US3910110A - Motion compensated blowout and loss circulation detection - Google Patents

Motion compensated blowout and loss circulation detection Download PDF

Info

Publication number
US3910110A
US3910110A US508883A US50888374A US3910110A US 3910110 A US3910110 A US 3910110A US 508883 A US508883 A US 508883A US 50888374 A US50888374 A US 50888374A US 3910110 A US3910110 A US 3910110A
Authority
US
United States
Prior art keywords
vessel
drilling fluid
signal
mud system
wellhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US508883A
Inventor
Robert Kennedy Jefferies
Glenn D Wickline
Executrix By Barbara Wickline
Kian Mohammed Mirdadian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SONAT OFFSHORE DRILLING Inc
Original Assignee
Offshore Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Offshore Co filed Critical Offshore Co
Priority to US508883A priority Critical patent/US3910110A/en
Priority to GB4245374A priority patent/GB1453203A/en
Priority to NL7412994A priority patent/NL7412994A/en
Application granted granted Critical
Publication of US3910110A publication Critical patent/US3910110A/en
Assigned to SONAT OFFSHORE DRILLING INC. reassignment SONAT OFFSHORE DRILLING INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OFFSHORE COMPANY, THE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/001Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor specially adapted for underwater drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure

Definitions

  • This invention relates to a motion compensated blowout and loss circulation detector and method to be utilized in connection with floating vessels from which drilling operations are being performed.
  • Blowout prevention is most effective when the commencement of an influx of high pressure fluid into the well can be quickly detected and controlled before an appreciable amount of the drilling fluid is displaced 3 from the well.
  • Loss of drilling fluid is kept to a minimum when the commencement of the loss can be quickly detected and the flow of the fluid controlled before an appreciable amount has passed from the well into the earth formation. It is known in the art to detect such an influx or loss of fluid by comparing the flow rate of the drilling fluid into the well and the flow rate of the fluid returning out of the well. A substantial increase in the rate of the return fluid flow when there was no corresponding increase in the rate of the fluid flow into the well, is indicative of a blowout.
  • a readily available commercial device measuring the outflow rate of the drilling fluid is the Flowmeter Model No. 2806-SABQ-AS manufactured by Foxsboro.
  • the subaqueous wellhole is usually connected to the floating vessel by a marine conductor or marine riser.
  • the marine conductor or marine riser is usually provided with a telescoping joint.
  • a hollow drill string extends downwardly from the vessel, through to marine conductor or marine riser, and into the well.
  • a drill bit is connected to the lower end of the drill string.
  • the drill string also is usually provided with a telescoping joint (often called a bumber sub).
  • Drilling fluid is generally pumped from the vessel through the hollow drill string downwardly to the drill bit. The drilling fluid flows out into the well through ports in or adjacent the drill bit and circulates back up to the vessel through the annulus between the drill string and the casing or marine riser.
  • the motion of the vessel strokes the telescoping joints in the marine riser and the drill string causing them to expand and contract, thereby increasing and decreasing the volume of the flow path of the drilling fluid. This results in pulsations in the rate at which the returning drilling fluid is received by the mud system onboard the vessel.
  • the instantaneous maximum and minimum flow rate of the returning drilling fluid induced by the heaving ship may be several times greater or less than the steady state or real flow rate.
  • the real flow rate is masked by the contracting and expand ing action of the telescoping joints, making it difficult or impossible to detect quickly any changes in the real return flow rate.
  • Gadbois in his US. Letters Pat. No. 3,760,89l, discloses a method and apparatus for rapidly detecting blowouts and lost circulation in a drilling well, which method and apparatus has particular application in a well being drilled at sea from a heaving vessel.
  • the Gadbois system monitors the return rate of flow of the drilling fluid and generates an electrical signal proportional thereto. The electrical signal is monitored, accumulated, compared with selected samples of the accumulated signal, and compared with selected threshold values, to determine the existence of the blowout or lost circulation.
  • the Gadbois system is very advantageous but does not provide a signal which is continuously and substantially instantaneously proportional to the flow rate of the drilling fluid and the volume of the drilling fluid flow path.
  • an object of this invention to produce an improved method and apparatus for monitoring the flow rate of the drilling fluid leaving from and returning to the mud system aboard a floating vessel, for generating a signal which is proportional to the difference therebetween, and for continuously modifying the signal to compensate substantially instantaneously for the change in volume of the drilling fluid flow path caused by the heaving motion of the vessel.
  • Another object of this invention is to provide a method and apparatus for detecting rapidly the commencement of blowouts and lost circulation in subaqueous wells being drilled from floating vessels wherein the flow rate of the drilling fluid to and from the mud system aboard the vessel is monitored and a signal is generated which is proportional to the difference therebetween and the volume of the drilling fluid flow path.
  • Another object of this invention is to provide a method and apparatus for detecting rapidly the commencement of blowouts and lost circulation in wells being drilled from floating vessels wherein the flow rate of the returning drilling fluid is monitored and a signal is generated which is proportional to such return flow rate and the volume of the drilling fluid flow path.
  • FIG. I is an elevation view of a typical subaqucous well being drilled from a floating semisubmersible vessel, the drilling fluid flowing from the mud system aboard the vessel through the drill string into the well and returning to the mud system aboard the vessel through the annulus between the drill string and the marine riser.
  • FIG. 2 is a combined block diagram and schematic diagram of the components comprising a first preferred embodiment of this invention.
  • FIG. 3 is a chart of change in elevation of water compared with time depicting the operating boundaries of the first preferred embodiment of this invention.
  • FIG. 4 is a schematic diagram of the components comprising an alternate embodiment of this invention.
  • FIG. 1 illustrates schematically certain portions of a typical offshore well drilling apparatus.
  • a semisubmersible vessel 4 for floating on a body of water 5 is engaged in drilling a subaqueous well 6 in the seabed 7.
  • the vessel 4 mounts on its deck a derrick 8 which includes a draw works (not shown) and other usual apparatus for conducting drilling operations.
  • Extending between the vessel and the wellhole in the seabed is a marine riser indicated generally at 9 which includes at its lower end the usual blowout preventor apparatus 10 and, at its upper end, a telescoping joint 11.
  • Telescoping joint 11 includes an upper cylindrical portion 12 which is mounted from and is movable with the vessel 4 and a lower cylindrical portion 13 which remains stationary with respect to the seabed.
  • Upper portion 12 telescopes into lower portion 13.
  • the upper and lower portions are slidably sealed with respect to each other.
  • Drill casing 14 is installed from the blowout preventer downwardly a selected distance into the wellhole.
  • a drill string indicated generally at 15 is supported from a swivel 16 within the derrick.
  • the swivel 16 is suspended from a traveling block 17 which in turn is connected through cables to the crown block 18 at the top of the derrick.
  • the drill string extends downward through the marine riser 9, blowout preventers 10, well casing 14, and into the wellhole.
  • a bit secured to the lower end of the drill string drills the wellhole in the earth.
