US3917492A - Method of making stainless steel - Google Patents

Method of making stainless steel Download PDF

Info

Publication number
US3917492A
US3917492A US477469A US47746974A US3917492A US 3917492 A US3917492 A US 3917492A US 477469 A US477469 A US 477469A US 47746974 A US47746974 A US 47746974A US 3917492 A US3917492 A US 3917492A
Authority
US
United States
Prior art keywords
steel
cold
excess
tempering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US477469A
Inventor
Anders Lars Erik Backman
Stig Gunnar Forsberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santrade Ltd
Original Assignee
Sandvik AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik AB filed Critical Sandvik AB
Application granted granted Critical
Publication of US3917492A publication Critical patent/US3917492A/en
Assigned to SANTRADE LTD., A CORP. OF SWITZERLAND reassignment SANTRADE LTD., A CORP. OF SWITZERLAND ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • the present invention relates toa stainless chromium-nickel steel with high strength, and which at the same time has good ductility.
  • This invention also relates to a new method of treating such stainless steel in the form of band or wire to achieve these new characteristics of .stainless steel, said steel then being adaptable for use as a spring material in the form of wire or strip.
  • High strength material which at the same time has a good ductility is increasingly called for.
  • One method of strengthening steel consists in subjecting the steel to an appreciable cold reduction. This method is especially adaptable for certain types of austenitic stainless steel in which an austenitic structure is partially transformed by colddeformation into a hard martensitic structure. The mechanism of this structural transformation is well known and is disclosed in, for instance, British Pat. Nos. 722,427 and 766,971. These unstable austenitic steels have been in wide use especially as spring materials, and are available in the form of round wire or bands.
  • the requirement for good ductility often implies that it must be possible to carry out a succession of deformations of such material without any ensuing fractural formations. If the material is in the form of wire there is a requirement that it must be possible to have such wire wound'around a bar the diameter of which is approximately the same as that of the wire itself.
  • the normal procedure of processing such steel is to carry out a cold reduction to a level of strength and ductility such that the material then is able to be subjected to a shaping procedure into a final product.
  • Such a product is often also subjected to a final heat treatment at a temperature of 200-550C. during a few hours for strengthening purposes.
  • the invention thus resides in a new stainless steel which exhibits the unique combination of high strength and ductility and which also temperatures.
  • . lt is an object of the invention to provide a stainless chromium-nickel steel that is hardenable by cold-work into an austenitic-martensitic microstructure, said steel in the coId-WorkedconditiQn having a tensile strength in excess of 250,000 p.s.i., but'not in excess of 400,000
  • the invention provides such an alloy having a composition consisting essentially of, by weight, about 0.01 to 0.20% carbon, up to about 5% silicon, up to about 10% manganese, from about 13 to about 20% chromium, about 3 to 10% nickel, up to about 2.5% molybdenum, up to about 2.5% aluminum, and the balance being essentially iron except for small amounts of other elements which do not adversely affect the desired properties of the alloy.
  • I start with an austenitic stainless steel in the form of wire or strip, this steel having been hot rolled in the usual] manner and which has a composition comprising chromium in amounts sufficient to give the steel a metastable austenitic microstructure.
  • the steel is (or, may be) subjected to a conventional surface treatment such as pickling, grinding, sandblasting or similar treatment.
  • a conventional surface treatment such as pickling, grinding, sandblasting or similar treatment.
  • Such a material is then transformed into a wholly austenitic condition by annealing at a temperature of 950l C. and then quenching in water.
  • the steel is subjected to a cold reduction in one or several steps without intermediate annealings at a very large reduction of area, thus partially transforming the austenitic structure into a 'martensitic structure, an increased hardness simultaneously being obtained.
  • FIG. 1 is a diagramatic showing of the effect of total reduction on the ratio between yield point and ultimate tensile strength
  • FIG. 2 shows the effect of total reduction on the contraction of area immediately before rupture
  • FIG. 3 diagfamatically represents the improvement in properties under elevated temperature conditions in the case of a steel of the 18-8 type.
  • FIG. 4 is a modified Schaeffler diagram showing microstructures, attainable through practice of the present invention, in the cases of selected chromiumnickel steels.
  • FIG. 1 illustrates the effect of total reduction on the ratio
  • the starting material, treated as related hereinbefore, is upon quenching subjected to cold deformation I with high reduction of area next to entering the brittle state, said area reduction amounting to 40-90%, preferably 60-85% thus partially transforming the aUStenand in FIG. 2 there is illustrated the effect of total reltle Structure Into martenslte the amount of Whleh duction on the contraction of area immediately before being usually 45-85% Whlle the remainder rupture.
