by Like samples of both of the same foregoing insulating passing t a r te of 14 feet per minute through a steam and semiconducting compounds sheeted out on sepaha b 75 feet in length maintained at a pressure of rate mill rolls were applied as follows in accordance ab ut 255 psig (209C) for a dwell period of about 5 with this invention for comparison.
  • Example II the i t strip specimens of the sheeted insulating composition F ll wi the continuous forming and curing of the of ethylene-propylene copolymer were first Cu at insulation composition on the core conductor, an over- 350F for 15 minutes in a mold.
  • the procured strip pe m s of the trusion operation and thereafter continuously cured by insulating compound were combined with like sheeted passing t a rate f 15 feet per minute through a steam specimens of the uncured semiconducting compound h b 75 f t in len th maintained at a pressure of y superimposing one sheeted Specimen on the other about 255 psig (209C) for a dwell period of about five providing a laminate.
  • the semiconductive compound i ut was thereafter cured as a laminate while in adjoining
  • the four examples prepared as describing according physical contact with the precured insulating c0mto this invention were treated and tested for several p at 3 for 5 es in a p properties in addition to strippability as set forth in the After cooling to room temperature, /2 by 4 inch strips f ll i tabl Insulation Treatment
  • An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of about to about 40 parts by weight of a copolymer of ethylene and propylene admixed with about 60 to about 80 parts by weight of chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconducting body being adheringly joined to each other substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per /2 inch width of the joined composite by applying the body of semiconducting elastomeric blend while in an uncured condition to the insulating body in a cured condition and thereafter curing said body of semiconduct
  • said semiconducting body of an elastomer blend comprises about parts by weight of copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene.
  • An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semi-conductivebody comprising an elastomeric blend of about 35 parts by weight of a copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconducting body being adhereingly joined to each other substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per one-half inch width of the joined composite 10 by applying the body of semiconducting elastomeric blend while in an uncured condition to the insulating body in a cured condition and thereafter curing said body of semiconducting e
  • a method of manufacturing an insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a cured copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of a minor amount of a copolymer of ethylene and propylene admixed with a major amount of chlorosulfonated polyethylene substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per inch width of the joined composite, comprising forming about a metallic conductor a body of insulation comprising a curable copolymer of ethylene in an amount of no more than about 50 percent by weight of the copolymer and propylene, and curing said body of insulation, applying a body of semiconducting curable elasto

Abstract

A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue on one from the other, and which comprises the combination of a previously cured body of a copolymer of ethylene and propylene adjoined to a subsequently cured body of an elastomeric blend of a copolymer of ethylene and propylene admixed with chlorosulfonated polyethylene. The combination of materials is especially advantageous when used in electrically conducting wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.