  • the drill string also includes a telescoping joint 20.
  • the telescoping joint 20 includes cylindrical portion 21 which surrounds and is sealed against an upper cylindrical portion 22 and a lower cylindrical portion 23 of the drill string. The upper and lower portions of the drill string are slidable sealed against and telescope into the outer portion 21.
  • drilling fluid for flushing out dirt and rock chips during drilling of the well is pumped from the mud tank 24 on the vessel 4 by pump 25 through standpipe 26 to the swivel 16.
  • the drilling fluid is circulated down the bore of the drill string 15 and out ports 27 in the drill bit 19.
  • the drill fluid returns to the vessel through the annulus 28 between the drill string 15 and the casing 14 and between the drill string 15 and the marine riser 9.
  • the drilling fluid returns to the mud tank 24 through conduit 29.
  • the mud tank 29, pump 25, flexible hose 26, and conduit 29 are referred to herein as the mud system aboard the vessel.
  • the monitoring apparatus 30 may be any of numerous commercially available apparatus, such as a Foxsboro Flowmeter Model No. 2806-SABO-AS. It is also desirable to monitor the flow rate of the drilling fluid leaving the mud system aboard the vessel and generate a signal porportional thereto. This is preferably accomplished by inserting a monitoring apparatus 31 into the standpipe 26.
  • the monitoring apparatus 31 also may be any of numerous commercially available devices such as a Foxsboro Flowmeter of a type similar to that described above.
  • both the rate of flow of the drilling fluid away from and back to the mud system be monitored and the difference between such flow rates be determined.
  • This may be accomplished through the use of numerous commercially available apparatus, such as the WATCO Differential Flowmeter manufactured by Warren Automatic Tool Company, 3915 Tharp Street, Houston, Texas.
  • a variation of the WATCO Differential Flowmeter is illustrated in US. Letters Pat. No. 2,966,059.
  • the WATCO Differential Flowmeter utilizes Foxsboro Flowmeters, standard discrete electronics, and a Varian Recorder Model No. G-l lA-Bl.
  • a means for determining the heaving motion of the semisubmersible vessel 4 relative to the wellhead as such heaving motion has the effect of increasing or decreasing the volume of the flow path of the drilling fluid.
  • This can be accomplished in numerous ways well known to those skilled in the art. It can be accomplished through sophisticated electronics utilizing accelerometers and other commercially available position sensors.
  • the preferred manner of determining that motion of the vessel which increases or decreases the volume of the flow path of the drilling fluid is to attach cables 32 (only one of which is shown) between the outer portion 13 of the marine riser 9 and riser tensioner assemblies 33 (only one of which is shown) attached to the vessel.
  • Each riser tensioner assembly 33 preferably comprises a cylinder 34 attached to the vessel 4 and a piston and piston rod mounted for longitudinal movement therein.
  • a sheave 36 is attached to the end of the piston rod 35 extending from the cylinder.
  • the cable 32 is reaved around the sheave 36 and fastened to the semisubmersible vessel 4. Hydraulic fluid is supplied into the cylinder 34 and against a selected side of the piston as is well known in the art.
  • Hydraulic fluid is supplied into the cylinder 34 and against a selected side of the piston as is well known in the art.
  • the cylinder 34 and piston rod 35 expand and contract relative to each other. It is desirable that the linear movement of the piston rod 35 relative to the cylinder 34 be transduced into data proportional thereto. This may be accomplished through the use of any of numerous commercially available apparatus.
  • a position transducer for transducing linear motion into an electrical signal proportional thereto can be attached to the cylinder 34 in contact with the piston rod 35.
  • the linear movement of piston rod 35 is transduced, by the use of an extension arm 37, cable 38, and sheave 39, into rotary motion.
  • the rotary motion is then transduced into an analog electrical signal proportional thereto by any of numerous commercially available devices, such as, a potentiometer.
  • a measuring system connected to the marine riser 9 takes into account the manner in which the vessel 4 heaves in the water.
  • the vessel 4 moves substantially vertically responsive to the tide because the vertical change of the water responsive to the tide coming in or out is very slow. But when the vessel 4 heaves responsive to wave action, its movement is not entirely vertical. Even though the vessel 4 is anchored, the vessel 4 will move laterally as well as vertically responsive to wave action. This movement of the vessel responsive to wave action is referred to as heave.
  • the marine riser 9 is relatively flexible and the upper end of the marine riser will move with the vessel 4.
  • the monitoring system which is connected to the upper end of the marine riser 9 produces data indicative of an increase or decrease in the flow path of the drilling fluid whether such increase or decrease is caused solely by vertical movement of the vessel or the combination of the vertical and lateral movement of the vessel.
  • FIG. 2 illustrates a first preferred apparatus according to this invention for determining the rate of flow of the drilling fluid out of the well without substantial error being produced in such determination by the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
  • a means 45 is employed to measure the flow rates of the inflowing and outflowing drilling fluid, comparing such flow rates and determining the difference therebetween, and recording such difference.
  • the WATCO Differential F lowmeter 45 includes two Foxsboro Flowmeters 31 and 30 for monitoring the flow rate of the inflowing and outflowing drilling fluid, respectively, and for generating electrical signals proportional thereto.
  • the two electrical signals generated by the Foxsboro Flowmeters 31 and 30 are coupled to the means 46 within the WATCO Differential Flowmeter 45 for comparing such signals, determining their difference, and generating an electrical signal porportional to the difference therebetween.
  • the electrical signal proportional to the difference therebetween is coupled to the input of a Varian Recorder 47.
  • the electrical signal coupled from the comparing means 46 to the Varian Recorder 47 vacilates from zero voltage to a plus or minus voltage depending upon the difference between the outflow and the inflow of the drilling fluid.
  • This electrical signal is recorded on a strip-type chart by the Varian Recorder 47. If the outflow and inflow are at an equal rate, the recording will be zero, in the center of the chart. If the outflow is greater than the inflow, the difference is recorded to the right of zero as a gain. Conversely, if the inflow is greater than the outflow, the loss of drilling fluid in the hole is recorded to the left of zero as a loss.”
  • the output of the comparing means 46 is also coupled to the input of an alarm means 48 which functions to sound an alarm whenever the electrical signal generated by the comparing means 46 exceeds preselected threshold limits.
  • a means 59 is employed for generating a signal which accurately, continuously, and substantially instantaneously compensates for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel.
  • a potentiometer circuit 49 is physically manipulated by a shaft or other means coupled to sheave 39.
  • the means for operating a potentiometer circuit are well known to those skilled in the art.
  • the electrical signal generated by the potentiometer circuit 49 has a voltage proportional to the motion of the vessel relative to the wellhead.
  • the electrical signal generated by the potentiometer circuit 49 is resistively coupled to the input of a buffer amplifier, preferably a type 741 such as is manufactured by numerous manufacturers.
  • the output of amplifier 50 is also an electrical signal proportional to the heave of the vessel relative to the wellhead.