  • curves illustratis ,austenite with small amounts of ferrite.
  • the material is Subjected to tempering at a scope of the invention in comparison with those illustemperature of -,P bly 250450C-, trating the method of the invention.
  • Steel ll were prepared d r isuch as the tempering temperature and the dimensions mens were ad ther fr for carrying out tests the 0f the je m y be from Some mlmltes p to 1042 results of which are set forth in the Table following hours or e g
  • the tempering time sua ly is hereinafter.
  • the material made subject'of these tests tween 15 minutes and 10 hours, and preferably was stainless steel wire subjected tocold drawing upon tween 2 d 5 hours h s tempering s necessary so as quench-annealing from 1050 C., the analysis of which to relieve those stresses which appear to a locally high was as f ll degree in the microstructure as a result of the cold working.
  • the material is further C Si Mn Cr Ni MO Fe cold reduced to a moderate reduction of area amount- I 8 0 1 ing to 540%, preferably l0- 30%.
  • the Table is also illustrative of the improved ultimate strength reached with the alloy of the invention, which amounts to 240 kp/mm (343,000 p.s.i.) upon tempering at 425 C. for a time of 4 hours plus reduction of area. After another tempering at 425 C. for a period of 4 hours the strength reached a level of 255 kp/mm (364,000 p.s.i.) whilst the material retained a high ductility, 2.5% in terms of ultimate elongation.
  • the results of these tests thus established that it is possible to achieve a considerable increase of ductility yet retaining a high strength levelby carrying out a method of processing according to the invention.
  • FIG. 3 refers to the relaxation permanence, which expression means the percentual loss of applied load at a certain temperature and for a length of time.
  • the diagram of FIG. 3 shows such a curve of steel 1 of 18-8 type not cold-worked according to the invention in comparison with steel 2 which is within the scope of the invention.
  • the curves refer to the percentual loss of an applied load of 60 kp/mm for a period of 24 hours at differing temperatures.
  • the diagram clearly shows the very good relaxation permanence of steel 2, this being a very important property of steels adapted for use as spring material.
  • the effect thus achievable by the method of the invention applies to all those austenitic, or essentially austenitic, steels wherein austenite is partially transformed into martensite as a result of deformation and where a heat treatment gives rise to precipitations which give rise to an increased strength level.
  • the chemical analysis thus must comprise an amount of chromium, usually in excess of 13%, that is sufi'icient to provide a metastable austenitic microstructure under the conditions that apply while deforming the steel.
  • the method of the invention is applicable to steel alloys having a composition in weight percentages, consisting essentially of about 0.01 to 0.20% carbon, up to about 6 5% silicon, up to about 10% manganese, about 13 to 20% chromium, about 3 to 10% nickel, up to about 2.5% molybdenum, up to about 2.5% aluminum, and the balance being essentially iron except for small amounts of other elements which do not adversely affect the desired properties of the alloy.
  • FIG. 4 there is shown a modified Schaeffler diagram from which is derivable the microstructure that will be the result of a certain steel analysis.
  • the dotted rectangle indicates the area within which the alloys appear in the broader aspects of the invention, whereas the smaller square therein corresponds to the more narrow and preferred ranges of analysis according to the practices of my invention, this last squared area being limited by the lines set by chromium equivalents in amounts of 15-25% and nickel equivalents in amounts of 5-15%, said chromium equivalent being given by the relation (%Cr+ %Mo +1.5 X Si 2 X Nb 3 X Ti) and said nickel equivalent being given by the relation (%Ni 0.5 X %Mn 30 X %C 11.5 X %N).
  • a method of making austenitic stainless steels having high tensile strength in excess of 250,000 p.s.i. but not in excess of 400,000 p.s.i. and preferably not in excess of 390,000 p.s.i., with high ductility in excess of 45% in terms of contraction of area before rupture and good properties under elevated temperature conditions in terms of relaxation permanence comprising, selecting an austenitic stainless steel of the transformation hardening type and containing from 0.01 to 0,20% carbon, up to about 5% silicon, up to about 10% manganese, from 13 to 20% chromium, from 3 to 10% nickel, up to about 25% molybdenum, up to about 25% aluminum and the balance essentially iron; annealing the steel at a temperature of 9501 100 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Spring steel (in wire or strip form) is produced from an austenitic stainless steel, the chromium content of which is sufficient to give the steel a metastable austenitic microstructure, by (1) annealing and (2) quenching under conditions to give it a wholly austenitic condition, followed by (3) a very substantial cold reduction which transforms its structure to an at least partially martensitic structure and produces increased hardness.