Description

United States Patent [191 Misiura et al.
[ ELECTRICAL CONDUCTORS WITH STRIPPABLE INSULATION AND METHOD OF MAKING THE SAME [75] Inventors: Thaddeus Dominick Misiura, Sandy Hook; Joseph Edward Vostovich, Bridgeport; Ralph Edward Wahl, Trumbull, all of Conn.
[73] Assignee: General Electric Company, New
York, N.Y.
[22] Filed: May 9, 1974 [21] Appl. No.: 468,397
[52] US. Cl 174/102 SC; 29/592; 156/51; 174/120 SC; 174/120 SR; 264/174 [51] Int. Cl. H01B 7/02 [58] Field of Search.... 174/102 SC, 120 R, 120 SC, 174/120 SR; 264/174; 29/592; 156/51 [56] References Cited UNITED STATES PATENTS 3,269,862 8/1966 Lanza 264/174 3,571,490 3/1971 Bunish 174/120 R 3,793,476 2/1974 Misiura 174/120 SR OTHER PUBLICATIONS Blodgett et al., A New Corona and Heat Resistant Dec. 9, 1975 Cable Insulation Based on Ethylene Propylene Rubber in IEEE Transaction on Power 12/63, 980-987.
Primary ExaminerE. A. Goldberg Attorney, Agent, or Firm-R. G. Simkins; P. L. Schlamp; F. L. Neuhauser [57] ABSTRACT A composite of polymeric materials which are adheringly joined to each other and which can be easily and cleanly separated by stripping apart with a low pulling force whereupon the contacting surfaces of their interface separate cleanly without retention of any residue on one from the other, and which comprises the combination of a previously cured body of a copolymer of ethylene and propylene adjoined to a subsequently cured body of an elastomeric blend of a copolymer of ethylene and propylene admixed with chlorosulfonated polyethylene. The combination of materials is especially advantageous when used in electrically conducting wire and cable constructions as a composite of an electrical insulation and an overlying strippable semiconductive layer.
7 Claims, 2 Drawing Figures ELASTOMERIC BLEND 0F 16 ETHYLENE-PROPYLENE AND CHLOROSULFONATED POLYETHLENE U.S. Patent Dec. 9, 1975 ELASTOMERIC BLEND 0F I6 ETHYLENE-PROPYLENE AND CHLOROSULFONATED POLYETHLENE ETHYLENE-PROPYLENE FIG.1
ELECTRICAL CONDUCTORS WITH STRIPPABLE INSULATION AND METHOD OF MAKING THE SAME BACKGROUND OF THE INVENTION A common type of construction for electrical wires or cables designed for medium-to-high voltage applications, for example about to 69 KV, as well as other classes of electrical service, comprises combinations of one or more insulating layers and semiconductive layers. In a typical cable structure, for instance, the metallic conductor may be provided with an organic polymeric insulation such as a crosslinked polymer comprising ethylene, and an overlying body of semiconducting material comprising an organic polymeric material which has been rendered electroconductive by the inclusion therein of electrical conductivity imparting agents or fillers such as carbon black. Although these cable constructions may vary in certain elements, and often include intermediate components disposed between the metallic conductor and the primary body of dielectric insulation, such as a layer of separating tape and/or inner layer of semiconductive material, or the overall cable assembly is enclosed within a covering sheath, all such cable constructions conventionally include therein at least a body of primary dielectric insulation surrounding the conductor and an overlying body of semiconducting material in physical contact with the insulation. However, this arrangement of a layer of insulation with a superimposed layer of semiconductive material thereover incurs certain handicaps.
For example, to prevent the occurrence of ionization or corona formation resulting from internal voids or pockets within the cable construction and consequent ultimate breakdown of the insulation, it is necessary to eliminate the presence or possible occurrence of any free space or voids within or resulting from the interface between the adjoining surfaces of the body of the insulation and the body of semiconducting material. U.S. Pat. Nos. 3,541,228 and 3,677,849 deal with this problem of intermediate void spaces at the interface of the insulation and semiconductive material by applying a heat treatment to the assembled product to induce a shrinkage of the semiconductive materials tightly about the insulation. US. Pat. No. 3,259,688 proposes a different solution to this problem comprising a distinctive construction and an irradiation treatment.
Further, the insulation layer and overlying semiconductive layer for electrical cable can be formed concurrently about the wire or metal conductor by means of a continuous simultaneous extrusion process with one extruder, such as shown in US. Pat. No. 3,646,248, or these layers can be formed in sequence employing tandem extruders such as shown in US. Pat. No. 3,569,610, and both layers are thereafter cured at the same time in a single operation and unit to minimize manufacturing steps and apparatus. However, the simultaneous curing of both layers together, or even the curing of only one layer alone while it is in a contiguous arrangement with the other layer, can result in the apparent formation of crosslinking bonds bridging across the interface between the adjoining surfaces of each phase as noted in US. Pat. Nos. 3,569,610 and 3,792,192. This occurrence of such crosslinking bonds bridging the interface between the surfaces of the phases can render their subsequent separation very diffi- 2 cult, such as during removal of a portion of the body of semiconductive material from about the insulation by stripping for the purpose of making splices or terminal connections.
