US3918137A - Wear-resistant coating for rotary engine side housing and method of making - Google Patents

Wear-resistant coating for rotary engine side housing and method of making Download PDF

Info

Publication number
US3918137A
US3918137A US466655A US46665574A US3918137A US 3918137 A US3918137 A US 3918137A US 466655 A US466655 A US 466655A US 46665574 A US46665574 A US 46665574A US 3918137 A US3918137 A US 3918137A
Authority
US
United States
Prior art keywords
coating
seals
wear
gun
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US466655A
Inventor
Yeshwant P Telang
James C Uy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Motor Co
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00376861A external-priority patent/US3833321A/en
Application filed by Ford Motor Co filed Critical Ford Motor Co
Priority to US466655A priority Critical patent/US3918137A/en
Application granted granted Critical
Publication of US3918137A publication Critical patent/US3918137A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making
    • Y10T29/49234Rotary or radial engine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • Y10T29/49984Coating and casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49989Followed by cutting or removing material

Definitions

  • ABSTRACT An improved wear-resistant surface preparation is used on the inner side walls of the combustion chamber of a rotary piston engine.
  • the improvement comprises deposition of two distinct but admixed metallic powders of generally equal hardness; one of the powders contains fluxing agents which enable the deposited powders to self-sinter if deposited in a semiplastic condition.
  • the powders are deposited on a previously undercut cast iron side-housing.
  • the resulting coating composition is characterized by minimum hardness value of R 30 at elevated operating temperatures of 400F.
  • the composition retains a stable hardness at elevated temperature levels up to 1 100F.
  • the coating may have a porosity of 39%, but particle size is controlled to limit the porosity to 5% which is compatible with lubricating requirements of a rotary engine.
  • the coating composition is deposited across the entire area circumscribed by the path of the outer most side point of the apex seals carried by the rotary piston; the path is substantially commensurate or approaches the entire shape of the epitrochoid chamber.
  • the coating is compatible with the composition of the rotor side seals, oil seals and corner seals bearing thereagainst.
  • the rotor side seals are comprised of cast iron, the oil seals are cast iron coated with limited chromium, the corner seals are prepared from cast iron, and the apex seals are strips of metal coated with an alloy of iron and titanium carbide with graphite.
  • a method comprising: (1) machining a cast side housing structure to a depth sufficient to accommodate a slightly oversized finish coating.
  • the cast structure is undercut, grit blasted and preheated to 200F.
  • a primary object of this invention is to provide a more economical and a much more improved wearresistant sealing system for a side housing of a rotary internal combustion engine. Most significantly, the invention provides a coating which has improved hightemperature hardness stability.
  • Still another object is to provide a sealing system which integrates the composition of the rotor side seal, apex seal ends, oil seals and corner seals with the side housing coating composition; the family is compatible with each other to provide unprecedented long-life, efficient sealing characteristics, and accomplishes such goals with a reduced amount of material.
  • the improved sealing system comprise control and selection of the admixed powder chemistry to deposit differential particles of generally equal hardness, one of the powders carrying fluxing agents such as silicon and boron, to provide for selfsintering.
  • the particle size of the powders is uniquely controlled to limit porosity of the coating to no more than 5% thereby reducing excess lubrication which may chemically break down prematurely and interfere with the efficiency of the engine.
  • Yet still another object is to provide an improved method of preparing a highly resistant side housing construction for a rotary engine, the method being characterized by flame spraying at lower temperatures an enlarged area of the side housing covering at least that portion equivalent to the silhouette projected by the path of the outermost point of the apex seal of the rotor.
  • the sprayed composition consists of an admixture of a powdered martensitic steel and a nickel-based alloy generally equal in hardness to the stainless steel.
  • the area is ground back to an undercut thickness prior to spraying so that the coating, when fully deposited, projects beyond the finish reference surface; this projection permits grinding off a portion of the finished coating to a degree no less than 5 mils nor more than 15 mils.
  • FIG. 1 is a central sectional view of a two rotor, internal combustion rotary engine employing a sealing system embodying the principles of this invention
  • FIG. 2 is a side elevational view of a rotor utilized in the construction of FIG. 1;
  • FIG. 3 is a sectional view of the side housing element forming a part of the construction of FIG. 1;
  • FIG. 4 is a view of the side housing structure shown in FIG. 3 taken along line 44;
  • FIG. 5 is a microphotograph, x magnification, of the coating composition and depicting the union between the side housing support material and the coatrng.
  • the overall engine construction comprises a series of housings including: a left single-walled side housing 10, a first rotor housing 11, a center double-walled side housing 12, a right rotor housing 13 and a right singlewalled side housing 14.
  • the rotor housings 11 and 12 are constructed of die cast aluminum with an appropriate internal wear-resistant coating at 15; the side housings 10, 12 and 14 are constructed of cast iron coated with a composition as described herein.
  • a left rotor 16 is disposed in the chamber 18 defined by housings 10, l l and 12; a right rotor 18 is disposed in a chamber 19 defined by housings 12, 13 and 14.
  • the rotors are respectively carried by eccentrically mounted shafts 20 and 21; the shafts extend through respective eccentric openings 22 and 23 in each of the rotors.
  • Each of the rotors are generally triangular in side elevation and have a transverse thickness 24 which is slightly less than the width of the rotor housings.
  • the rotor carries, on each side thereof, an annular arrangement of side seals 25 which follow the periphery 26 of the rotor.
  • the side seals comprise thin strips 25a and 25b of cast iron (two in number, side by side) which fit loosely within complimentary grooves in the side of the rotor so that seals present a surface for engaging the side housings.
  • Apex seals 28 are carried in transverse slots for engaging the rotor housings; corner seals 27 provide a convenient seal at the juncture of the side seals and apex seals.
  • Circular oil seals 29 surround openings 22-23 and present a surface for sealing against the side housings.
  • Each of the side housings provide a support or surface 31 for an improved wear resistance coating system 30 which is applied thereover.
  • the support is preferably comprised of cast iron, but includes equivalent materials which have a thermal conductivity of at least .10 BTU/hr./sq. ft./F/ft. and a yield strength, of at least 25,000 psi.
  • the coating system 30 is designed to operate compatibly with the various presented surfaces of 5 the seals carried by the rotor.
  • System 30 is particularly comprised of an admixture of two metallic powder types, each of generally equal hardness, the powders being self-fused upon deposition by a flame spray technique.
  • One of the powder types is comprised of martensitic stainless steel having a chromium content in the range of 12-17%, particularly 420 stainless steel having a chromium content by weight of 13%.
  • the other powder type is a nickel based alloy having ahardness generally equal to 420 stainless steel.
  • the powder types are admixed in a dry form, the proportion of mixing being preferably on a 1-1 basis.
  • the operative range for achieving the broadest object of this invention permits the proportioning to deviate as much as a 4 to 1 ratio of nickel-based alloy to martensitic stainless steel, or a 3 to 1 ratio of martensitic stainless steel and nickel-based alloy.
  • the nickel-based alloy particularly comprises a small addition of iron, preferably about 5%, and important additions of fluxing agents in the form of silicon and boron.
  • the silicon being preferably present in the powder in an amount of about 4% and boron being present in the powder in an amount of about 3%.
  • the fluxing agents assist in creating the proper amount of hardness and adherency of the particles during flame spraying of the coating.
  • the particles are fed into a flame spray torch, such as an oxy-acetylene gun where the powders are subjected to the gas flame for a time sufficient to melt the outer surface of each of the particles to produce a semi-plastic condition.