Description

United States Patent [191 Ba'ckman et a1.
[ Nov. 4,1975
[ METHOD OF MAKING STAINLESS STEEL [75] Inventors: Anders Lars Erik Backman; Stig Gunnar Forsberg, both of Sandviken, Sweden [73] Assignee: Sandvik Aktiebolag, Sandviken,
Sweden [22] Filed: June 7, 1974 [21] Appl. No.: 477,469
[30] Foreign Application Priority Data June 8, 1973 Sweden 7308126 [52] US. Cl. 148/12 E; 148/12.4 [51] Int. Cl. C21D 7/02 [58] Field of Search 148/12 E, 12.4; 75/128 C, 75/128 W, 128 A [56] References Cited UNITED STATES PATENTS 2,553,707 5/1951 Goller. 148/12.3 2,795,519 6/1957 Angel 148/12 E 3,152,934 10/1964 Lula et al 148/12.3 X 3,281,287 10/1966 Edstrom et a1 148/12 E X 3,698,963 10/1972 Nunes l48/12.4
Primary Examiner--L. Dewayne Rutledge Assistant ExaminerArthur J. Steiner Attorney, Agent, or Firm-Pierce, Scheffler & Parker [57] ABSTRACT 3 Claims, 4 Drawing Figures US. Patent Nov. 4, 1975 Sheetf3 3,917,492
LQ2 1W3 Fig Normal manufacture 7,0-
Tempering 425C,4h-: 0
(1&-
l l l I I l I l l l l l l l l l I l 7 70 Reduction of area Contraction of area Fig.2
70- Normal manufacture l Temper/n g 425 4h 30- I I I l l I I I I I I I I I I 70 30 50 70 80 85 90 95% Reduction of area U.S. Patent N0V.4,1975 Sheet2of3 3,917,492
Fig-3 Steel 2 Steel 2 METHOD OF MAKING STAINLESS STEEL The present invention relates toa stainless chromium-nickel steel with high strength, and which at the same time has good ductility. This invention also relates to a new method of treating such stainless steel in the form of band or wire to achieve these new characteristics of .stainless steel, said steel then being adaptable for use as a spring material in the form of wire or strip. I
High strength material which at the same time has a good ductility is increasingly called for. One method of strengthening steel consists in subjecting the steel to an appreciable cold reduction. This method is especially adaptable for certain types of austenitic stainless steel in which an austenitic structure is partially transformed by colddeformation into a hard martensitic structure. The mechanism of this structural transformation is well known and is disclosed in, for instance, British Pat. Nos. 722,427 and 766,971. These unstable austenitic steels have been in wide use especially as spring materials, and are available in the form of round wire or bands.
The requirement for good ductility often implies that it must be possible to carry out a succession of deformations of such material without any ensuing fractural formations. If the material is in the form of wire there is a requirement that it must be possible to have such wire wound'around a bar the diameter of which is approximately the same as that of the wire itself. The normal procedure of processing such steel is to carry out a cold reduction to a level of strength and ductility such that the material then is able to be subjected to a shaping procedure into a final product. Such a product is often also subjected to a final heat treatment at a temperature of 200-550C. during a few hours for strengthening purposes.
In order to achieve a sufficiently high ductility with these high strength steels, however, it has been necessary to accept a lower non-optimal strength level. This has been so because the achievement of an increased strength is in principle accompanied by a decrease inductility. In extreme cases a high strength might be attainable but then the material also exhibited such an embrittlement that fracture occurred at minor deformations thereof. This is an effect that closely related with a blocking of dislocations that occurs in martensiteas well as in austenite'phas'es in deformation hardening. If the reduction is too high further dislocation movements are impossible due to the mutual blocking thereof. This implies that an additional reduction of said material would result in micro-cracking, which results in an appreciable decrease in ductility.
According to the present invention it surprisingly has now been found that it is possible to avoid the above related lessening of ductility. The invention thus resides in a new stainless steel which exhibits the unique combination of high strength and ductility and which also temperatures.
. lt is an object of the invention to provide a stainless chromium-nickel steel that is hardenable by cold-work into an austenitic-martensitic microstructure, said steel in the coId-WorkedconditiQn having a tensile strength in excess of 250,000 p.s.i., but'not in excess of 400,000
2 p.s.i. and preferably not in excess of 390,000 p.s.i., and
a high'ductility which, measured as contraction of area immediately before rupture, is in excess of 45% and which in addition also exhibits good properties under elevated temperature conditions in terms of relaxation permanence. In its broader aspects, the invention provides such an alloy having a composition consisting essentially of, by weight, about 0.01 to 0.20% carbon, up to about 5% silicon, up to about 10% manganese, from about 13 to about 20% chromium, about 3 to 10% nickel, up to about 2.5% molybdenum, up to about 2.5% aluminum, and the balance being essentially iron except for small amounts of other elements which do not adversely affect the desired properties of the alloy.
It is another inventive object to provide a method for processing an austenitic stainless chromium-nickel steel to high strength and ductility levels. Briefly, such steel is subjected to deformation hardening as a result of cold-deformation through cold-working at large reduction of area after which it is annealed at a temperature between 200 and 550C. Subsequently, this steel is subjected to a moderate cold-working in which the cross-sectional area is reduced by between 5 and 40%, preferably between 10 and 30%. Due to this method of processing, a deformation hardening occurs such that a considerable gain in ductility is achieved whilst retaining a high tensile strength.