The separation of these layers often requires the application of great force, and, upon being stripped or peeled off, the semiconductive material often is prone to leave a substantial residue of its mass firmly adhering to the other surface or the insulation. As is known in the art, it is necessary when splicing and treating cable ends that the semiconductive material be cleanly stripped or completely removed from the terminal section of the cable end without any damage or material loss to the underlying surface of the insulation, and consequently the separation of these phases can require an appreciable amount of added labor time and costs when the semiconductive material is difficult to remove by stripping and/or a residue thereof is retain ed tenaciously adhering to the surface of the insulation. A solution to the difficulties of this aspect of such cable constructions is the subject of US. Pat. No. 3,684,821.
Other recent US. patents addressed to the foregoing problem comprise the following: US. Pat. No.
' 3,643,004 relates to a cable construction wherein the semiconducting layer is adhering but unbonded to the insulating layer; US. Pat. No. 3,787,255 which teaches attaching sulfonate groups to the surface of the polyolefin insulation to deter migration of the curing agent from the semiconductive layer across the interface to the insulation and as a result thereof their tenacious interlocking; and US. Pat. No. 3,793,476 which proposes a semiconductive composition comprising a novel blend of ethylene-propylene rubber and chlorinecontaining polymers which forms a controlled bonding upon curing with the underlying insulation of ethylenecontaining polymer.
SUMMARY or THE INVENTION This invention comprises a combination of specific organic polymeric materials coupled with a curing sequence whereby an elastomeric blend, which may comprise a body of semiconductive material, can be adheringly united to a contacting surface of a body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight of the copolymer, a conventional material for dielectric insulations. The materials and curing sequence of this invention provide a substantially continuous and secure union of their contacting surfaces extending over their common interface and thereby effectively obviating the occurrence of intermediate void spaces, while at the same time providing an interface union between the phases which is easily separated with a relatively small pulling force whereupon the components part from each other with clean surfaces each free of any residue from the other.
The invention includes the combination of a first body of a copolymer of ethylene and propylene of approximately equal parts by weight of copolymerized ethylene and propylene, adheringly joined with a sec ond body composed of an elastomeric blend of a minor portion of ethylene-propylene rubber admixed with a major portion of chlorosulfonated polyethylene, wherein said second body of an elastomeric blend is in an uncured condition and is applied to the first body of the copolymer in a cured condition and said uncured second body of the elastomeric blend is cured while a surface thereof is in physical contact with a surface of 3 the cured first body of copolymer.
The compositions and their attributes of this combination are uniquely suitable and advantageous for use in the construction of electrical wires and cables in the function of a composite of an insulation of ethylenepropylene copolymer or terpolymer with an easily and cleanly strippable semiconductive material superimposed over the insulation when the polymeric material comprising the elastomeric blend is rendered suitably electroconductive by appropriate filling with a typical electrical-conductivity-imparting agent or filler such as carbon black dispersed therethrough, or some other electrically conductive particulate material such as silicon carbide, iron, aluminum, and the like, in such amounts so as to impart the desired degree of conductivity.
OBJECTS OF THE INVENTION It is a primary object of this invention to provide polymeric materials that can be joined in a contiguous relationship with their interfacial surfaces adheringly united together so as to eliminate the presence or any occurrence of intermediate void spaces therebetween, and which thereafter can be separated by the application of a low pulling force with the interfacial surfaces of the bodies cleaving cleanly and free of any adhering residual material.
It is also a primary object of this invention to provide electrical conductors or wire, and a method of manufacturing same, with coverings including a combination ofbodies of organic polymeric materials comprising a first layer of insulation with a surface thereof adheringly joined to a surface of a second layer which may be of any suitable thickness down to less than about one millimeter, and wherein the second layer of the polymeric material is easily and cleanly strippable from the first layer of insulation with a low peeling effort of preferably about 2 to 18 pounds pulling force per one half inch wide strip of material, leaving the spearated surface of each layer intact, and clean and free of any residue.
It is an additional and specific object of this invention to provide an electrical wire or cable, and method of manufacturing same, having a multi-layered covering about a metallic conductor comprising a combination of curedpolymeric materials consisting of an insulation and an overlying semiconductive shield which is free of intermediate voids or spaces at the interface of said materials, and wherein the material consisting of the semiconductive shield comprises a polymeric carrier or matrix for particulate conductive filler material dispersed therethrough can be peeled or stripped off the underlying insulation with little effort or pulling force and it separates or parts cleanly from the surface of the insulation leaving it intact and without adhering material.