  • the particles are impelled with sufficient force to impact the surface to be coated and cause a flattened or distorted configuration for each of the particles.
  • a self-fusing effect takes place to provide a rigid and adherent coating.
  • the silicon and boron come out of solution in the particle type (being lower in melting temperature than the other constituents) which effectively stimulates the surface fluid for self-fusing.
  • the silicon and boron come out to form low melting eutectics.
  • the nickel-based alloy may also have a chromium constituent as well as a small amount of carbon, for example 1.0 carbon and 13.25 chromium.
  • the resulting composition or coating consists generally of 0.5% carbon, 13.25% chromium, 37% nickel, 1.5% boron, 2.5% silicon and 45% iron.
  • the coating in general consists of a hard martensitic stainless steel matrix and equally hard borides, oxides, carbides and silicides. The oxygen, most importantly, being maintained in the interstitial state within the composition.
  • the cast iron support E appears darkly shaded, martensitic particle types appear at B as small spheres and the nickel-based alloy particle types appear at D as elongated or flattened particles as a result of impact.
  • Black areas A are pores or voids resulting from controlled spraying, and the light grey stringers C are areas having interstitial oxygen and oxides. Interstitial oxygen is controlled in an amount to assist wear resistance.
  • An intermediate coating F of aluminum-bronze may be used to promote a metallurgical bond between the support and coating.
  • the intermediate coating should be flame sprayed to a deposited thickness of 1-10 mils.
  • One of the important phenomenon observed with the use of the above composite coating is its ability to maintain a stable hardness value at high temperatures. For example, at temperatures at 400F. (typical for the substrate temperature of the side walls of the rotary engine, a minimum hardness has been consistently obtained at R 30. Such hardness level has been observed at even higher temperatures up to 1100F. indicating the temperature stability of the coating. This ability to maintain a stable hardness at elevated temperatures is unique and results from a combination of regulated 1 particle chemistry and deposition method. With prior art materials that have been deemed very hard at ambient temperatures, deterioration and loss of sealing efficiency has been observed. The action of the side seals particularly is rigorous. Selected points of the side seals undergo a compound rotary sliding movement against back and forth movement of a knife.
  • Prior art material No. 2 and No. 3 consisted simply of a sprayed steel 1080 and 10100 coating (thickness 0.015 in.) on the entire side housing; measured wear.
  • a thin coating of the inventive material was used, the coating not being immersed in oil after deposition and not lapped; measured wear was 0.00022 inch.
  • One discovered characteristic that a side housing surface treatment should possess is that of limited porosity.
  • the coating of this invention is operative with a porosity of 39%, 5% or less is preferred to prevent unwarranted lubricant break-down.
  • a micro-thin lubricating film between the seals and the side housing is desirable; this is best maintained by a slightly porous metallic coating on the seals and side housing whereby the porosity can act as a reservoir or supply to maintain the film.
  • a preferred method for carrying out the invention comprises:
  • Substrate Surface Preparation The cast iron side housing, after having been cast, is milled to provide a reference surface across the entire area 31 defined between the projection of the outer most point of the apex seals (as they undergo planetary movement) and the inter periphery defined by the eccentrically mounted portions 22 and 23.
  • the milled surface is then subjected to an undercut treatment to accommodate an oversized finish coating.
  • the undercut is provided with a 30 chamfer at edges 33 and 34 to assist in providing a more adherent joint with the cast iron substrate. Overspray, immediately adjacent to the edges of the center hole is avoided by leaving unsprayed a margin 32 of about 0.05 inches at the inter periphery 34.
  • the undercutting treatment is adapted to provide a metal finish of 64-256 micro inches.
  • the undercut side housing is then cleaned by hot degreasing, and grit blasted with 24 grit crushed iron at 70 psi air pressure.
  • the grit blasting is carried out with a lower pair pressure than normal so as to provide a better knurled surface.
  • the side housing is then preheated to about 200 F. in preparation for the spraying step.
  • a preferred power mixture on a 50-50 basis, consists of 420 stainless steel and a nickel-based alloy having a chemical content of 13% chrome, 5% iron, 4% silicon and 3% boron, 0.75% carbon, 75% nickel.
  • the admixed powders are introduced to a flame spray gun utilizing the oxy-acetylene principle. Flame spraying, in its most general sense, is known as metallizing which is a process of spraying molten metal onto a surface to form a coating.
  • Pure or alloyed metal or a mixture of metals is melted in a flame; a blast of compressed air breaks up the molten metal into a fine spray.
  • the deposit of this spray builds up on a substrate to form a coating having physical properties which are different from the constituent metals.
  • Sprayed metal is generally porous, harder and more brittle. The porosity and higher hardness generally contributes to wear-resistance of bearing surfaces. Thus flame spraying is commonly used for building up worn parts.
  • the hardness of the deposited coating has been increased over that known before, the porosity has been limited for advantageous purposes and the costs of deposition have been reduced.
  • the acetylene pressure is set preferably at 15 psi and the oxygen pressure at 24 psi.
  • the flow of each gas constituent is preferably set at 30% for acetylene and 70% for oxygen.
  • the surface to be sprayed is maintained in a vertical position in order to avoid entrapping dust.
  • the oxyacetylene gun should be maintained at a perpendicular orientation with respect to the plane of the surface to be coated.
  • the housing is rotated on its own axis, while at the same time, the gun is reciprocallymoved so as to shift radially with respect to the housing section being sprayed.
  • the tip of the gun is placed approximately 10 inches from the surface to be coated and the housing is usually rotated at a speed of about 60 rpm.
  • the thickness of the coating is controlled in a range of 0.02 inches to 0.03 inches, preferably 0.025 inches thereby allowing for 0.01 inch removal of the coating in a subsequent step of the process.
  • the coating is subjected to an application of engine oil such as 10 w 30 while the housing is still hot. Enough oil is applied to soak the coating. Thereafter, the coated surface of the housing is ground to a finish size so as to be even with the reference surface determined in a prior step as a milled surface. The resultant coating thickness is about 0.015 inches after, grinding.
  • the housing surface is lapped (utilizing free grinding powder) to a finish of 10 micro inches on the cast iron and 20/30 micro inches on the spray coating, this dicounts readings due to pores. Finally, the housing surface is ultrasonically cleaned, rinsed and oiled before use of the housing in engine operation.
  • Important features of the method comprise the flame spray deposition across the entire area of the side housing, almost commensurate with the epitrochoid configuration of the rotor housing.
  • the disposition of the spray gun, relative to the surface to be coated, has been found to require close adherence to the teaching herein in order to obtain the metallurgical characteristics sought.
  • the admixed powders are subjected to a flame spray temperature which is somewhat lower than that heretofore used by the prior art so that oxides and interstitial oxygen is controlled.
  • the coating is applied to a subsurface which has been undercut and chamferred to provide an improved adherent effect.
  • an intennediate coating of aluminum bronze may be spray coated in a thickness range of 1-10 mils.
  • a method of making a wear-resistant surface for use in a rotary internal combustion engine having a rotor with apex seals comprising:
  • a wear-resistant coating comprised of an admixture of generally equally hard particles, one particle consisting essentially of a martensitic stainless steel and the other consisting essentially of a nickel-based alloy containing about 3-4% each of boron and silicon, said particles being applied uniformly across said machined portion, said spray coating being deposited in a thickness no thinner than 0.2 inches and less than 0.03 inch,
  • said surface is a housing interior side-wall for the epitrochoidally delimited chamber of a rotary engine
  • said removed surface is undercut at the periphery thereof with a chamfer of about 30 and said spraying is carried out along a centerline at an angle with respect to said surface no greater than 30, and said spraying is carried out to coat the entire exposed surface of said side wall except that the inner periphery of said coating is spaced from the inner periphery of said side wall by about 0.05 inches.