According to the invention, I start with an austenitic stainless steel in the form of wire or strip, this steel having been hot rolled in the usual] manner and which has a composition comprising chromium in amounts sufficient to give the steel a metastable austenitic microstructure. After said hot rolling the steel is (or, may be) subjected to a conventional surface treatment such as pickling, grinding, sandblasting or similar treatment. Such a material is then transformed into a wholly austenitic condition by annealing at a temperature of 950l C. and then quenching in water. Subsequently the steel is subjected to a cold reduction in one or several steps without intermediate annealings at a very large reduction of area, thus partially transforming the austenitic structure into a 'martensitic structure, an increased hardness simultaneously being obtained.
It heretofore had been known to cold-reduce an austenitic steel in a series of cold deformations with high reductions upon quenching same, thus effecting a socalled deformation hardening of the material. However, it was not derivable from prior knowledge that such a material subjected to a cold deformation next to entering the brittle state if subjected to a subsequent tempering should have a considerable margin of ductility such that even an increase thereof could be gained when carrying out further deformation. By choosing an optimum of reductions and tempering time-temperature relations in such method of processing unexpected combinations of steel characteristics have been found to be achievable. It has thus been possible to achieve a considerable gain .inductility yet retaining or even also increasing the tensile strength level.
FIG. 1 is a diagramatic showing of the effect of total reduction on the ratio between yield point and ultimate tensile strength;
FIG. 2 shows the effect of total reduction on the contraction of area immediately before rupture;
FIG. 3 diagfamatically represents the improvement in properties under elevated temperature conditions in the case of a steel of the 18-8 type; and
FIG. 4 is a modified Schaeffler diagram showing microstructures, attainable through practice of the present invention, in the cases of selected chromiumnickel steels.
a indicating stress applied to effect a plastic deformation of 0.2%. FIG. 1 illustrates the effect of total reduction on the ratio The starting material, treated as related hereinbefore, is upon quenching subjected to cold deformation I with high reduction of area next to entering the brittle state, said area reduction amounting to 40-90%, preferably 60-85% thus partially transforming the aUStenand in FIG. 2 there is illustrated the effect of total reltle Structure Into martenslte the amount of Whleh duction on the contraction of area immediately before being usually 45-85% Whlle the remainder rupture. In both figures there are also curves illustratis ,austenite with small amounts of ferrite. Subsei th common m th d f processing not within the q y, the material is Subjected to tempering at a scope of the invention in comparison with those illustemperature of -,P bly 250450C-, trating the method of the invention. For purposes of for a suitable time which, according to several factors comparison, Steel ll were prepared d r isuch as the tempering temperature and the dimensions mens were ad ther fr for carrying out tests the 0f the je m y be from Some mlmltes p to 1042 results of which are set forth in the Table following hours or e g The tempering time sua ly is hereinafter. The material made subject'of these tests tween 15 minutes and 10 hours, and preferably was stainless steel wire subjected tocold drawing upon tween 2 d 5 hours h s tempering s necessary so as quench-annealing from 1050 C., the analysis of which to relieve those stresses which appear to a locally high was as f ll degree in the microstructure as a result of the cold working. After said treatment the material is further C Si Mn Cr Ni MO Fe cold reduced to a moderate reduction of area amount- I 8 0 1 ing to 540%, preferably l0- 30%. The last reduction of 009 7 a area must amount to at least some 5l0% so as to achieve any increased ductility whereas a reduction of TABLE Yield Ultimate Ultimate Contraction of Dimension point strength elongation area before Treatment mm ltplmm akp/mm 6 rupture Reduction tbl .0 220 230 1.8 40 83% Reduction 80% tempering 425C 4 h 1.0 230 235 1.4 Reduction 80% tempering 425C 4 h reduc- 7 tion 20% (51.0 v 220 240 3.5 50
Reduction 80%+tempering 425C, 4 h reduction 20% tempering 425C, 4 h 1.0 255 2.5
' tility of a material, such as: ultimateelongation, contraction ofarea before rupture, ie the percentual decrease of area at the place of. rupture; and the ratio between yield point and ultimate tensile strength,
It is apparent from the data in this Table that all three measures of ductility have been improved-by practicing the treatment of the invention, i.e. contraction of area before rupture, ultimate elongation and the ratio the last moderate cold reduction having been efiect ed upon tempering at about 425 C. The ultimate elongation is measured as 8 i.e. percentual elongation of a wire of 50 mm length as indicated between two points thereon, said last measure being 3.5% after tempering at 425 C. for-a period of 4 hours and subsequent cold reduction at 20% reduction of area. It is also apparent from the Table that the common method of processing resulted in a considerably lower ultimate elongation, i.e., a lower ductility.