  • the vessel moves relative to the wellhead responsive to two general types of movement of the water: the movement of the water as a result of the tide and the movement of the of the water as a result of normal wave action.
  • the portion of the electrical signal generated by amplifier 50 proportional to the movement of the vessel responsive to the tide may be thought of as a DC portion of the signal because of its very long time period.
  • the portion of the electrical signal generated by the amplifier 50 proportional to the movement of the vessel responsive to the wave action may be thought of as the AC portion of the signal because of its relatively short time period.
  • the electric circuitry according to this invention to compensate for the heaving movement of the vessel relative to the wellhead need not provide total compensation for such movement.
  • compensation for movement of the vessel responsive to the tide is not needed because the period of the tide is so long.
  • the electrical circuitry preferably is designed to ignore all wave action having a longer period than 900 seconds and the circuitry need not be accurate for wave action to the left of line 51, such as a 40 foot wave moving from crest to crest in twelve seconds or less, because drilling operations are not conducted in such conditions.
  • the output of amplifier 50 is coupled to a capacitance 52 chosen to eliminate the substantially DC portion of the signal having a period longer than 900 seconds.
  • the output of capacitance 52 is resistively coupled to the input of amplifier 53.
  • Amplifier 53 is preferably a type 741 manufactured by numerous manufacturers. It is wired in a differentiator mode to differentiate the electrical signal supplied to its input and to generate from its output an electrical signal proportional to the rate of heave of the vessel within the operating limits of the circuitry. It is desirable to determine the rate of heave of the vessel, rather than the mere amplitude of the heave of the vessel, in compensating for the heave of the vessel because the movement of the vessel responsive to the wave action is not at a constant velocity.
  • the rate of heave of the vessel is zero at the crest and trough of a wave and increases to a maximum as the vessel moves between the two.
  • the error introduced into the electrical signal output by comparing means 46 arises from the change in volume of the flow path of the drilling fluid. And the change in volume of the flow path of the drilling fluid varies in response to the rate of the heave of the vessel.
  • the electrical signal generated by amplifier 53 is modified or sealed to take into account the crosssectional area of the drill pipe and the cross-sectional area of the annulus between the drill pipe and the marine riser. This preferably is accomplished by resistively coupling the electrical signal output by amplifier 53 to the input of amplifier 54, a type 741 amplifier operated in the differential mode. By varying the ohmage of the resistances supplied to the input of amplifier 54, the electrical signal output from amplifier 53 can be modified or sealed.
  • the output of amplifier 53 is coupled over line 55 through a bank of resistances to one of the inputs of amplifier 54, the resistance of the bank being variable in accordance with the crosssectional area of the drill pipe.
  • the electrical signal output by amplifier 53 is combined with a variable resistive feedback signal and coupled over line 56 to the other input of amplifier 54. The resistance of the feedback signal may be varied in accordance with the crosssectional area of the marine riser.
  • the electrical signal generated by amplifier 54 is proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid.
  • This electrical signal is coupled to the input of amplifier 57 which functions to scale the electrical signal so that it will match the scale factor of the recorder 47 being utilized.
  • the output of amplifier 57 is applied across resistances which are coupled into the low voltage line between the comparing means 46 and the recorder 47 and alarm 48.
  • the voltage dropped across resistance 58 compensates the electrical signal generated by comparing means 46 for the change in volume of the flow path of the drilling fluid as the vessel heaves relative to the wellhead.
  • the first preferred embodiment of this invention provides an improved method and apparatus for monitoring the flowing rates of drilling fluid into and out of a well being drilled at sea from a floating vessel, generating a signal proportional to the difference between such flow rates and continuously modifying such signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
  • Such method and apparatus has particular use in rapidly determining the existence of blowouts and loss circulation.
  • An alternate embodiment of the invention employs the means 59 for compensating for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel in combination with an apparatus which monitors only the flow rate of the drilling fluid out of the well and generates a signal proportional thereto.
  • a flowmeter 30 such as the Foxsboro Flowmeter previously described, is employed on the conduit 29 carrying the drilling fluid out of the well and back to the mud system.
  • the flowmeter 30 generates an electrical signal proportional to such return flow rate.
  • the electrical signal generated by flowmeter 30 is coupled to the input of a summing amplifier 60, such as is readily available on the commercial market.
  • summing amplifier 60 Also coupled to the input of summing amplifier 60 is the output of the means 59 for compensating for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel.
  • the summing amplifier 60 sums the two electrical signals supplied to its input and generates an electrical signal which is proportional to the flow rate of the returning drilling fluid and the volume of the drilling fluid flow path.
  • the electrical signal generated by the summing amplifier 60 may be coupled to a chart recorder, such as the previously described Varian Recorder, or to an alarm apparatus.
  • flowmeter 31 may be employed on the conduit 26 carrying the drilling fluid into the well, and the electrical signal generated by the flowmeter 31 proportional to the flow rate of the drilling fluid into the well may also be coupled to the chart recorder.
  • the modified electrical signal proportional to the flow rate of the returning drilling fluid and the volume of the drilling fluid flow path may be compared with the electrical signal proportional to the flow rate of the drilling fluid into the well. This comparison may be accomplished by the operator of the system observing the chart recorders or by an electrical apparatus such as is well known to those skilled in the art.
  • this alternate embodiment of the invention provides an improved method and apparatus for monitoring the flow rate of drilling fluid out of a well being drilled at sea by a floating vessel, gnerating a signal proportional thereto, and continuously modifying such signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
  • Such method and apparatus has particular use in rapidly determining the existence of blowouts and loss circulation.
  • This invention provides an improved blowout and loss circulation detection method and apparatus in which there is substantially instantaneous compensation for the change in the volume of the flow path of the drilling fluid as a result of the heaving movement of the vessel relative to the wellhead.
  • the invention has been shown and defined with reference to two particular embodiments. However, many variations and modifications of the invention will now be apparent to those having skill in the art.
  • the discrete elecconverter such as a CH. Model 731 l, to transduce the analog electrical signal into digital data.
  • the two streams of digital data may then be correlated to produce a compensated digital signal responsive to the difference between the inflow and outflow of the drilling fluid modified by the movement of the vessel relative to the wellhead.
  • a method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system including the steps of:
  • a method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system including the steps of:
  • a method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system including the steps of:
  • a method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system including the steps of:
  • a method of monitoring the flow rate of drilling fluid being circulated from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the heaving motion of the vessel in the water is compensated for including the steps of:
  • An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system including:
  • An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system including:
  • An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system abroad the vessel into the wellhole and circulated back to the mud system including:
  • a flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a first signal proportional thereto;
  • differentiating means coupled to the output of the transducer means for differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel;
  • first modifying means coupled to the output of the differentiating means for modifying the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; and second modifying means coupled to the outputs of the flowmeter and the first modifying means for modifying the first signal with the fourth signal to produce a fifth signal proportional to the rate of flow of the drilling fluid back to the mud system and the volume of the flow path of the drilling fluid.