Abstract

An improved wear-resistant surface preparation is used on the inner side walls of the combustion chamber of a rotary piston engine. The improvement comprises deposition of two distinct but admixed metallic powders of generally equal hardness; one of the powders contains fluxing agents which enable the deposited powders to self-sinter if deposited in a semiplastic condition. The powders are deposited on a previously undercut cast iron side-housing. The resulting coating composition is characterized by minimum hardness value of Rc 30 at elevated operating temperatures of 400*F. The composition retains a stable hardness at elevated temperature levels up to 1100*F. The coating may have a porosity of 3-9%, but particle size is controlled to limit the porosity to 5% which is compatible with lubricating requirements of a rotary engine. The coating composition is deposited across the entire area circumscribed by the path of the outer most side point of the apex seals carried by the rotary piston; the path is substantially commensurate or approaches the entire shape of the epitrochoid chamber. The coating is compatible with the composition of the rotor side seals, oil seals and corner seals bearing thereagainst. The rotor side seals are comprised of cast iron, the oil seals are cast iron coated with limited chromium, the corner seals are prepared from cast iron, and the apex seals are strips of metal coated with an alloy of iron and titanium carbide with graphite. A method is disclosed comprising: (1) machining a cast side housing structure to a depth sufficient to accommodate a slightly oversized finish coating. The cast structure is undercut, grit blasted and preheated to 200*F., (2) a coating of admixed martensitic stainless steel and an equally hard nickel-based alloy is flame sprayed upon the machined area including approximately three-eights of an inch margin beyond the undercut area, the spraying being conducted by rotating the surface to be sprayed along with radial and rotative movement of the spray gun arranged to direct the spray perpendicular to the surface, (3) soaking the flame sprayed coating immediately after deposition with oil, and (4) grinding the surface finish to a predetermined reference thickness.