The Table is also illustrative of the improved ultimate strength reached with the alloy of the invention, which amounts to 240 kp/mm (343,000 p.s.i.) upon tempering at 425 C. for a time of 4 hours plus reduction of area. After another tempering at 425 C. for a period of 4 hours the strength reached a level of 255 kp/mm (364,000 p.s.i.) whilst the material retained a high ductility, 2.5% in terms of ultimate elongation. The results of these tests thus established that it is possible to achieve a considerable increase of ductility yet retaining a high strength levelby carrying out a method of processing according to the invention.
In addition, a considerable gain in the properties under elevated temperature conditions appeared as a result of the cold-work processing related above. This improvement of steel characteristics is illustrated in FIG. 3 and refers to the relaxation permanence, which expression means the percentual loss of applied load at a certain temperature and for a length of time. The diagram of FIG. 3 shows such a curve of steel 1 of 18-8 type not cold-worked according to the invention in comparison with steel 2 which is within the scope of the invention. The curves refer to the percentual loss of an applied load of 60 kp/mm for a period of 24 hours at differing temperatures. The diagram clearly shows the very good relaxation permanence of steel 2, this being a very important property of steels adapted for use as spring material.
Thorough studies of microstructure and steel characteristics have shown that the improvement of ductility thus reached is closely related with changes that occur in dislocation structure by reason of the tempering within the range earlier set forth. Measurements of micro-stresses of cold-reduced and tempered wire of the steel analysis earlier referred to have indicated a drastic decrease of said micro-stresses primarily in martensite after said tempering. This implies that stressrelieving occurs along with a lessened risk of fracture during a subsequent deformation. By avoiding occurrence of interior fracture formations in cold reduction, a further increase of dislocation denseness is possible, thus enabling an increased ductility to be obtained.
The effect thus achievable by the method of the invention applies to all those austenitic, or essentially austenitic, steels wherein austenite is partially transformed into martensite as a result of deformation and where a heat treatment gives rise to precipitations which give rise to an increased strength level. The chemical analysis thus must comprise an amount of chromium, usually in excess of 13%, that is sufi'icient to provide a metastable austenitic microstructure under the conditions that apply while deforming the steel. The method of the invention is applicable to steel alloys having a composition in weight percentages, consisting essentially of about 0.01 to 0.20% carbon, up to about 6 5% silicon, up to about 10% manganese, about 13 to 20% chromium, about 3 to 10% nickel, up to about 2.5% molybdenum, up to about 2.5% aluminum, and the balance being essentially iron except for small amounts of other elements which do not adversely affect the desired properties of the alloy.
In FIG. 4 there is shown a modified Schaeffler diagram from which is derivable the microstructure that will be the result of a certain steel analysis. The dotted rectangle indicates the area within which the alloys appear in the broader aspects of the invention, whereas the smaller square therein corresponds to the more narrow and preferred ranges of analysis according to the practices of my invention, this last squared area being limited by the lines set by chromium equivalents in amounts of 15-25% and nickel equivalents in amounts of 5-15%, said chromium equivalent being given by the relation (%Cr+ %Mo +1.5 X Si 2 X Nb 3 X Ti) and said nickel equivalent being given by the relation (%Ni 0.5 X %Mn 30 X %C 11.5 X %N).
We claim:
1. A method of making austenitic stainless steels having high tensile strength in excess of 250,000 p.s.i. but not in excess of 400,000 p.s.i. and preferably not in excess of 390,000 p.s.i., with high ductility in excess of 45% in terms of contraction of area before rupture and good properties under elevated temperature conditions in terms of relaxation permanence, the steps of said method comprising, selecting an austenitic stainless steel of the transformation hardening type and containing from 0.01 to 0,20% carbon, up to about 5% silicon, up to about 10% manganese, from 13 to 20% chromium, from 3 to 10% nickel, up to about 25% molybdenum, up to about 25% aluminum and the balance essentially iron; annealing the steel at a temperature of 9501 100 C. thereby stabilizing the austenite; rapidly quenching the steel from said annealing temperature; cold-working said steel to reduce its cross-sectional area between 40 and 90%, preferably between 60 and then tempering the steel at a temperature in the range between 200 and 550 (1., preferably 250450 C. and thereafter cold-working said steel to reduce its cross-sectional area between 5 and 40%.
2. A method according to claim 1, including the step of finally cold-working the steel to reduce its cross-sectional area between 10 and 30%.
3. A method according to claim 1, including the step of tempering the steel at a temperature in the range between 300 and 550 C., preferably between 350 and 500 C., after the final cold working for a period of 2-5 hours.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION U PATENT NO. 3,917,492
DATED 3 November 4, .1975 INVENTOWS) I Anders Lars Erik Backman, et a].
It is certified that error appears in the above-identified patent and that said Letters Patent Q are hereby corrected as shown below:
In claim 1:
L line lO- "O,20%should read: 0.20%
line 12- 25%" should read: 2.5%
line 13-- "25%" should read: 2.5%
+ Signed and Scaled this twenty-fourth Day Of February 1976 [SEAL] d Arrest:
RUTH C. M ASON C. MARSHALL DANN Arresting ()jfl'if Commissioner vj'Parenrs and Trademarks