  • comparing means coupled to the output of the second modifying means for comparing the fifth signal with preselected threshold valves to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
  • An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system including:
  • a first flowmeter for transducing the rate of flow of i the drilling fluid away from the mud system into a first electrical signal proportional thereto;
  • a second flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a second electrical signal proportional thereto;
  • comparing means coupled to the outputs of the first and second flowmeters for comparing the first and second electrical signals and generating a third electrical signal proportional to the difference therebetween;
  • a third transducer associated with the vessel for transducing the heaving motion of the vessel into a fourth electrical signal proportional thereto;
  • differentiating means coupled to the output of the third transducer for differentiating the fourth electrical signal with respect to time to produce a fifth electrical signal proportional to the rate of heave of the vessel;
  • first modifying means coupled to the output of the differentiating means for modifying the fifth electrical signal to produce a sixth electrical signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid;
  • second modifying means coupled to the outputs of the comparing means and the first modifying means for modifying the third electrical signal with the sixth electrical signal to produce a seventh electrical signal proportional to the difference in the rates of flow of the drilling fluid away from and back to the mud system and the volume of the flow path of the drilling fluids.
  • comparing means coupled to the output of the second modifying means for comparing the seventh electrical signal with preselected threshold signals to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
  • an apparatus for monitoring the flow rates of drilling fluid circulating from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the change in the volume of the flow path of the drilling fluid caused by the motion of the vessel the water is compensated for substantially instantaneously including:
  • transducer means associated with the vessel for transducing the heaving motion of the vessel relative to the wellhead into a second electrical signal proportional thereto;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

A system for detecting the commencemenet of a blowout or lost circulation in a subaqueous well being drilled from a floating vessel in which drilling fluid is being utilized. The rates of flow of the drilling fluid into and out of the well are monitored, compared, and a signal is generated proportional to the difference therebetween; the electrical signal is modified to compensate substantially instantaneously for the change in volume of the flow path of the drilling fluid caused by the heaving motion of the vessel. Alternatively, the rate of flow of the drilling fluid out of the well is monitored and an electrical signal is generated proportional thereto; the electrical signal is modified to compensate substantially instantaneously for the change in volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.

Description

United States Patent 1 [111 3,910,110
Jefferies et al. Oct. 7, 1975 [54] MOTION COMPENSATED BLOWOUT AND 3,811,322 5/1974 Swenson 73/155 LOSS CIRCULATION DETECTION [75] Inventors: Robert Kennedy Jefferies, Reston, Primary Exammer j erry Myracle Va; Glenn Wickline deceased, Attorney, Agent, or Firm-Joe E. Edwards; Julian late of Houston, Tex., by Barbara Clark Martin Alice Wickline, executrix, Houston, Tex.; Kian Mohammed Mirdadian, [57] ABSTRACT Houston A system for detecting the commencemenet of a blow- [73] Assignee: The Offshore Company, Houston, out or lost circulation in a subaqueous well being Tex. drilled from a floating vessel in which drilling fluid is being utilized. The rates of flow of the drilling fluid [22] Flled' Sept 1974 into and out of the well are monitored, compared, and [21] Appl. No.: 508,883 a signal is generated proportional to the difference Related U 5 Application Data therebetween; the electrical signal is modified to compensate substantially instantaneously for the change in [63] Continuation of 403380 1973* volume of the flow path of the drilling fluid caused by abandoned the heaving motion of the vessel. Alternatively, the
rate of flow of the drilling fluid out of the well is monitored and an electrical signal is generated proportional i E2l B 47/10 thereto; the electrical signal is modified to compensate le 0 Search Substantially instantaneous), for the change in volume of the flow path of the drilling fluid caused by the [56] References C'ted heaving motion of the vessel.
UNITED STATES PATENTS 12 Claims, 4 Drawing Figures 3,760,891 9/1973 Gadbois 73/155 US. Patent Oct. 7,1975 Sheet 1 of3 3,910,110
wgSsmw KQQSQ EQ QQQQR mix SVQRQ Q w vq US. Patent 001. 7,1975 Sheet 3 of3 3,910,110
MOTION COMPENSATED BLOWOUT AND LOSS CIRCULATION DETECTION BACKGROUND AND OBJECTS OF THE INVENTION This application is a continuing application of our pending application Ser. No. 403,380, filed Oct. 4, 1973, entitled Motion Compensated Blowout and Loss Circulation Detection, now abandoned.
This invention relates to a motion compensated blowout and loss circulation detector and method to be utilized in connection with floating vessels from which drilling operations are being performed.
In drilling a well, particularly an oil or gas well, there exists the danger of drilling into an earth formation that contains high pressure fluids. When this occurs, the high pressure fluid from the formation flows into the well and displaces the drilling fluid (mud) up the well. If this occurrence is not controlled rather quickly, the drilling fluid may be substantially displaced and the high pressure fluid may flow freely up the well. This is termed a blowout. On the other hand, the well may be drilled into an earth formation which is very porous. In such a situation, there may be a tendency for the drilling fluid to flow freely from the well into the surrounding earth formation. This is termed lost circulation.
Blowout prevention is most effective when the commencement of an influx of high pressure fluid into the well can be quickly detected and controlled before an appreciable amount of the drilling fluid is displaced 3 from the well. Loss of drilling fluid is kept to a minimum when the commencement of the loss can be quickly detected and the flow of the fluid controlled before an appreciable amount has passed from the well into the earth formation. It is known in the art to detect such an influx or loss of fluid by comparing the flow rate of the drilling fluid into the well and the flow rate of the fluid returning out of the well. A substantial increase in the rate of the return fluid flow when there was no corresponding increase in the rate of the fluid flow into the well, is indicative of a blowout. A substantial decrease in the rate of the return fluid flow when there was no corresponding decrease in the rate of the fluid flow into the well, is indicative of lost circulation. A readily available commercial apparatus for measuring the inflow and outflow rates of the drilling fluid, comparing such rates, and recording their differences, is the WATCO Differential Flowmeter manufactured by Warren Automatic Tool Company, 3915 Tharp Street, Houston, Texas. It is also known in the art to detect such an influx or loss of flow by monitoring only the flow rate of the drilling fluid returning out of the well. So long as the flow rate of the returning drilling fluid is substantially constant, it indicates there is no blowout or lost circulation. A substantial increase in the rate of the fluid flow out of the well is indicative of a blowout. A substantial decrease in the rate of the fluid flow out of the well is indicative of lost circulation. A readily available commercial device measuring the outflow rate of the drilling fluid is the Flowmeter Model No. 2806-SABQ-AS manufactured by Foxsboro.