Description

United States Ratent [1 1 Telang et al.
[ 1 Nov. 11, 1975 [75] Inventors: Yeshwant P. Teang, Grosse lle;
James C. Uy, Dearborn Heights, both of Mich.
[73] Assignee: Ford Motor Company, Dearborn,
Mich.
[22] Filed: May 3, 1974 [21] Appl. No.: 466,655
Related U.S. Application Data [62] Division of Ser. No. 376,861, July 5, 1973, Pat. No.
[52] U.S. Cl. 29/l56.4 WL; 29/527.3; 29/527.6;
[51] Int. Cl. B231 15/00; B23P 17/00 [58] Field of Search. 29/156.4 R, 156.4 WL, 527.3, 29/527.4, 527.6, 196.6; 418/178, 179;
Primal E.\-aminerC. W. Lanham Assistant Eranziner-Dan C. Crane Attorney, Agent, or FirmJoseph W. Malleck; Keith L. Zerschling [5 7] ABSTRACT An improved wear-resistant surface preparation is used on the inner side walls of the combustion chamber of a rotary piston engine. The improvement comprises deposition of two distinct but admixed metallic powders of generally equal hardness; one of the powders contains fluxing agents which enable the deposited powders to self-sinter if deposited in a semiplastic condition. The powders are deposited on a previously undercut cast iron side-housing. The resulting coating composition is characterized by minimum hardness value of R 30 at elevated operating temperatures of 400F. The composition retains a stable hardness at elevated temperature levels up to 1 100F. The coating may have a porosity of 39%, but particle size is controlled to limit the porosity to 5% which is compatible with lubricating requirements of a rotary engine. The coating composition is deposited across the entire area circumscribed by the path of the outer most side point of the apex seals carried by the rotary piston; the path is substantially commensurate or approaches the entire shape of the epitrochoid chamber. The coating is compatible with the composition of the rotor side seals, oil seals and corner seals bearing thereagainst. The rotor side seals are comprised of cast iron, the oil seals are cast iron coated with limited chromium, the corner seals are prepared from cast iron, and the apex seals are strips of metal coated with an alloy of iron and titanium carbide with graphite.
A method is disclosed comprising: (1) machining a cast side housing structure to a depth sufficient to accommodate a slightly oversized finish coating. The cast structure is undercut, grit blasted and preheated to 200F., (2) a coating of admixed martensitic stainless steel and an equally hard nickel-based alloy is flame sprayed upon the machined area including approximately three-eights of an inch margin beyond the undercut area, the spraying being conducted by rotating the surface to be sprayed along with radial and rotative movement of the spray gun arranged to direct the spray perpendicular to the surface, (3) soaking the flame sprayed coating immediately after deposition with oil, and (4) grinding the surface finish to a predetermined reference thickness.
9 Claims, 5 Drawing Figures U.S.Patent Nov.11, 1975 Sheet10f2 3,918,137
F'IG.IL
U.S. Patent Nov. 11,1975 Sheet2of2 3,918,137
WEAR-RESISTANT COATING FOR ROTARY ENGINE SIDE HOUSING AND METHOD OF MAKING This is a division of application Ser. No. 376,861, filed July 5, 1973, now U.S. Pat. No. 3,833,321.
BACKGROUND OF THE INVENTION sealing in a rotary engine is the use of a flame sprayed 2O coating of powdered plain carbon steel. This coating suffers from inadequate wear resistance. Another commercial application uses a plasma sprayed coating of molybdenum on a cast iron side housing. The latter coating is extremely expensive and uncertain in hardness stability at elevated temperatures.
Sprayed coatings of other compositions have been used in applications which do not require hightemperature hardness stability. For example, an admixed preparation of a nickel-chromium-boron alloy powder and a softer metal powder has 'been used successfully to repair crankshafts because of its high wear resistance at room temperatures. There has been no investigation of the modification of such an admixed coating so that it will effectively retain its admirable hardness level at elevated temperatures.
Economy plays an important role in the manufacture of a high volume engine. Accordingly, .the wearresistant coatings of the prior art have not been compatible with extremely high rates of production and economy, nor has the required thickness of the coatings been compatible with low cost.
SUMMARY OF THE INVENTION A primary object of this invention is to provide a more economical and a much more improved wearresistant sealing system for a side housing of a rotary internal combustion engine. Most significantly, the invention provides a coating which has improved hightemperature hardness stability.
Still another object is to provide a sealing system which integrates the composition of the rotor side seal, apex seal ends, oil seals and corner seals with the side housing coating composition; the family is compatible with each other to provide unprecedented long-life, efficient sealing characteristics, and accomplishes such goals with a reduced amount of material.
Features pursuant to the improved sealing system comprise control and selection of the admixed powder chemistry to deposit differential particles of generally equal hardness, one of the powders carrying fluxing agents such as silicon and boron, to provide for selfsintering. The particle size of the powders is uniquely controlled to limit porosity of the coating to no more than 5% thereby reducing excess lubrication which may chemically break down prematurely and interfere with the efficiency of the engine.
Yet still another object is to provide an improved method of preparing a highly resistant side housing construction for a rotary engine, the method being characterized by flame spraying at lower temperatures an enlarged area of the side housing covering at least that portion equivalent to the silhouette projected by the path of the outermost point of the apex seal of the rotor. The sprayed composition consists of an admixture of a powdered martensitic steel and a nickel-based alloy generally equal in hardness to the stainless steel. The area is ground back to an undercut thickness prior to spraying so that the coating, when fully deposited, projects beyond the finish reference surface; this projection permits grinding off a portion of the finished coating to a degree no less than 5 mils nor more than 15 mils.
SUMMARY OF THE DRAWINGS FIG. 1 is a central sectional view of a two rotor, internal combustion rotary engine employing a sealing system embodying the principles of this invention;
FIG. 2 is a side elevational view of a rotor utilized in the construction of FIG. 1;
FIG. 3 is a sectional view of the side housing element forming a part of the construction of FIG. 1;
FIG. 4 is a view of the side housing structure shown in FIG. 3 taken along line 44; and
FIG. 5 is a microphotograph, x magnification, of the coating composition and depicting the union between the side housing support material and the coatrng.
DETAILED DESCRIPTION Turning now to the drawings, particularly FIG. 1, the overall engine construction comprises a series of housings including: a left single-walled side housing 10, a first rotor housing 11, a center double-walled side housing 12, a right rotor housing 13 and a right singlewalled side housing 14. The rotor housings 11 and 12 are constructed of die cast aluminum with an appropriate internal wear-resistant coating at 15; the side housings 10, 12 and 14 are constructed of cast iron coated with a composition as described herein. A left rotor 16 is disposed in the chamber 18 defined by housings 10, l l and 12; a right rotor 18 is disposed in a chamber 19 defined by housings 12, 13 and 14. The rotors are respectively carried by eccentrically mounted shafts 20 and 21; the shafts extend through respective eccentric openings 22 and 23 in each of the rotors. Each of the rotors are generally triangular in side elevation and have a transverse thickness 24 which is slightly less than the width of the rotor housings.