Claims (3)

1. A METHOD OF MAKING AUSTENTIC STAINLESS STEELS HAVING HIGH TENSILE IN EXCESS OF 250,000 P.S.I. BUT NOT IN EXCESS OF 400, P.S.I. AND PREFERABLY NOT IN EXCESS OF 390,000 P.S.I., WITH HIGH DUCTILITY IN EXCESS OF 45% IN TERMS OF CONTRACTION OF AREABEFORE RUPTURE AND GOOD PROPERTIES UNDER ELEVATED TEMPERATURE CONDITIONS IN TERMS OF RELAXATION PERMANENCE, THE STEPS OF SAID METHOS COMPRISING, SELECTING AN AUSTENITIC STAINLESS STEEL OF THE TRANSFORMATION HARDENING TYPE AND CONTAINING FROM 0.01 TO 0.20% CARBON, UP TO ABOUT 5% SILICON, UP TO ABOUT 10% MANGANESE, FROM 13 TO20% CHROMIUM, FROM 3 TO 10% NICKEL, UP TO ABOUT 25% MOLYBDENUM, UP TO ABOUT 25% ALUMINUM AND THE BALANCE ESSENTIALLY IRON, ANNEALING THE STEEL AT A TEMPERATURE OF 950* - 1100*C. THEREBY STABILIZING THE AUSTENITE, RAPIDLY QUENCHING THE STEEL FROM SAID ANNEALING TEMPERATURE, COLD-WORKING SAID STEEL TO REDUCE ITS CROSS-SECTIONAL AREA BETWEEN 40 AND 90%. PREFERABLY BETWEEN 60 AND 85%, THEN TEMPERING THE STEEL AT A TEMPERATURE IN THE RANGE BETWEEN 200* AND 550*C., PREFERABLY 250-450*C. AND THEREAFTER COLD-WORKING SAID STEEL TO REDUCE ITS CROSS-SECTIONAL AREA BETWEEN5 AND 40%.
2. A method according to claim 1, including the step of finally cold-working the steel to reduce its cross-sectional area between 10 and 30%.
3. A method according to claim 1, including the step of tempering the steel at a temperature in the range between 300* and 550* C., preferably between 350* and 500* C., after the final cold working for a period of 2-5 hours.
US477469A 1973-06-08 1974-06-07 Method of making stainless steel Expired - Lifetime US3917492A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7308126A SE373387B (en) 1973-06-08 1973-06-08 PROCEDURE FOR MANUFACTURE OF BAND OR THREAD, EXV. ROUND FOR SPRING END