However, in drilling offshore subaqueous wells from floating vessels, such as ships, platforms, or semisubmersibles, the measurement of the return fluid flow from the well is complicated by the heaving motion of the vessel. This heaving motion produces cyclic variations in the volume of the flow path of the returning fluid so that it becomes difficult to determine whether a substantial decrease or increase in the return flow is due to a blowout, lost circulation, or the movement of the vessel. For example, the subaqueous wellhole is usually connected to the floating vessel by a marine conductor or marine riser. To accommodate the motion of the vessel, the marine conductor or marine riser is usually provided with a telescoping joint. A hollow drill string extends downwardly from the vessel, through to marine conductor or marine riser, and into the well. A drill bit is connected to the lower end of the drill string. To accommodate the motion of the vessel, the drill string also is usually provided with a telescoping joint (often called a bumber sub). Drilling fluid is generally pumped from the vessel through the hollow drill string downwardly to the drill bit. The drilling fluid flows out into the well through ports in or adjacent the drill bit and circulates back up to the vessel through the annulus between the drill string and the casing or marine riser.
The motion of the vessel strokes the telescoping joints in the marine riser and the drill string causing them to expand and contract, thereby increasing and decreasing the volume of the flow path of the drilling fluid. This results in pulsations in the rate at which the returning drilling fluid is received by the mud system onboard the vessel. The instantaneous maximum and minimum flow rate of the returning drilling fluid induced by the heaving ship may be several times greater or less than the steady state or real flow rate. Thus, the real flow rate is masked by the contracting and expand ing action of the telescoping joints, making it difficult or impossible to detect quickly any changes in the real return flow rate.
Gadbois, in his US. Letters Pat. No. 3,760,89l, discloses a method and apparatus for rapidly detecting blowouts and lost circulation in a drilling well, which method and apparatus has particular application in a well being drilled at sea from a heaving vessel. The Gadbois system monitors the return rate of flow of the drilling fluid and generates an electrical signal proportional thereto. The electrical signal is monitored, accumulated, compared with selected samples of the accumulated signal, and compared with selected threshold values, to determine the existence of the blowout or lost circulation. The Gadbois system is very advantageous but does not provide a signal which is continuously and substantially instantaneously proportional to the flow rate of the drilling fluid and the volume of the drilling fluid flow path. Gorsuch, in his U.S. Letters Pat. No. 3,602,322, discloses a system for determining an inbalance between the rates of flow of the drilling fluid into and out of a well. Gorsuch, however, does not disclose a system which can effectively deal with the oscillations in the rates of flow of the drilling fluid in a well being drilled at sea from a heaving vessel.
It is, therefore, an object of this invention to produce an improved method and apparatus for monitoring the flow rate of the drilling fluid leaving from and returning to the mud system aboard a floating vessel, for generating a signal which is proportional to the difference therebetween, and for continuously modifying the signal to compensate substantially instantaneously for the change in volume of the drilling fluid flow path caused by the heaving motion of the vessel.
Another object of this invention is to provide a method and apparatus for detecting rapidly the commencement of blowouts and lost circulation in subaqueous wells being drilled from floating vessels wherein the flow rate of the drilling fluid to and from the mud system aboard the vessel is monitored and a signal is generated which is proportional to the difference therebetween and the volume of the drilling fluid flow path.
It is also an object of this invention to provide a method and apparatus for monitoring the flow rate of the drilling fluid returning from a well to the mud system aboard a floating vessel, for generating a signal proportional thereto, and for modifying such signal to compensate substantially instantaneously for the changing volume of the drilling fuid flow path caused by the heaving motion of the vessel.
Another object of this invention is to provide a method and apparatus for detecting rapidly the commencement of blowouts and lost circulation in wells being drilled from floating vessels wherein the flow rate of the returning drilling fluid is monitored and a signal is generated which is proportional to such return flow rate and the volume of the drilling fluid flow path.
These and other objects and advantages of the present invention will be set forth and explained and will become apparent in the following drawings, specifications, and claims.
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings in which like reference numerals indicate like parts:
FIG. I is an elevation view of a typical subaqucous well being drilled from a floating semisubmersible vessel, the drilling fluid flowing from the mud system aboard the vessel through the drill string into the well and returning to the mud system aboard the vessel through the annulus between the drill string and the marine riser.
FIG. 2 is a combined block diagram and schematic diagram of the components comprising a first preferred embodiment of this invention.
FIG. 3 is a chart of change in elevation of water compared with time depicting the operating boundaries of the first preferred embodiment of this invention.
FIG. 4 is a schematic diagram of the components comprising an alternate embodiment of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates schematically certain portions of a typical offshore well drilling apparatus. A semisubmersible vessel 4 for floating on a body of water 5 is engaged in drilling a subaqueous well 6 in the seabed 7. The vessel 4 mounts on its deck a derrick 8 which includes a draw works (not shown) and other usual apparatus for conducting drilling operations. Extending between the vessel and the wellhole in the seabed is a marine riser indicated generally at 9 which includes at its lower end the usual blowout preventor apparatus 10 and, at its upper end, a telescoping joint 11. Telescoping joint 11 includes an upper cylindrical portion 12 which is mounted from and is movable with the vessel 4 and a lower cylindrical portion 13 which remains stationary with respect to the seabed. Upper portion 12 telescopes into lower portion 13. The upper and lower portions are slidably sealed with respect to each other.
Drill casing 14 is installed from the blowout preventer downwardly a selected distance into the wellhole.
A drill string indicated generally at 15 is supported from a swivel 16 within the derrick. The swivel 16 is suspended from a traveling block 17 which in turn is connected through cables to the crown block 18 at the top of the derrick. The drill string extends downward through the marine riser 9, blowout preventers 10, well casing 14, and into the wellhole. A bit secured to the lower end of the drill string drills the wellhole in the earth. The drill string also includes a telescoping joint 20. The telescoping joint 20 includes cylindrical portion 21 which surrounds and is sealed against an upper cylindrical portion 22 and a lower cylindrical portion 23 of the drill string. The upper and lower portions of the drill string are slidable sealed against and telescope into the outer portion 21.
In the customary fashion, drilling fluid for flushing out dirt and rock chips during drilling of the well is pumped from the mud tank 24 on the vessel 4 by pump 25 through standpipe 26 to the swivel 16. The drilling fluid is circulated down the bore of the drill string 15 and out ports 27 in the drill bit 19. The drill fluid returns to the vessel through the annulus 28 between the drill string 15 and the casing 14 and between the drill string 15 and the marine riser 9. At the vessel, the drilling fluid returns to the mud tank 24 through conduit 29. The mud tank 29, pump 25, flexible hose 26, and conduit 29 are referred to herein as the mud system aboard the vessel.