As shown in FIG. 2, the rotor carries, on each side thereof, an annular arrangement of side seals 25 which follow the periphery 26 of the rotor. Here, the side seals comprise thin strips 25a and 25b of cast iron (two in number, side by side) which fit loosely within complimentary grooves in the side of the rotor so that seals present a surface for engaging the side housings. Apex seals 28 are carried in transverse slots for engaging the rotor housings; corner seals 27 provide a convenient seal at the juncture of the side seals and apex seals. Circular oil seals 29 surround openings 22-23 and present a surface for sealing against the side housings.
Each of the side housings provide a support or surface 31 for an improved wear resistance coating system 30 which is applied thereover. The support is preferably comprised of cast iron, but includes equivalent materials which have a thermal conductivity of at least .10 BTU/hr./sq. ft./F/ft. and a yield strength, of at least 25,000 psi. The coating system 30 is designed to operate compatibly with the various presented surfaces of 5 the seals carried by the rotor. System 30 is particularly comprised of an admixture of two metallic powder types, each of generally equal hardness, the powders being self-fused upon deposition by a flame spray technique. One of the powder types is comprised of martensitic stainless steel having a chromium content in the range of 12-17%, particularly 420 stainless steel having a chromium content by weight of 13%. The other powder type is a nickel based alloy having ahardness generally equal to 420 stainless steel. The powder types are admixed in a dry form, the proportion of mixing being preferably on a 1-1 basis. However, the operative range for achieving the broadest object of this invention permits the proportioning to deviate as much as a 4 to 1 ratio of nickel-based alloy to martensitic stainless steel, or a 3 to 1 ratio of martensitic stainless steel and nickel-based alloy.
The nickel-based alloy particularly comprises a small addition of iron, preferably about 5%, and important additions of fluxing agents in the form of silicon and boron. The silicon being preferably present in the powder in an amount of about 4% and boron being present in the powder in an amount of about 3%. The fluxing agents assist in creating the proper amount of hardness and adherency of the particles during flame spraying of the coating. The particles are fed into a flame spray torch, such as an oxy-acetylene gun where the powders are subjected to the gas flame for a time sufficient to melt the outer surface of each of the particles to produce a semi-plastic condition. As a result of the gas flow through the gun, the particles are impelled with sufficient force to impact the surface to be coated and cause a flattened or distorted configuration for each of the particles. Upon congenialing of the surface of each of the particles, a self-fusing effect takes place to provide a rigid and adherent coating. To stimulate the proper amount of melting at the surface of each of the particles, the silicon and boron come out of solution in the particle type (being lower in melting temperature than the other constituents) which effectively stimulates the surface fluid for self-fusing. The silicon and boron come out to form low melting eutectics. The nickel-based alloy may also have a chromium constituent as well as a small amount of carbon, for example 1.0 carbon and 13.25 chromium. As deposited, the resulting composition or coating consists generally of 0.5% carbon, 13.25% chromium, 37% nickel, 1.5% boron, 2.5% silicon and 45% iron. The coating in general consists of a hard martensitic stainless steel matrix and equally hard borides, oxides, carbides and silicides. The oxygen, most importantly, being maintained in the interstitial state within the composition.
As shown in FIG. 5, the cast iron support E appears darkly shaded, martensitic particle types appear at B as small spheres and the nickel-based alloy particle types appear at D as elongated or flattened particles as a result of impact. Black areas A are pores or voids resulting from controlled spraying, and the light grey stringers C are areas having interstitial oxygen and oxides. Interstitial oxygen is controlled in an amount to assist wear resistance.
- the side housing; other points on the side seals undergo.
a substantially reciprocating movement similar to the v An intermediate coating F of aluminum-bronze may be used to promote a metallurgical bond between the support and coating. The intermediate coating should be flame sprayed to a deposited thickness of 1-10 mils.
One of the important phenomenon observed with the use of the above composite coating is its ability to maintain a stable hardness value at high temperatures. For example, at temperatures at 400F. (typical for the substrate temperature of the side walls of the rotary engine, a minimum hardness has been consistently obtained at R 30. Such hardness level has been observed at even higher temperatures up to 1100F. indicating the temperature stability of the coating. This ability to maintain a stable hardness at elevated temperatures is unique and results from a combination of regulated 1 particle chemistry and deposition method. With prior art materials that have been deemed very hard at ambient temperatures, deterioration and loss of sealing efficiency has been observed. The action of the side seals particularly is rigorous. Selected points of the side seals undergo a compound rotary sliding movement against back and forth movement of a knife. Such reciprocating seal movement, when working against the hottest portion of the side housing, (proximate to the peak point of combustion) will cause significant local wear in prior art materials leadig to gas leakage. But the coatng of this invention exhibits little or no wear under such adverse conditions. During several hour hot/- cold cycling tests of a rotary engine equipped with the coating of this invention, the rotor cleanliness was apparent. There was no combustion deposits observed anywhere on the rotor sides portions disposed between the side seals and oils. Furthermore, wear studies were conducted of four prior art materials which are presently being used for side housing coatings of rotary engines. The engines were run for 100 hours of hot/cold cycling. Prior art material No. 1 consisted of a flame sprayed coating of 1080 steel (thickness 0.015 in.) onto an area of a cast iron side housing (equivalent to the area enclosed by seals) the area outside of the area or projection of the oil seals was induction hardened.
Maximum wear after 100 hours was 0.00135 inch. Prior art material No. 2 and No. 3 consisted simply of a sprayed steel 1080 and 10100 coating (thickness 0.015 in.) on the entire side housing; measured wear.
was sprayed over an intermediate coating of bronze; the measured wear was 0.0003 inch. Secondly, an 8 mil coating of the inventive material was deposited without an intermediate coating; measured wear was 0.00025,
inch. Thirdly, a thin coating of the inventive material was used, the coating not being immersed in oil after deposition and not lapped; measured wear was 0.00022 inch. One discovered characteristic that a side housing surface treatment should possess is that of limited porosity. Although the coating of this invention is operative with a porosity of 39%, 5% or less is preferred to prevent unwarranted lubricant break-down. A micro-thin lubricating film between the seals and the side housing is desirable; this is best maintained by a slightly porous metallic coating on the seals and side housing whereby the porosity can act as a reservoir or supply to maintain the film. But too much porosity interferes with the effeciency of the rotor by creating a viscous drag and allowing excess lubricant to be broken down by the combustion process leaving deposits. This invention teaches that a preferred porosity of 5% or less can be achieved by controlling the grain size of the admixed particle types being fed to the spray gun. No greater size particle that will pass a 200 mesh should be used, preferably 200, +325.