It is a further object of this invention to provide a method of joining polymeric materials in a contiguous relationship with their interfacial surfaces adheringly united so as to eliminate the presence or occurrence of intermediate void spaces therebetween, and which thereafter can be separated by the application of a low pulling force with the interfacial surfaces of the bodies cleaving cleanly and free of any adhering residual material.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 comprises a perspective view of a portion of an insulated conductor having a semiconductive shield thereon; and,
FIG. 2 comprises a cross-sectional view of the insulation and overlying semi-conductive layer about a portion of metallicv conductor.
DESCRIPTION OF A PREFERRED EMBODIMENT This invention is hereinafter described in relation to its principal field of application and utility, the construction of electrical wire and cable, although other areas of application are contemplated.
The invention specifically consists of a novel combination of given polymeric materials, or combined bodies composed'thereof, coupled with a sequence of curing and combining such polymeric materials, for adheringly joining them together with unique interfacial characteristics at their mutual contiguous surfaces.
Polymeric materials of the invention comprise for the one phase, a body or unit of a copolymer or terpolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight of the polymerized material, and preferably copolymers comprising approximately equal parts by weight of ethylene and propylene, and for the other phase or unit an elastomeric blend of about 20 to about 40 parts by weight of a copolymer or terpolymer of ethylene and propylene admixed with about 60 to about parts by weight of chlorosulfonated polyethylene. Accordingly for the purposes of this disclosure and the claims, the term copolymers of ethylene and propylene includes terpolymers comprising such monomers.
The terpolymers of ethylene-propylene suitable for this invention include commercially available rubbers produced by the copolymerization of ethylene and propylene together with minor proportions of dienes such as ethylidiene nonbornene, dicyclopentadiene or 1,4-hexadiene or combinations thereof. The terpolymers of ethylene-propylene with dienes, as is well known in the art, give greater latitude in the available curing systems in relation to the copolymers of only ethylene and propylene. Specifically, the copolymers require a free radical curing mechanism as provided by a peroxide compound, whereas the unsaturated phase of the terpolymers enables curing with a conventional sulfuraccelerator curing system, as well as with a peroxide free radical system.
An essential aspect of this invention comprises the curing, by conventional means such as curing agents, of the first phase or body of the copolymer of ethylene and propylene prior to the physical combining or joining together of the first and second phases or bodies, and the curing, by conventional means such as curing agents, of the second phase or body of the elastomer blend while in physical contact with the previously cured first phase or body. Thus the curing and adjoining sequence required to achieve. the advantages and benefits of the invention, comprises applying the body or mass of the elastomeric-blend while in an uncured condition to the bodyor mass of the copolymer of ethyl'ene and propylene in a cured condition, and thereafter curing the body or mass of elastomeric blend while a surface thereof is in adjoining physical contact with a surface of the cured copolymer of ethylene and propylene. This sequence of curing and adjoining the respective polymeric components is necessary to prevent formation of a tenacious union and bonding between the interface of the polymeric components which can only be separated with the application of very high pulling forces, and does not separate cleanly with each unit free of residue of the other.
The organic polymeric materials of each phase of the combination of this invention, both the copolymer of ethylene and propylene and the elastomeric blend, are typically cured to a substantially thermoset condition by crosslinking with a free radical forming peroxide according to conventional practices such as described in U.S. Pat. Nos. 2,888,424 and 3,079,370, and in subsequent relevant prior art. However, other curing systems or means known to the art or prescribed by the polymer manufacturers or suppliers can be applied, such as the use of sulfur-based systems with terpolymers comprising ethylene and propylene.
For service in electrical applications such as a semiconductive component in cable for medium to high voltage service, the elastomeric blends can be easily rendered electroconductive to any appropriate degree desired by the filling or inclusion therethroughout of a suitable amount of an electrical conductivity imparting agent such as about to about 75 parts of carbon black or metal particles by weight of the polymeric ingredients according to conventional practices. When aptly rendered electroconductive with a suitable amount of a conductive material, dispersed therethroughout, the elastomeric blend can fulfill the required electrical functions of a semiconducting mate rial in electrical cable, and when combined with an ethylene-propylene copolymer insulation and cured in accordance with the sequence of this invention, the combination provides the unique interfacial properties which effectively eliminate the occurrence of intermediate void spaces between the interface surfaces of insulation and semiconductive material and also enables an easy and clean separation of the semiconductive material from the insulation.