Publications (1)

Publication Number Publication Date
US3917492A true US3917492A (en) 1975-11-04

Family

ID=20317718

Family Applications (1)

Application Number Title Priority Date Filing Date
US477469A Expired - Lifetime US3917492A (en) 1973-06-08 1974-06-07 Method of making stainless steel

Country Status (6)

Country Link
US (1) US3917492A (en)
BE (1) BE816034A (en)
DE (1) DE2427038A1 (en)
FR (1) FR2232608B1 (en)
GB (1) GB1459915A (en)
SE (1) SE373387B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092180A (en) * 1977-05-03 1978-05-30 Grumman Aerospace Corporation Manufacture of torsion bars
DE2824393A1 (en) * 1977-06-14 1979-01-04 Fagersta Ab ROLLED WIRE OR STRAND MATERIAL
US4159218A (en) * 1978-08-07 1979-06-26 National Steel Corporation Method for producing a dual-phase ferrite-martensite steel strip
DE2929179A1 (en) * 1978-07-20 1980-01-31 Illinois Tool Works STAINLESS STEEL DRILL BOLT AND METHOD FOR THE PRODUCTION THEREOF
US4259126A (en) * 1978-10-19 1981-03-31 Wilkinson Sword Limited Method of making razor blade strip from austenitic steel
US4265679A (en) * 1979-08-23 1981-05-05 Kawasaki Steel Corporation Process for producing stainless steels for spring having a high strength and an excellent fatigue resistance
US4378246A (en) * 1980-03-19 1983-03-29 Nisshin Steel Co., Ltd. Precipitation hardening type stainless steel for spring
US4939097A (en) * 1986-06-02 1990-07-03 Litmus Concepts, Inc. Fecal occult blood test methods
US6274200B1 (en) * 1998-09-11 2001-08-14 Boeing North American, Inc. Method for preparing pre-coated ferrous-alloy components and components prepared thereby
US6383316B1 (en) * 1997-12-17 2002-05-07 Haldex Garphyttan Aktiebolag Cold drawn wire and method for the manufacturing of such wire
US6418994B1 (en) 1993-10-15 2002-07-16 Michelin Recherche Et Technique S.A. Tire having a stainless steel carcass reinforcement
US10329649B2 (en) * 2012-01-20 2019-06-25 Solu Stainless Oy Austenitic stainless steel product and a method for manufacturing same
US10738372B2 (en) * 2016-06-17 2020-08-11 Zhejiang University Method of processing fully austenitic stainless steel with high strength and high toughness

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0031399A3 (en) * 1979-07-30 1981-11-25 Consultronic (Int.)Ltd. Material for the production of stainless alpine ski edges
DE3108588A1 (en) * 1981-03-06 1982-09-23 Georg Fischer AG, 8201 Schaffhausen "CHROME STEEL CAST PIECE"
US4533391A (en) * 1983-11-07 1985-08-06 Allegheny Ludlum Steel Corporation Work-hardenable substantially austenitic stainless steel and method
GB2168077A (en) * 1984-12-07 1986-06-11 Fulmer Res Inst Ltd Improvements in or relating to stainless steels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553707A (en) * 1947-01-31 1951-05-22 Armco Steel Corp Stainless steel spring
US2795519A (en) * 1954-03-27 1957-06-11 Sandvikens Jernverks Ab Method of making corrosion resistant spring steel and product thereof
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
US3281287A (en) * 1962-02-27 1966-10-25 Sandvikens Jernverks Ab Corrosion resistant edge tool and method of making the same
US3698963A (en) * 1970-09-21 1972-10-17 Brunswick Corp Ultrahigh strength steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2553707A (en) * 1947-01-31 1951-05-22 Armco Steel Corp Stainless steel spring
US2795519A (en) * 1954-03-27 1957-06-11 Sandvikens Jernverks Ab Method of making corrosion resistant spring steel and product thereof
US3281287A (en) * 1962-02-27 1966-10-25 Sandvikens Jernverks Ab Corrosion resistant edge tool and method of making the same
US3152934A (en) * 1962-10-03 1964-10-13 Allegheny Ludlum Steel Process for treating austenite stainless steels
US3698963A (en) * 1970-09-21 1972-10-17 Brunswick Corp Ultrahigh strength steels