A preferred method for carrying out the invention comprises:
1. Substrate Surface Preparation The cast iron side housing, after having been cast, is milled to provide a reference surface across the entire area 31 defined between the projection of the outer most point of the apex seals (as they undergo planetary movement) and the inter periphery defined by the eccentrically mounted portions 22 and 23. The milled surface is then subjected to an undercut treatment to accommodate an oversized finish coating. The undercut is provided with a 30 chamfer at edges 33 and 34 to assist in providing a more adherent joint with the cast iron substrate. Overspray, immediately adjacent to the edges of the center hole is avoided by leaving unsprayed a margin 32 of about 0.05 inches at the inter periphery 34. The undercutting treatment is adapted to provide a metal finish of 64-256 micro inches. The undercut side housing is then cleaned by hot degreasing, and grit blasted with 24 grit crushed iron at 70 psi air pressure. The grit blasting is carried out with a lower pair pressure than normal so as to provide a better knurled surface. The side housing is then preheated to about 200 F. in preparation for the spraying step.
2. Flame Spraying Areas of the housing that are not to be coated are masked, although the overspray will be only approximately 0.25-0.37 of an inch. A preferred power mixture, on a 50-50 basis, consists of 420 stainless steel and a nickel-based alloy having a chemical content of 13% chrome, 5% iron, 4% silicon and 3% boron, 0.75% carbon, 75% nickel. The admixed powders are introduced to a flame spray gun utilizing the oxy-acetylene principle. Flame spraying, in its most general sense, is known as metallizing which is a process of spraying molten metal onto a surface to form a coating. Pure or alloyed metal or a mixture of metals is melted in a flame; a blast of compressed air breaks up the molten metal into a fine spray. The deposit of this spray builds up on a substrate to form a coating having physical properties which are different from the constituent metals. Sprayed metal is generally porous, harder and more brittle. The porosity and higher hardness generally contributes to wear-resistance of bearing surfaces. Thus flame spraying is commonly used for building up worn parts.
For purposes of this invention, the hardness of the deposited coating has been increased over that known before, the porosity has been limited for advantageous purposes and the costs of deposition have been reduced.
The acetylene pressure is set preferably at 15 psi and the oxygen pressure at 24 psi. The flow of each gas constituent is preferably set at 30% for acetylene and 70% for oxygen. It is further preferred that the surface to be sprayed is maintained in a vertical position in order to avoid entrapping dust. More importantly, the oxyacetylene gun should be maintained at a perpendicular orientation with respect to the plane of the surface to be coated. The housing is rotated on its own axis, while at the same time, the gun is reciprocallymoved so as to shift radially with respect to the housing section being sprayed. The tip of the gun is placed approximately 10 inches from the surface to be coated and the housing is usually rotated at a speed of about 60 rpm.
The thickness of the coating is controlled in a range of 0.02 inches to 0.03 inches, preferably 0.025 inches thereby allowing for 0.01 inch removal of the coating in a subsequent step of the process.
3. Finishing of Spray Coating Immediately after the flame spray deposition, the coating is subjected to an application of engine oil such as 10 w 30 while the housing is still hot. Enough oil is applied to soak the coating. Thereafter, the coated surface of the housing is ground to a finish size so as to be even with the reference surface determined in a prior step as a milled surface. The resultant coating thickness is about 0.015 inches after, grinding. The housing surface is lapped (utilizing free grinding powder) to a finish of 10 micro inches on the cast iron and 20/30 micro inches on the spray coating, this dicounts readings due to pores. Finally, the housing surface is ultrasonically cleaned, rinsed and oiled before use of the housing in engine operation.
Important features of the method comprise the flame spray deposition across the entire area of the side housing, almost commensurate with the epitrochoid configuration of the rotor housing. The disposition of the spray gun, relative to the surface to be coated, has been found to require close adherence to the teaching herein in order to obtain the metallurgical characteristics sought. The admixed powders are subjected to a flame spray temperature which is somewhat lower than that heretofore used by the prior art so that oxides and interstitial oxygen is controlled. The coating is applied to a subsurface which has been undercut and chamferred to provide an improved adherent effect.
To provide an improved metallurgical bond between the coating and the support, an intennediate coating of aluminum bronze may be spray coated in a thickness range of 1-10 mils.
We claim:
1. A method of making a wear-resistant surface for use in a rotary internal combustion engine having a rotor with apex seals, the method comprising:
a. casting a flat supporting surface comprised of cast iron,- said surface being milled to serve also as a reference,
b. removing a portion of said surface below said milled surface to a depth of between 0.013 to 0.017 inches and within at least an area defined by the projection of the path of the outermost point of the apex seal,
c. thermally spraying a wear-resistant coating comprised of an admixture of generally equally hard particles, one particle consisting essentially of a martensitic stainless steel and the other consisting essentially of a nickel-based alloy containing about 3-4% each of boron and silicon, said particles being applied uniformly across said machined portion, said spray coating being deposited in a thickness no thinner than 0.2 inches and less than 0.03 inch,
d. soaking the sprayed coating immediately after spraying with oil to permit absorption of oil into the porosity of said coating to the full depth of said coating, and
e. removing a portion of the outer surface of said coating so that the finish contour of said coating surface is flush with said surface reference.
2. The method as in claim 1, wherein said surface is a housing interior side-wall for the epitrochoidally delimited chamber of a rotary engine, said removed surface is undercut at the periphery thereof with a chamfer of about 30 and said spraying is carried out along a centerline at an angle with respect to said surface no greater than 30, and said spraying is carried out to coat the entire exposed surface of said side wall except that the inner periphery of said coating is spaced from the inner periphery of said side wall by about 0.05 inches. 3. The method as in claim 2, in which the side wall is rotated about a pivot and the gun is pivotally mounted on a track for moving radially inwardly and outwardly with respect to the periphery of said surface for depositing a uniform coating of said wear-resistant coating, the centerline of said gun being angled with respect to said surface only when depositing powder under said chamfer and being perpendicular to said g surface at all other times to achieve maximum impact forces. g
4. The method as in claim 1, in which said surface is preheated to a temperature of 200F or less, said flame spraying is carried out by the use of an oxygenacetylene gun, the mixture flowing through said gun comprising approximately 30% acetylene and oxygen to achieve an increased surface melting temperature for the powdered coating material passing through 7. The method as in claim 1, in which the resulting hardness of said coating at 400F is about R 30.
8. The method as in claim 1, in which the particle size of said admixed powders is between 200 and +325 mesh, the resulting porosity of said coating being 35%. s
9. The method as in claim 1, in which said particle types are admixed in a ratio of about 1:1.