Referring to the drawing, a typical cable or mediumto-high'voltage capacity of the type to which this invention is especially applicable and advantageous, is shown in perspective in FIG. 1, and a short portion of such a cable is also shown with the insulation and semiconductive layer in longitudinal cross section about the conductor in FIG. 2. The overall cable product 10, primarily comprises a metallic conductor 12, a relatively thick first body of dielectric insulation 14 surrounding the conductor, and overlying the insulation is a second body or layer of semiconductive material 16. Other components can be included in the cable structure following known designs. For example, separating paper or tape can be provided on the conductor or a semiconductive layer can be located between the metallic conductor 12 and the primary insulation 14, such as shown in the aforementioned U.S. Pat. Nos. 3,259,688 and 3,684,821, and the means of this invention apply thereto with its attendant advantages whenever the insulation abuts the semiconductive component as is conventional in medium-to-high voltage capacity cables. Upon combining and curing the components in the essential sequence of this invention as set forth hereinabove, the insulation and semiconductive material covering the insulation become adheringly joined to each other, producing a united interface 18 of unique attributes which eliminates intermediate voids, and upon the application of a small pulling force of only a few pounds, the surfaces at the interface separate cleanly leaving each surface free of adherents from the other.
The following comprise specific examples of suitable and preferred polymeric materials for the application of this invention in the construction of high-voltage cable comprising a body of ethylene-propylene copolymer insulation combined with an overlying body of semiconductive material of a polymeric carrier or matrix comprising an elastomeric blend filled with particulate conductive material.
Insulating Composition The ethylene-propylene copolymer insulating composition of the following examples consisted of the following ingredients, in parts by weight:
Parts By Weight Ethylene-Propylene Copolymer (50% wt. ethylene) 100.0
Vistalon 404, Exxon Chemical Co. Antioxidant Flectol H, Monsanto 2.0
polytrimethyldihydroquinoline Zinc Oxide Lead Dioxide 2.0 Polybutadiene homopolymer Ricon 150 5.0 Clay 96.0 Petrolatum 5.0 Vinyl Silane l.5 Dicumyl Peroxide Curing Agent 6.0
Di Cup 40 KE, Hercules These ingredients of the dielectric insulation were compounded in a suitable mixer, a Banbury mixer, until substantially homogeneously dispersed. However, pursuant to conventional practices, all ingredients except the peroxide curing agent were first admixed with the temperature of the mixing ingredients maintained below about 400F. To prevent precuring the peroxide curing agent was added to the admixed ingredients while at a temperature of below about 200F. The compound was then ready for forming to a given shape and curing to a thermoset condition by the application of heat.
semiconductive Composition The elastomeric blend semiconductive composition of the following examples consisted of the following ingredients, including an electrically conductive carbon black, in parts by weight:
Di Cup R, Hercules The foregoing ingredients of the semiconductive composition were also compounded in a Banbury mixer until substantially homogeneously dispersed.
Also according to conventional practice, all ingredients continued except the peroxide curing agent were first admixed Example] Example ll with the temperature of the mixing ingredients maino layer completely bonded to pulllng force of 2.32 lbs., and tamed below about 250 F. To prevent precurlng the insulation, separated cleanly.
peroxide curing agent was added to the admixed ingreclients while at a temperature of below about 200F.
T e c pou d t me i nd was then ady for In the following examples illustrating the merits of formlng to shape and curlng to a thermoset condition this invention, the foregoing insulating and semiconby actlvatlng the curing agent with heatducting compositions were combined under actual ex- Samples of both of the foregoing insulating and semi- 1Q trusion conditions simulating the manufacture of highconductlng compounds were sheeted out on separate voltage electrical cable having a metallic conductor roll mills and applied as follows. In the hereinafter 6- covered with a body or layer of dielectric insulation scrlbed Example Strip specimens of each sheeted and an overlying body or layer or semiconducting masa npl f n d nsu a n and uncured s terial. The cable construction consisted of a No. 2
du ting mat rial e m n by sup p sing AWG stranded metal core conductor, covered with a specimens of one sample sheet p the other and both 0.150 inch thickness of the insulation and a 0.035 inch cured together as a laminate in adjoining physical thickness of the semicon with a total outside diameter contact ina press at 310F for 45 minutes. After 0001- f ab ut 0,680 inches, each applied by extrusion in a ing to room temperature and conditioning for at least ti l ma 16 hours at room temperature, 1/2 y 4 inch strips of the 20 In each example, the insulating composition was consimultaneously cured laminated samples were tested ti 1 f d on h core conductor b a fi t for ppa ili y- The results are given hefeinaftefsion operation and thereafter continuously cured by Like samples of both of the same foregoing insulating passing t a r te of 14 feet per minute through a steam and semiconducting compounds sheeted out on sepaha b 75 feet in length maintained at a pressure of rate mill rolls were applied as follows in accordance ab ut 255 psig (209C) for a dwell period of about 5 with this invention for comparison. In Example II, the i t strip specimens of the sheeted insulating composition F ll wi the continuous forming and curing of the of ethylene-propylene copolymer were first Cu at insulation composition on the core conductor, an over- 350F