It is desirable to monitor the flow rate of the drilling fluid returning to the mud system aboard the vessel and generate a signal porportional thereto. This preferably is accomplished by inserting a monitoring apparatus 30 into the conduit 29 returning the drilling fluid to the mud tank. The monitoring apparatus 30 may be any of numerous commercially available apparatus, such as a Foxsboro Flowmeter Model No. 2806-SABO-AS. It is also desirable to monitor the flow rate of the drilling fluid leaving the mud system aboard the vessel and generate a signal porportional thereto. This is preferably accomplished by inserting a monitoring apparatus 31 into the standpipe 26. The monitoring apparatus 31 also may be any of numerous commercially available devices such as a Foxsboro Flowmeter of a type similar to that described above. In the first preferred embodiment of this invention, it is preferable that both the rate of flow of the drilling fluid away from and back to the mud system be monitored and the difference between such flow rates be determined. This may be accomplished through the use of numerous commercially available apparatus, such as the WATCO Differential Flowmeter manufactured by Warren Automatic Tool Company, 3915 Tharp Street, Houston, Texas. A variation of the WATCO Differential Flowmeter is illustrated in US. Letters Pat. No. 2,966,059. The WATCO Differential Flowmeter utilizes Foxsboro Flowmeters, standard discrete electronics, and a Varian Recorder Model No. G-l lA-Bl.
It is desirable to employ a means for determining the heaving motion of the semisubmersible vessel 4 relative to the wellhead as such heaving motion has the effect of increasing or decreasing the volume of the flow path of the drilling fluid. This can be accomplished in numerous ways well known to those skilled in the art. It can be accomplished through sophisticated electronics utilizing accelerometers and other commercially available position sensors. However, the preferred manner of determining that motion of the vessel which increases or decreases the volume of the flow path of the drilling fluid is to attach cables 32 (only one of which is shown) between the outer portion 13 of the marine riser 9 and riser tensioner assemblies 33 (only one of which is shown) attached to the vessel. Each riser tensioner assembly 33 preferably comprises a cylinder 34 attached to the vessel 4 and a piston and piston rod mounted for longitudinal movement therein. A sheave 36 is attached to the end of the piston rod 35 extending from the cylinder. The cable 32 is reaved around the sheave 36 and fastened to the semisubmersible vessel 4. Hydraulic fluid is supplied into the cylinder 34 and against a selected side of the piston as is well known in the art. As the semisubmersible vessel 4 moves relative to the wellhead, the cylinder 34 and piston rod 35 expand and contract relative to each other. It is desirable that the linear movement of the piston rod 35 relative to the cylinder 34 be transduced into data proportional thereto. This may be accomplished through the use of any of numerous commercially available apparatus. For example, a position transducer for transducing linear motion into an electrical signal proportional thereto can be attached to the cylinder 34 in contact with the piston rod 35. Preferably, the linear movement of piston rod 35 is transduced, by the use of an extension arm 37, cable 38, and sheave 39, into rotary motion. The rotary motion is then transduced into an analog electrical signal proportional thereto by any of numerous commercially available devices, such as, a potentiometer.
One of the advantages of a measuring system connected to the marine riser 9 is that it takes into account the manner in which the vessel 4 heaves in the water. The vessel 4 moves substantially vertically responsive to the tide because the vertical change of the water responsive to the tide coming in or out is very slow. But when the vessel 4 heaves responsive to wave action, its movement is not entirely vertical. Even though the vessel 4 is anchored, the vessel 4 will move laterally as well as vertically responsive to wave action. This movement of the vessel responsive to wave action is referred to as heave. The marine riser 9 is relatively flexible and the upper end of the marine riser will move with the vessel 4. Thus, the monitoring system which is connected to the upper end of the marine riser 9 produces data indicative of an increase or decrease in the flow path of the drilling fluid whether such increase or decrease is caused solely by vertical movement of the vessel or the combination of the vertical and lateral movement of the vessel.
FIG. 2 illustrates a first preferred apparatus according to this invention for determining the rate of flow of the drilling fluid out of the well without substantial error being produced in such determination by the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel. A means 45 is employed to measure the flow rates of the inflowing and outflowing drilling fluid, comparing such flow rates and determining the difference therebetween, and recording such difference. There are numerous commercially available apparatus for performing the function of such means 45. For example, the WATCO Differential F lowmeter manufactured by Warren Automatic Tool Company may be utilized. The WATCO Differential F lowmeter 45 includes two Foxsboro Flowmeters 31 and 30 for monitoring the flow rate of the inflowing and outflowing drilling fluid, respectively, and for generating electrical signals proportional thereto. The two electrical signals generated by the Foxsboro Flowmeters 31 and 30 are coupled to the means 46 within the WATCO Differential Flowmeter 45 for comparing such signals, determining their difference, and generating an electrical signal porportional to the difference therebetween. The electrical signal proportional to the difference therebetween is coupled to the input of a Varian Recorder 47. The electrical signal coupled from the comparing means 46 to the Varian Recorder 47 vacilates from zero voltage to a plus or minus voltage depending upon the difference between the outflow and the inflow of the drilling fluid. This electrical signal is recorded on a strip-type chart by the Varian Recorder 47. If the outflow and inflow are at an equal rate, the recording will be zero, in the center of the chart. If the outflow is greater than the inflow, the difference is recorded to the right of zero as a gain. Conversely, if the inflow is greater than the outflow, the loss of drilling fluid in the hole is recorded to the left of zero as a loss." The output of the comparing means 46 is also coupled to the input of an alarm means 48 which functions to sound an alarm whenever the electrical signal generated by the comparing means 46 exceeds preselected threshold limits.
A means 59 is employed for generating a signal which accurately, continuously, and substantially instantaneously compensates for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel. Preferably, a potentiometer circuit 49 is physically manipulated by a shaft or other means coupled to sheave 39. The means for operating a potentiometer circuit are well known to those skilled in the art. The electrical signal generated by the potentiometer circuit 49 has a voltage proportional to the motion of the vessel relative to the wellhead. The electrical signal generated by the potentiometer circuit 49 is resistively coupled to the input of a buffer amplifier, preferably a type 741 such as is manufactured by numerous manufacturers. The output of amplifier 50 is also an electrical signal proportional to the heave of the vessel relative to the wellhead. The vessel moves relative to the wellhead responsive to two general types of movement of the water: the movement of the water as a result of the tide and the movement of the of the water as a result of normal wave action. The portion of the electrical signal generated by amplifier 50 proportional to the movement of the vessel responsive to the tide may be thought of as a DC portion of the signal because of its very long time period. The portion of the electrical signal generated by the amplifier 50 proportional to the movement of the vessel responsive to the wave action may be thought of as the AC portion of the signal because of its relatively short time period.
The electric circuitry according to this invention to compensate for the heaving movement of the vessel relative to the wellhead need not provide total compensation for such movement. Generally, compensation for movement of the vessel responsive to the tide is not needed because the period of the tide is so long. On the other hand, when the period of the waves becomes very short in time and the amplitude of the heave of the vessel very great, drilling operations are not conducted. For example, referring to FIG. 3, the electrical circuitry preferably is designed to ignore all wave action having a longer period than 900 seconds and the circuitry need not be accurate for wave action to the left of line 51, such as a 40 foot wave moving from crest to crest in twelve seconds or less, because drilling operations are not conducted in such conditions.