Claims (9)

1. A METHOD OF MAKING A WEAR-RESISTANT SURFACE FOR USE IN A ROTARY INTERNAL COMBUSTION ENGINE HAVING A ROTOR WITH APEX SEALS, THE METHOD COMPRISING: A. CASTING A FLAT SUPPORTING SURFACE COMPRISED OF CAST IRON, SAID SURFACE BEING MILLED TO SERVE ALSO AS A REFERENCE, B. REMOVING A PORTION OF SAID SURFACE BELOW SAID MILLED SURFACE TO A DEPTH OF BETWEEN 0.013 TO 0.017 INCHES AND WITHIN AT LEAST AN AREA DEFINED BY THE PROJECTION OF THE PATH OF THE OUTERMOST POINT OF THE APEX SEAL, C. THERMALLY SPRAYING A WEAR-RESISTANT COATING COMPRISED OF AN ADMIXTURE OF GENERALLY EQUALLY HARD PARTICLES, ONE PARTICLE CONSISTING ESSENTIALLY OF A MARTENSITIC STAINLESS STEEL AND THE OTHER CONSISTING ESSENTIALLY OF A NICKEL-BASED ALLOY CONTAINING ABOUT 3-4% EACH OF BORON AND SILICON, SAID PARTICLES BEING APPLIED UNIFORMLY ACROSS SAID MACHINED PORTION, SAID SPARY COATING BEING DEPOSITED IN A THICKNESS NO THINNER THAN 0.2 INCHES AND LESS THAN 0.03 INCH,
2. The method as in claim 1, wherein said surface is a housing interior side-wall for the epitrochoidally delimited chamber of a rotary engine, said removed surface is undercut at the periphery thereof with a chamfer of about 30* and said spraying is carried out along a centerline at an angle with respect to said surface no greater than 30*, and said spraying is carried out to coat the entire exposed surface of said side wall except that the inner periphery of said coating is spaced from the inner periphery of said side wall by about 0.05 inches.
3. The method as in claim 2, in which the side wall is rotated about a pivot and the gun is pivotally mounted on a track for moving radially inwardly and outwardly with respect to the periphery of said surface for depositing a uniform coating of said wear-resistant coating, the centerline of said gun being angled with respect to said surface only when depositing powder under said chamfer and being perpendicular to said surface at all other times to achieve maximum impact forces.
4. The method as in claim 1, in which said surface is preheated to a temperature of 200*F or less, said flame spraying is carried out by the use of an oxygen-acetylene gun, the mixture flowing through said gun comprising approximately 30% acetylene and 70% oxygen to achieve an increased surface melting temperature for the powdered coating material passing through the flame zone of said gun.
5. The method as in claim 1, in which the resulting wear-resistant coating is characterized by 0.5% carbon, about 13.0% chromium, about 37.0% nickel, 1.5% boron, 2.5% silicon and the remainder iron.
6. The method as in claim 1, in which said outer surface in step (e) is removed to a depth between 5-15 mils and the resulting finish of said coating is about 64-256 micro-inches.
7. The method as in claim 1, in which the resulting hardness of said coating at 400*F is about Rc30.
8. The method as in claim 1, in which the particle size of said admixed powders is between -200 and +325 mesh, the resulting porosity of said coating being 3-5%.
9. The method as in claim 1, in which said particle types are admixed in a ratio of about 1:1.
US466655A 1973-07-05 1974-05-03 Wear-resistant coating for rotary engine side housing and method of making Expired - Lifetime US3918137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US466655A US3918137A (en) 1973-07-05 1974-05-03 Wear-resistant coating for rotary engine side housing and method of making

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00376861A US3833321A (en) 1973-07-05 1973-07-05 Wear-resistant coating for rotary engine side housing and method of making
US466655A US3918137A (en) 1973-07-05 1974-05-03 Wear-resistant coating for rotary engine side housing and method of making

Publications (1)

Publication Number Publication Date
US3918137A true US3918137A (en) 1975-11-11

Family

ID=27007589

Family Applications (1)

Application Number Title Priority Date Filing Date
US466655A Expired - Lifetime US3918137A (en) 1973-07-05 1974-05-03 Wear-resistant coating for rotary engine side housing and method of making

Country Status (1)

Country Link
US (1) US3918137A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2347527A1 (en) * 1976-04-07 1977-11-04 Maire Bernard Vaned pump for motor - has end plates made of light alloy with thin hard steel lining
US4212602A (en) * 1974-08-14 1980-07-15 Goetzewerke Friedrich Goetze Ag Wear-resistant coating for sealing strips in rotary engines
US4568393A (en) * 1984-12-06 1986-02-04 Trw Inc. Carburized high chrome liner
US4724819A (en) * 1987-01-23 1988-02-16 Precision National Plating Services, Inc. Cylinder liner reconditioning process and cylinder liner produced thereby
US4758139A (en) * 1985-10-30 1988-07-19 Mazda Motor Corporation Side housing for a rotary piston engine and a method for manufacturing the same
US5380564A (en) * 1992-04-28 1995-01-10 Progressive Blasting Systems, Inc. High pressure water jet method of blasting low density metallic surfaces
US5910290A (en) * 1994-10-03 1999-06-08 Foster Wheeler Energia Oy Arrangement in a wall and a method of coating a wall
US5993183A (en) * 1997-09-11 1999-11-30 Hale Fire Pump Co. Gear coatings for rotary gear pumps
US6086347A (en) * 1998-08-25 2000-07-11 Thermo King Corporation Two-stage rotary vane motor
US6250900B1 (en) * 1999-11-15 2001-06-26 Sauer-Danfoss Inc. Positive displacement hydraulic unit with near-zero side clearance
US6402488B2 (en) * 2000-01-31 2002-06-11 Sumitomo Electric Industries, Ltd. Oil pump
EP1288326A1 (en) * 2000-05-19 2003-03-05 Hitachi Construction Machinery Co., Ltd. Method of producing spray deposit on bearing boss
US20040147207A1 (en) * 2001-04-11 2004-07-29 Helga Muller Support bodies and method for improving wear and tear on support bodies in large scale grinders
US7712216B1 (en) * 2003-02-05 2010-05-11 Brunswick Corporation Restoration process for porosity defects in metal cast products
US20130129552A1 (en) * 2010-09-14 2013-05-23 Shingo Goto Rotary compressor
US11333068B1 (en) * 2021-03-23 2022-05-17 Pratt & Whitney Canada Corp. Side wall for rotary engine housing
US11499550B2 (en) 2018-09-11 2022-11-15 Rotoliptic Technologies Incorporated Sealing in helical trochoidal rotary machines
US11506056B2 (en) * 2013-06-05 2022-11-22 Rotoliptic Technologies Incorporated Rotary machine
US11802558B2 (en) 2020-12-30 2023-10-31 Rotoliptic Technologies Incorporated Axial load in helical trochoidal rotary machines
US11815094B2 (en) 2020-03-10 2023-11-14 Rotoliptic Technologies Incorporated Fixed-eccentricity helical trochoidal rotary machines