for 15 minutes in a mold. After cooling to room lying covering of the semiconducting composition was temperature and conditioning for at least 16 hours at continuously li d i h example b a Second room temperature, the procured strip pe m s of the trusion operation and thereafter continuously cured by insulating compound were combined with like sheeted passing t a rate f 15 feet per minute through a steam specimens of the uncured semiconducting compound h b 75 f t in len th maintained at a pressure of y superimposing one sheeted Specimen on the other about 255 psig (209C) for a dwell period of about five providing a laminate. The semiconductive compound i ut was thereafter cured as a laminate while in adjoining The four examples prepared as describing according physical contact with the precured insulating c0mto this invention were treated and tested for several p at 3 for 5 es in a p properties in addition to strippability as set forth in the After cooling to room temperature, /2 by 4 inch strips f ll i tabl Insulation Treatment Prior EXAMPLES To Semicon Extrusion III IV V VI Requirements Insulation Ovenized No No Yes Yes Spica oil applied to interface Yes No No Yes PROPERTIES Outer Semicon Results 7 Tensile Strength, psi 1622 1615 1915 I858 Elongation, 305 327 295 302 Seven Days Air Oven 121C Tensile Strength, psi I681 I626 I802 Elongation, 223 205 I93 I00 minimum Conductivity Room Temperature ohm-cm 525 108 103 5000 maximum 90C ohm-cm 243 70 50000 maximum Strippability Lbs. per A inch wide strip 4.75 5.75 5.38 5.64 4 minimum 18- maximum IPCEA S 66-524 & AEIC 6-73 Ovenizing conditions 51 hrs. at ll5C Spica oil applied to insulation surface prior to semicon extrusion to prevent nipple "plug-up".
of the dissimilarly cured specimens of Example II were tested for strippability in the same manner and condi- Alth h th invention h b d ib d i h f: tions as the simultaneously cured specimens of Examerenoe t t i ifi emb di nts thereof, nupi The m in d results Were as follows! merous modifications are possible andit is desired to cover all modifications falling within the spirit and Example 1 Example II scope of the invention. i
What we claim as new and desire to secure by Letters Specimens could not be stripped apart, semicon Specimens stripped with average Patent 0f the United States is:
1. An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of about to about 40 parts by weight of a copolymer of ethylene and propylene admixed with about 60 to about 80 parts by weight of chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconducting body being adheringly joined to each other substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per /2 inch width of the joined composite by applying the body of semiconducting elastomeric blend while in an uncured condition to the insulating body in a cured condition and thereafter curing said body of semiconducting elastomeric blend while a surface thereof is in adjoining physical contact with a surface of the cured insulating body.
2. The insulated metallic electrical conductor of claim 1, wherein said semiconducting body of an elastomer blend comprises about parts by weight of copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene.
3. The insulated metallic electrical conductor of claim 1, wherein said insulating body of a copolymer of ethylene and propylene comprising approximately equal parts by weight of copolymerized ethylene and propylene.
4. An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semi-conductivebody comprising an elastomeric blend of about 35 parts by weight of a copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconducting body being adhereingly joined to each other substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per one-half inch width of the joined composite 10 by applying the body of semiconducting elastomeric blend while in an uncured condition to the insulating body in a cured condition and thereafter curing said body of semiconducting elastomeric blend while a surface thereof is in adjoining physical contact with a surface of the cured insulating body.
5. A method of manufacturing an insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a cured copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of a minor amount of a copolymer of ethylene and propylene admixed with a major amount of chlorosulfonated polyethylene substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per inch width of the joined composite, comprising forming about a metallic conductor a body of insulation comprising a curable copolymer of ethylene in an amount of no more than about 50 percent by weight of the copolymer and propylene, and curing said body of insulation, applying a body of semiconducting curable elastomeric blend of a minor amount of a copolymer of ethylene and propylene admixed with a major amount of chlorosulfonated polyethylene in adjoining physical contact over said cured body of insulation, and while said bodies of cured insulation and semiconducting curable elastomers blend are in adjoining physical contact, curing the semiconducting elastomeric blend.
6. The method of manufacturing an insulated metallic electrical conductor of claim 5, wherein said semiconducting elastomeric blend comprises about 20 to about 40 parts by weight of copolymer of ethylene and propylene admixed about 60 to parts by weight of chlorosulfonated polyethylene.
7. The method of manufacturing an insulated metallic electrical conductor of claim 5, wherein said polymeric material of the insulating body of a copolymer of ethylene and propylene comprising approximately equal parts by weight of copolymerized ethylene and propylene, and said semiconducting elastomeric blend comprises about 35 parts by weight of copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene.