The output of amplifier 50 is coupled to a capacitance 52 chosen to eliminate the substantially DC portion of the signal having a period longer than 900 seconds. The output of capacitance 52 is resistively coupled to the input of amplifier 53. Amplifier 53 is preferably a type 741 manufactured by numerous manufacturers. It is wired in a differentiator mode to differentiate the electrical signal supplied to its input and to generate from its output an electrical signal proportional to the rate of heave of the vessel within the operating limits of the circuitry. It is desirable to determine the rate of heave of the vessel, rather than the mere amplitude of the heave of the vessel, in compensating for the heave of the vessel because the movement of the vessel responsive to the wave action is not at a constant velocity. The rate of heave of the vessel is zero at the crest and trough of a wave and increases to a maximum as the vessel moves between the two. The error introduced into the electrical signal output by comparing means 46 arises from the change in volume of the flow path of the drilling fluid. And the change in volume of the flow path of the drilling fluid varies in response to the rate of the heave of the vessel.
The electrical signal generated by amplifier 53 is modified or sealed to take into account the crosssectional area of the drill pipe and the cross-sectional area of the annulus between the drill pipe and the marine riser. This preferably is accomplished by resistively coupling the electrical signal output by amplifier 53 to the input of amplifier 54, a type 741 amplifier operated in the differential mode. By varying the ohmage of the resistances supplied to the input of amplifier 54, the electrical signal output from amplifier 53 can be modified or sealed. Preferably the output of amplifier 53 is coupled over line 55 through a bank of resistances to one of the inputs of amplifier 54, the resistance of the bank being variable in accordance with the crosssectional area of the drill pipe. The electrical signal output by amplifier 53 is combined with a variable resistive feedback signal and coupled over line 56 to the other input of amplifier 54. The resistance of the feedback signal may be varied in accordance with the crosssectional area of the marine riser.
The electrical signal generated by amplifier 54 is proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid. This electrical signal is coupled to the input of amplifier 57 which functions to scale the electrical signal so that it will match the scale factor of the recorder 47 being utilized. The output of amplifier 57 is applied across resistances which are coupled into the low voltage line between the comparing means 46 and the recorder 47 and alarm 48. The voltage dropped across resistance 58 compensates the electrical signal generated by comparing means 46 for the change in volume of the flow path of the drilling fluid as the vessel heaves relative to the wellhead.
Thus, the first preferred embodiment of this invention provides an improved method and apparatus for monitoring the flowing rates of drilling fluid into and out of a well being drilled at sea from a floating vessel, generating a signal proportional to the difference between such flow rates and continuously modifying such signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel. Such method and apparatus has particular use in rapidly determining the existence of blowouts and loss circulation.
An alternate embodiment of the invention employs the means 59 for compensating for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel in combination with an apparatus which monitors only the flow rate of the drilling fluid out of the well and generates a signal proportional thereto. As shown in FIG. 4, preferably a flowmeter 30, such as the Foxsboro Flowmeter previously described, is employed on the conduit 29 carrying the drilling fluid out of the well and back to the mud system. The flowmeter 30 generates an electrical signal proportional to such return flow rate. The electrical signal generated by flowmeter 30 is coupled to the input of a summing amplifier 60, such as is readily available on the commercial market. Also coupled to the input of summing amplifier 60 is the output of the means 59 for compensating for the change in the volume of the drilling fluid flow path caused by the heaving motion of the vessel. The summing amplifier 60 sums the two electrical signals supplied to its input and generates an electrical signal which is proportional to the flow rate of the returning drilling fluid and the volume of the drilling fluid flow path. The electrical signal generated by the summing amplifier 60 may be coupled to a chart recorder, such as the previously described Varian Recorder, or to an alarm apparatus.
Optionally, flowmeter 31 may be employed on the conduit 26 carrying the drilling fluid into the well, and the electrical signal generated by the flowmeter 31 proportional to the flow rate of the drilling fluid into the well may also be coupled to the chart recorder. The modified electrical signal proportional to the flow rate of the returning drilling fluid and the volume of the drilling fluid flow path may be compared with the electrical signal proportional to the flow rate of the drilling fluid into the well. This comparison may be accomplished by the operator of the system observing the chart recorders or by an electrical apparatus such as is well known to those skilled in the art.
Thus, this alternate embodiment of the invention provides an improved method and apparatus for monitoring the flow rate of drilling fluid out of a well being drilled at sea by a floating vessel, gnerating a signal proportional thereto, and continuously modifying such signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel. Such method and apparatus has particular use in rapidly determining the existence of blowouts and loss circulation.
This invention provides an improved blowout and loss circulation detection method and apparatus in which there is substantially instantaneous compensation for the change in the volume of the flow path of the drilling fluid as a result of the heaving movement of the vessel relative to the wellhead. The invention has been shown and defined with reference to two particular embodiments. However, many variations and modifications of the invention will now be apparent to those having skill in the art. For instance, the discrete elecconverter, such as a CH. Model 731 l, to transduce the analog electrical signal into digital data. The two streams of digital data may then be correlated to produce a compensated digital signal responsive to the difference between the inflow and outflow of the drilling fluid modified by the movement of the vessel relative to the wellhead. Additionally, rather than electrical signals being employed throughout, the flow rate or rates could be measured hydraulically and such hydraulic signals modified to compensate for the change in the flow path of the drilling fluid caused by the heaving motion of the vessel. It is believed, therefore, that the foregoing disclosure and description of the invention are only illustrative and explanatory, and various changes in the circuitry and the components may be made within the scope of the appended claims without departing from the spirit of the invention.
What is claimed is:
l. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of:
detecting the rate of flow of the drilling fluid back to the mud system and generating a signal proportional thereto; and
modifying the signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
2. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of:
detecting the rates of flow of the drilling fluid away from and back to the mud system and generating a signal proportional to the difference therebetween; and
modifying the signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
3. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of:
transducing the rate of flow of the drilling fluid back to the mud system into a first signal proportional thereto;
transducing the heaving motion of the vessel into a second signal proportional thereto;
differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel;
scaling the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; modifying the first signal with the fourth signal to produce a modified first signal proportional to the rate of flow of the drilling fluid back to the mud system and the heave of the vessel; and
comparing the modified first signal with preselected threshold valves to determine the difference therebetween, a preselected difference between the threshold valves and the modified first signal being indicative of the commencement of a blowout or lost circulation.
4. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of:
transducing the rate of flow of the drilling fluid away from the mud system into a first signal proportional thereto;
transducing the rate of flow of the drilling fluid back to the mud system into a second signal proportional thereto;
comparing the first and second signals and generating a third signal proportional to their difference;
transducing the heaving motion of the vessel into a fourth signal proportional thereto;
differentiating the fourth signal with respect to time to produce a fifth signal proportional to the rate of heave of the vessel;
scaling the fifth signal to produce a sixth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid;
modifying the third signal with the sixth signal to produce a modified third signal proportional to the difference in the rates of flow of the drilling fluid away from and back to the mud system and the heave of the vessel; and
comparing the modified third signal with preselected threshold signals to determine the difference therebetween, a preselected difference between the threshold signals and the modified third signal being indicative of the commencement of a blowout or loss circulation.