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345975A (en) * 1938-12-24 1944-04-04 Vickers Inc Power transmission pump or motor
US3033180A (en) * 1960-01-29 1962-05-08 Curtiss Wright Corp Rotating combustion engine seal construction
US3133341A (en) * 1961-04-25 1964-05-19 Ramsey Corp Method of banding piston rings
US3295198A (en) * 1964-03-13 1967-01-03 Robert L Coan Process of adhering stainless steel to aluminum and products produced thereby
US3337938A (en) * 1964-05-29 1967-08-29 Ramsey Corp Method of making piston rings
US3421198A (en) * 1965-12-08 1969-01-14 Ramsey Corp Method of making wear resistant piston ring
US3705818A (en) * 1968-12-31 1972-12-12 Citroen Sa Methods of coating rubbing surfaces and elements comprising such surfaces
US3743533A (en) * 1971-10-28 1973-07-03 G Yurasko Flame spraying
US3814447A (en) * 1972-11-02 1974-06-04 Ramsey Corp Sealing element for use in internal combustion engines
US3841805A (en) * 1973-04-04 1974-10-15 Houdaille Industries Inc Screw liner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345975A (en) * 1938-12-24 1944-04-04 Vickers Inc Power transmission pump or motor
US3033180A (en) * 1960-01-29 1962-05-08 Curtiss Wright Corp Rotating combustion engine seal construction
US3133341A (en) * 1961-04-25 1964-05-19 Ramsey Corp Method of banding piston rings
US3295198A (en) * 1964-03-13 1967-01-03 Robert L Coan Process of adhering stainless steel to aluminum and products produced thereby
US3337938A (en) * 1964-05-29 1967-08-29 Ramsey Corp Method of making piston rings
US3421198A (en) * 1965-12-08 1969-01-14 Ramsey Corp Method of making wear resistant piston ring
US3705818A (en) * 1968-12-31 1972-12-12 Citroen Sa Methods of coating rubbing surfaces and elements comprising such surfaces
US3743533A (en) * 1971-10-28 1973-07-03 G Yurasko Flame spraying
US3814447A (en) * 1972-11-02 1974-06-04 Ramsey Corp Sealing element for use in internal combustion engines
US3841805A (en) * 1973-04-04 1974-10-15 Houdaille Industries Inc Screw liner

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212602A (en) * 1974-08-14 1980-07-15 Goetzewerke Friedrich Goetze Ag Wear-resistant coating for sealing strips in rotary engines
FR2347527A1 (en) * 1976-04-07 1977-11-04 Maire Bernard Vaned pump for motor - has end plates made of light alloy with thin hard steel lining
US4568393A (en) * 1984-12-06 1986-02-04 Trw Inc. Carburized high chrome liner
US4758139A (en) * 1985-10-30 1988-07-19 Mazda Motor Corporation Side housing for a rotary piston engine and a method for manufacturing the same
US4724819A (en) * 1987-01-23 1988-02-16 Precision National Plating Services, Inc. Cylinder liner reconditioning process and cylinder liner produced thereby
US5380564A (en) * 1992-04-28 1995-01-10 Progressive Blasting Systems, Inc. High pressure water jet method of blasting low density metallic surfaces
US5626674A (en) * 1992-04-28 1997-05-06 Progressive Technologies, Inc. High pressure water jet apparatus for preparing low density metallic surface for application of a coating material
US5910290A (en) * 1994-10-03 1999-06-08 Foster Wheeler Energia Oy Arrangement in a wall and a method of coating a wall
US5993183A (en) * 1997-09-11 1999-11-30 Hale Fire Pump Co. Gear coatings for rotary gear pumps
US6086347A (en) * 1998-08-25 2000-07-11 Thermo King Corporation Two-stage rotary vane motor
US6250900B1 (en) * 1999-11-15 2001-06-26 Sauer-Danfoss Inc. Positive displacement hydraulic unit with near-zero side clearance
US6402488B2 (en) * 2000-01-31 2002-06-11 Sumitomo Electric Industries, Ltd. Oil pump
EP1288326A1 (en) * 2000-05-19 2003-03-05 Hitachi Construction Machinery Co., Ltd. Method of producing spray deposit on bearing boss
US6678956B2 (en) * 2000-05-19 2004-01-20 Hitachi Construction Machinery Co., Ltd. Method of producing spray deposit on bearing boss
EP1288326A4 (en) * 2000-05-19 2009-07-08 Hitachi Construction Machinery Method of producing spray deposit on bearing boss
US20040147207A1 (en) * 2001-04-11 2004-07-29 Helga Muller Support bodies and method for improving wear and tear on support bodies in large scale grinders
US7712216B1 (en) * 2003-02-05 2010-05-11 Brunswick Corporation Restoration process for porosity defects in metal cast products
US20130129552A1 (en) * 2010-09-14 2013-05-23 Shingo Goto Rotary compressor
US11506056B2 (en) * 2013-06-05 2022-11-22 Rotoliptic Technologies Incorporated Rotary machine
US11499550B2 (en) 2018-09-11 2022-11-15 Rotoliptic Technologies Incorporated Sealing in helical trochoidal rotary machines
US11608827B2 (en) 2018-09-11 2023-03-21 Rotoliptic Technologies Incorporated Helical trochoidal rotary machines with offset
US11815094B2 (en) 2020-03-10 2023-11-14 Rotoliptic Technologies Incorporated Fixed-eccentricity helical trochoidal rotary machines
US11802558B2 (en) 2020-12-30 2023-10-31 Rotoliptic Technologies Incorporated Axial load in helical trochoidal rotary machines
US11333068B1 (en) * 2021-03-23 2022-05-17 Pratt & Whitney Canada Corp. Side wall for rotary engine housing

Similar Documents

Publication Publication Date Title
US3918137A (en) Wear-resistant coating for rotary engine side housing and method of making
US5363821A (en) Thermoset polymer/solid lubricant coating system
EP0707621B1 (en) Metal encapsulated solid lubricant coating system
US3833321A (en) Wear-resistant coating for rotary engine side housing and method of making
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
US5780116A (en) Method for producing an abradable seal
US5766693A (en) Method of depositing composite metal coatings containing low friction oxides
US5976695A (en) Thermally sprayable powder materials having an alloyed metal phase and a solid lubricant ceramic phase and abradable seal assemblies manufactured therefrom
US5592927A (en) Method of depositing and using a composite coating on light metal substrates
US4251599A (en) Ferrous metal body coated with an alloy formed by an iron/silicon extended molybdenum plasma spray powder
US3378392A (en) High temperature flame spray powder and process
US20050016489A1 (en) Method of producing coated engine components
JP2001507774A (en) Abrasive seal
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
JPH09202957A (en) Composite material power forming self-lubricity composite film, method therefor and parts having self-lubricity film
EP0715916B1 (en) An iron based powder composition
US3981688A (en) Coating for rotary engine rotor housings and method of making
US3890069A (en) Coating for rotary engine rotor housings and method of making
US8647751B2 (en) Coated valve retainer
US3833320A (en) Coating for apex seals of rotary engines and method of making
US3886637A (en) Method of producing heat treatable titanium carbide tool steel coatings on cylinders of internal combustion engines
US3268997A (en) Method of making a porous sealing device
US3910734A (en) Composite apex seal
JP2000192173A (en) Wearing material and metallic part having wearing coating
JPS5924241B2 (en) Combination of side housing and side seal in rotary piston engine