Claims (7)

1. AN INSULATED METALLIC ELECTRICAL CONDUCTOR HAVING A COVERING THEREON COMPRISING POLYMERIC MATERIALS INCLUDING A COMPOSITE OF AN ELECTRICALLY INSULATING BODY OF A COPOLYMER OF ETHYLENE AND PROPYLENE HAVING AN ETHYLENE CONTENT OF NOT MORE THAN ABOUT 50 PERCENT BY WEIGHT WITH A SURFACE ADHERINGLY JOINED TO A CONTACTING SURFACE OF AN EASILY AND CLEANLY STRIPPABLE OVERLYING SEMICONDUCTIVE BODY COMPRISING AN ELASTOMERIC BLEND OF ABOUT 20 TO ABOUT 40 PARTS BY WEIGHT OF A COPOLYMER OF ETHYLENE AND PROPYLENE ADMIXED WITH ABOUT 60 TO ABOUT 80 PARTS BY WEIGHT OF CHLOROSULFONATED POLYETHYLENE SAID CONTACTING SURFACES OF THE INSULATING BODY AND OVERLYING SEMICONDUCTIVE BODY BEING ADHERING JOINED TO EACH OTHER SUBSTANTIALLY CONTINUOUSLY OVER THEIR COMMON INTERFACE SO AS TO REQUIRE A PULLING FORCE FOR THEIR SEPARATION OF AT LEAST ABOUT 2 POUNDS AND NOT MORE THAN ABOUT 18 POUNDAS PER 1/2 INCH WIDTH OF THE JOINED COMPOSITE BY APPLYING THE BODY OF SEMICONDUCTIVE ELASTOMERIC BLEND WHILE IN AN UNCURED CONDITON TO THE INSULATING BODY IN A CURED CONDITION AND THEREAFTER CURING SAID BODY OF SEMICONDUCTING ELASTOMERIC BLEND WHILE A SURFACE THEREOF IS IN ADJOINING PHYSICAL CONTACT WITH A SURFACE OF THE CURED INSULATING BODY.
2. The insulated metallic electrical conductor of claim 1, wherein said semiconducting body of an elastomer blend comprises about 35 parts by weight of copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene.
3. The insulated metallic electrical conductor of claim 1, wherein said insulating body of a copolymer of ethylene and propylene comprising approximately equal parts by weight of copolymerized ethylene and propylene.
4. An insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semi-conductive body comprising an elastomeric blend of about 35 parts by weight of a copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene, said contacting surfaces of the insulating body and overlying semiconducting body being adhereingly joined to each other substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per one-half inch width of the joined composite by applying the body of semiconducting elastomeric blend while in an uncured condition to the insulating body in a cured condition and thereafter curing said body of semiconducting elastomeric blend while a surface thereof is in adjoining physical contact with a surface of the cured insulating body.
5. A method of manufacturing an insulated metallic electrical conductor having a covering thereon comprising polymeric materials including a composite of an electrically insulating body of a cured copolymer of ethylene and propylene having an ethylene content of not more than about 50 percent by weight with a surface adheringly joined to a contacting surface of an easily and cleanly strippable overlying semiconductive body comprising an elastomeric blend of a minor amount of a copolymer of ethylene and propylene admixed with a major amount of chlorosulfonated polyethylene substantially continuously over their common interface so as to require a pulling force for their separation of at least about 2 pounds and not more than about 18 pounds per 1/2 inch width of the joined composite, comprising forming about a metallic conductor a body of insulation comprising a curable copolymer of ethylene in an amount of no more than about 50 percent by weight of the copolymer and propylene, and curing said body of insulation, applying a body of semiconducting curable elastomeric blend of a minor amount of a copolymer of ethylene and propylene admixed with a major amount of chlorosulfonated polyethylene in adjoining physical contact over said cured body of insulation, and while said bodies of cured insulation and semiconducting curable elastomers blend are in adjoining physical contact, curing the semiconducting elastomeric blend.
6. The method of manufacturing an insulated metallic electrical conductor of claim 5, wherein said semiconducting elastomeric blend comprises about 20 to about 40 parts by weight of copolymer of ethylene and propylene admixed about 60 to 80 parts by weight of chlorosulfonated polyethylene.
7. The method of manufacturing an insulated metallic electrical conductor of claim 5, wherein said polymeric material of the insulating body of a copolymer of ethylene and propylene comprising approximately equal parts by weight of copolymerized ethylene and propylene, and said semiconducting elastomeric blend comprises about 35 parts by weight of copolymer of ethylene and propylene admixed with about 65 parts by weight of chlorosulfonated polyethylene.
US468397A 1974-05-09 1974-05-09 Electrical conductors with strippable insulation and method of making the same Expired - Lifetime US3925597A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US468397A US3925597A (en) 1974-05-09 1974-05-09 Electrical conductors with strippable insulation and method of making the same
DE19752510510 DE2510510A1 (en) 1974-05-09 1975-03-11 RELEASEABLE COMPOSITE MADE OF POLYMER MATERIALS FOR INSULATED ELECTRIC CONDUCTORS
HU75GE972A HU173995B (en) 1974-05-09 1975-03-24 Method for producing separable, associated system consists of cross-linked polymers which may be used for electrical insulating
ES436350A ES436350A1 (en) 1974-05-09 1975-04-07 Electrical conductors with strippable insulation and method of making the same
CA224,706A CA1060769A (en) 1974-05-09 1975-04-14 Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
NL7504448A NL7504448A (en) 1974-05-09 1975-04-15 WIPPABLE COMPOSITE OF POLYMERIC MATERIALS FOR INSULATED ELECTRICAL CONDUCTORS AND PROCEDURE FOR MANUFACTURE THEREOF.
JP50053943A JPS50150886A (en) 1974-05-09 1975-05-07
SE7505361A SE7505361L (en) 1974-05-09 1975-05-07 COMPOSITE MATERIAL AND PROCEDURE FOR ITS PREPARATION.
FR7514302A FR2270285B1 (en) 1974-05-09 1975-05-07
US05/608,447 US4051298A (en) 1974-05-09 1975-08-28 Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US468397A US3925597A (en) 1974-05-09 1974-05-09 Electrical conductors with strippable insulation and method of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/608,447 Division US4051298A (en) 1974-05-09 1975-08-28 Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof