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092180A (en) * 1977-05-03 1978-05-30 Grumman Aerospace Corporation Manufacture of torsion bars
DE2824393A1 (en) * 1977-06-14 1979-01-04 Fagersta Ab ROLLED WIRE OR STRAND MATERIAL
DE2929179A1 (en) * 1978-07-20 1980-01-31 Illinois Tool Works STAINLESS STEEL DRILL BOLT AND METHOD FOR THE PRODUCTION THEREOF
US4159218A (en) * 1978-08-07 1979-06-26 National Steel Corporation Method for producing a dual-phase ferrite-martensite steel strip
US4259126A (en) * 1978-10-19 1981-03-31 Wilkinson Sword Limited Method of making razor blade strip from austenitic steel
US4265679A (en) * 1979-08-23 1981-05-05 Kawasaki Steel Corporation Process for producing stainless steels for spring having a high strength and an excellent fatigue resistance
US4378246A (en) * 1980-03-19 1983-03-29 Nisshin Steel Co., Ltd. Precipitation hardening type stainless steel for spring
US4939097A (en) * 1986-06-02 1990-07-03 Litmus Concepts, Inc. Fecal occult blood test methods
US6418994B1 (en) 1993-10-15 2002-07-16 Michelin Recherche Et Technique S.A. Tire having a stainless steel carcass reinforcement
US6383316B1 (en) * 1997-12-17 2002-05-07 Haldex Garphyttan Aktiebolag Cold drawn wire and method for the manufacturing of such wire
US6274200B1 (en) * 1998-09-11 2001-08-14 Boeing North American, Inc. Method for preparing pre-coated ferrous-alloy components and components prepared thereby
US10329649B2 (en) * 2012-01-20 2019-06-25 Solu Stainless Oy Austenitic stainless steel product and a method for manufacturing same
US10738372B2 (en) * 2016-06-17 2020-08-11 Zhejiang University Method of processing fully austenitic stainless steel with high strength and high toughness

Also Published As

Publication number Publication date
DE2427038A1 (en) 1974-12-19
FR2232608B1 (en) 1981-01-09
FR2232608A1 (en) 1975-01-03
BE816034A (en) 1974-09-30
GB1459915A (en) 1976-12-31
SE7308126L (en) 1974-12-09
SE373387B (en) 1975-02-03

Similar Documents

Publication Publication Date Title
US3917492A (en) Method of making stainless steel
JP2016527394A (en) Stainless steel having delayed crack resistance and method for producing the same
US5178693A (en) Process for producing high strength stainless steel of duplex structure having excellent spring limit value
JPH08199235A (en) Production of niobium-containing ferritic steel sheet
US3840366A (en) Precipitation hardening stainless steel
EP0031800B1 (en) Austenitic, precipitation hardenable stainless steel
EP0489160B1 (en) Shape-memory stainless steel excellent in stress corrosion cracking resistance
US3488231A (en) Treatment of steel
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
US4259126A (en) Method of making razor blade strip from austenitic steel
KR102170945B1 (en) Austenitic stainless steels excellent in fatigue life and manufacturing method thereof
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
US2799602A (en) Process for producing stainless steel
US3684589A (en) Method for producing a minimum-ridging type 430 stainless steel
US2826496A (en) Alloy steel
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
US4295900A (en) Rolled wire having a fine-grain structure
US20030091458A1 (en) Maraging type spring steel
JPH058255B2 (en)
JPH09170046A (en) Martensitic non-heat treated steel with high strength and high toughness and its production
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
US4353755A (en) Method of making high strength duplex stainless steels
US3496032A (en) Process for the production of coldrolled steel plate having good shape-fixability
US2381416A (en) Age hardenable chromium-nickel stainless steel
JPH0436441A (en) High strength and high toughness stainless steel and its manufacture

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANTRADE LTD., ALPENQUAI 12, CH-6002, LUCERNE, SWI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN;REEL/FRAME:004085/0132

Effective date: 19820908