Publications (1)

Publication Number Publication Date
US3925597A true US3925597A (en) 1975-12-09

Family

ID=23859646

Family Applications (1)

Application Number Title Priority Date Filing Date
US468397A Expired - Lifetime US3925597A (en) 1974-05-09 1974-05-09 Electrical conductors with strippable insulation and method of making the same

Country Status (9)

Country Link
US (1) US3925597A (en)
JP (1) JPS50150886A (en)
CA (1) CA1060769A (en)
DE (1) DE2510510A1 (en)
ES (1) ES436350A1 (en)
FR (1) FR2270285B1 (en)
HU (1) HU173995B (en)
NL (1) NL7504448A (en)
SE (1) SE7505361L (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075421A (en) * 1975-12-23 1978-02-21 General Electric Company Direct current cable with resistivity graded insulation, and a method of transmitting direct current electrical energy
US4317001A (en) * 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4384944A (en) * 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4426339A (en) 1976-12-13 1984-01-17 Raychem Corporation Method of making electrical devices comprising conductive polymer compositions
US4449098A (en) * 1980-03-19 1984-05-15 Osaka Gas Company Limited Arrangement for detecting the location of an electrically insulative continuous item positioned underground
US4764664A (en) * 1976-12-13 1988-08-16 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4866253A (en) * 1976-12-13 1989-09-12 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4876440A (en) * 1976-12-13 1989-10-24 Raychem Corporation Electrical devices comprising conductive polymer compositions
GB2262381A (en) * 1991-11-29 1993-06-16 Bicc Plc Electric or optic communication cable
US5225635A (en) * 1991-11-08 1993-07-06 Cooper Industries, Inc. Hermetic lead wire
US20060139559A1 (en) * 2004-12-28 2006-06-29 Lg Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US20070126136A1 (en) * 2004-10-21 2007-06-07 Shigeru Fujita Heat insulating stamper structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118402U (en) * 1991-04-01 1992-10-22 芳子 澤内 21st century Japanese clothing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269862A (en) * 1964-10-22 1966-08-30 Raychem Corp Crosslinked polyvinylidene fluoride over a crosslinked polyolefin
US3571490A (en) * 1970-01-16 1971-03-16 Anaconda Wire & Cable Co Flame resistant electric cable
US3793476A (en) * 1973-02-26 1974-02-19 Gen Electric Insulated conductor with a strippable layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269862A (en) * 1964-10-22 1966-08-30 Raychem Corp Crosslinked polyvinylidene fluoride over a crosslinked polyolefin
US3571490A (en) * 1970-01-16 1971-03-16 Anaconda Wire & Cable Co Flame resistant electric cable
US3793476A (en) * 1973-02-26 1974-02-19 Gen Electric Insulated conductor with a strippable layer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075421A (en) * 1975-12-23 1978-02-21 General Electric Company Direct current cable with resistivity graded insulation, and a method of transmitting direct current electrical energy
US4866253A (en) * 1976-12-13 1989-09-12 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4426339A (en) 1976-12-13 1984-01-17 Raychem Corporation Method of making electrical devices comprising conductive polymer compositions
US4764664A (en) * 1976-12-13 1988-08-16 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4876440A (en) * 1976-12-13 1989-10-24 Raychem Corporation Electrical devices comprising conductive polymer compositions
US4317001A (en) * 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4449098A (en) * 1980-03-19 1984-05-15 Osaka Gas Company Limited Arrangement for detecting the location of an electrically insulative continuous item positioned underground
US4384944A (en) * 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US5225635A (en) * 1991-11-08 1993-07-06 Cooper Industries, Inc. Hermetic lead wire
GB2262381A (en) * 1991-11-29 1993-06-16 Bicc Plc Electric or optic communication cable
US20070126136A1 (en) * 2004-10-21 2007-06-07 Shigeru Fujita Heat insulating stamper structure
US7704066B2 (en) * 2004-10-21 2010-04-27 Ricoh Company, Ltd. Heat insulating stamper structure
US20060139559A1 (en) * 2004-12-28 2006-06-29 Lg Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US7742140B2 (en) * 2004-12-28 2010-06-22 Lg. Display Co., Ltd. In-plane switching mode liquid crystal display device with common voltage transmission wire

Also Published As

Publication number Publication date
NL7504448A (en) 1975-11-11
ES436350A1 (en) 1977-04-16
FR2270285A1 (en) 1975-12-05
FR2270285B1 (en) 1982-03-05
SE7505361L (en) 1975-11-10
DE2510510A1 (en) 1975-11-20
JPS50150886A (en) 1975-12-03
CA1060769A (en) 1979-08-21
HU173995B (en) 1979-10-28

Similar Documents

Publication Publication Date Title
US3793476A (en) Insulated conductor with a strippable layer
EP0188118B1 (en) Laminated construction having strippable layers
US3925597A (en) Electrical conductors with strippable insulation and method of making the same
US3909507A (en) Electrical conductors with strippable polymeric materials
US3792192A (en) Electrical cable
CA2524252C (en) Improved strippable cable shield compositions
EP0420271A1 (en) Insulated electrical conductors
US4051298A (en) Strippable composite of polymeric materials for use in insulated electrical conductors, a method of forming the same and products thereof
KR20180097507A (en) Semiconductive shielding composition
US3485938A (en) Electric cable with adhered polymeric insulation
JPS6120970B2 (en)
EP3542375B1 (en) Electrical field grading material and use thereof in electrical cable accessories
US2081517A (en) Conducting rubber and its application
JPH10283851A (en) Direct current power cable and its connection part
US3962517A (en) Electric cables
JP3428388B2 (en) DC cable
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JPS6130367B2 (en)
JP4227244B2 (en) Insulated cable for direct current using a semiconductive composition
JPH09231839A (en) Direct current cable
JP3087284B2 (en) Electrical insulation cable
JPH0481283B2 (en)
JPS5833641B2 (en) Vulcanized ethylene-propylene rubber insulated wire
JPH02155416A (en) Molded joint method of cable
JP2001312921A (en) Direct-current insulating material

Legal Events

Date Code Title Description
AS Assignment

Owner name: VULKOR, INCORPORATED, 950 BROADWAY, LOWELL, MA 018

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GENERAL ELECTRIC COMPANY, A CORP. OF NY;REEL/FRAME:004835/0028

Effective date: 19871222

Owner name: VULKOR, INCORPORATED, A CORP. OF MA, MASSACHUSETT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY, A CORP. OF NY;REEL/FRAME:004835/0028

Effective date: 19871222