5. In a vessel floating in water and connected to a subaqueous wellhole through risers and the like, a method of monitoring the flow rate of drilling fluid being circulated from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the heaving motion of the vessel in the water is compensated for, including the steps of:
detecting the rates of flow of the drilling fluid back to the mud system and generating a first signal proportional thereto;
transducing the heaving motion of the vessel into a second signal proportional thereto;
differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel;
scaling the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid;
modifying the first signal with the fourth signal to produce a modified first signal proportional to the rate of flow of the drilling fluid back to the mud system and the heave of the vessel; and
comparing the modified first signal with preselected threshold signals to determine the difference therebetween, a preselected difference between the threshold signals and the modified first signal being indicative of the commencement of a blowout or loss circulation.
6. An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system, including:
means for detecting the rate of flow of the drilling fluid away from and back to the mud system and generating an electrical signal proportional to the difference therebetween;
means for detecting the heaving movement of the vessel relative to the wellhole; and
means for modifying the electrical signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel relative to the wellhole.
7. An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system, including:
means for detecting the rate of flow of the drilling fluid back to the mud system and generating a sig nal proportional thereto;
means for detecting the heaving motion of the vessel relative to the wellhole; and
means for modfying the signal to compensate sub stantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel relative to the wellhole.
8. An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system abroad the vessel into the wellhole and circulated back to the mud system, including:
a flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a first signal proportional thereto;
means associated with the vessel for transducing the heaving motion of the vessel into a second signal proportional thereto;
differentiating means coupled to the output of the transducer means for differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel;
first modifying means coupled to the output of the differentiating means for modifying the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; and second modifying means coupled to the outputs of the flowmeter and the first modifying means for modifying the first signal with the fourth signal to produce a fifth signal proportional to the rate of flow of the drilling fluid back to the mud system and the volume of the flow path of the drilling fluid.
9. An apparatus for detecting the commencement of blowouts and lost circulation in a subaqueous wellhole connected through risers or the like with the floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, according to claim 8, including:
comparing means coupled to the output of the second modifying means for comparing the fifth signal with preselected threshold valves to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
10. An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including:
a first flowmeter for transducing the rate of flow of i the drilling fluid away from the mud system into a first electrical signal proportional thereto;
a second flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a second electrical signal proportional thereto;
comparing means coupled to the outputs of the first and second flowmeters for comparing the first and second electrical signals and generating a third electrical signal proportional to the difference therebetween;
a third transducer associated with the vessel for transducing the heaving motion of the vessel into a fourth electrical signal proportional thereto;
differentiating means coupled to the output of the third transducer for differentiating the fourth electrical signal with respect to time to produce a fifth electrical signal proportional to the rate of heave of the vessel;
first modifying means coupled to the output of the differentiating means for modifying the fifth electrical signal to produce a sixth electrical signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; and
second modifying means coupled to the outputs of the comparing means and the first modifying means for modifying the third electrical signal with the sixth electrical signal to produce a seventh electrical signal proportional to the difference in the rates of flow of the drilling fluid away from and back to the mud system and the volume of the flow path of the drilling fluids.
11. An apparatus for detecting the commencement of blowouts and lost circulation in a subaqueous wellhole connected through risers or the like with the floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, according to claim 10, including:
comparing means coupled to the output of the second modifying means for comparing the seventh electrical signal with preselected threshold signals to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
12. In a vessel floating in water and connected to a subaqueous wellhole through risers and the like, an apparatus for monitoring the flow rates of drilling fluid circulating from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the change in the volume of the flow path of the drilling fluid caused by the motion of the vessel the water is compensated for substantially instantaneously, including:
means for detecting the rate of flow of the drilling fluid back to the mud system and generating a first electrical signal proportional thereto;
transducer means associated with the vessel for transducing the heaving motion of the vessel relative to the wellhead into a second electrical signal proportional thereto;
means for differentiating the second electrical signal with respect to time to produce a third electrical signal proportional to the rate of the heaving motion of the vessel relative to the wellhead;
means for scaling the third electrical signal according to the cross-sectional area of the flow path of the drilling fluid; and
means for modifying the first electrical signal with the third electrical signal.

Claims (12)

1. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of: detecting the rate of flow of the drilling fluid back to the mud system and generating a signal proportional thereto; and modifying the signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
2. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of: detecting the rates of flow of the drilling fluid away from and back to the mud system and generating a signal proportional to the difference therebetween; and modifying the signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel.
3. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of: transducing the rate of flow of the drilling fluid back to the mud system into a first signal proportional thereto; transducing the heaving motion of the vessel into a second signal proportional thereto; differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel; scaling the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; modifying the first signal with the fourth signal to produce a modified first signal proportional to the rate of flow of the drilling fluid back to the mud system and the heave of the vessel; and comparing the modified first signal with preselected threshold valves to determine the difference therebetween, a preselected difference between the threshold valves and the modified first signal being indicative of the commencement of a blowout or lost circulation.
4. A method of detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including the steps of: transducing the rate of flow of the drilling fluid away from the mud system into a first signal proportional thereto; transducing the rate of flow of the drilling fluid back to the mud system into a second signal proportional thereto; comparing the first and second signals and generating a third signal proportional to their difference; transducing the heaving motion of the vessel into a fourth signal proportional thereto; differentiating the fourth signal with respect to time to produce a fifth signal proportional to the rate of heave of the vessel; scaling the fifth signal to produce a sixth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; modifying the third signal with the sixth signal to produce a modified third signal proportional to the difference in the rates of flow of the drilling fluid away from and back to the mud system and the heave of the vessel; and comparing the modified third signal with preselected threshold signals to determine the difference therebetween, a preselected difference between the threshold signals and the modified third signal being indicative of the commencement of a blowout or loss circulation.
5. In a vessel floating in water and connected to a subaqueous wellhole through risers and the like, a method of monitoring the flow rate of drilling fluid being circulated from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the heaving motion of the vessel in the water is compensated for, including the steps of: detecting the rates of flow of the drilling fluid back to the mud system and generating a first signal proportional thereto; transducing the heaving motion of the vessel into a second signal proportional thereto; differentiating the second signal with Respect to time to produce a third signal proportional to the rate of heave of the vessel; scaling the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; modifying the first signal with the fourth signal to produce a modified first signal proportional to the rate of flow of the drilling fluid back to the mud system and the heave of the vessel; and comparing the modified first signal with preselected threshold signals to determine the difference therebetween, a preselected difference between the threshold signals and the modified first signal being indicative of the commencement of a blowout or loss circulation.
6. An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system, including: means for detecting the rate of flow of the drilling fluid away from and back to the mud system and generating an electrical signal proportional to the difference therebetween; means for detecting the heaving movement of the vessel relative to the wellhole; and means for modifying the electrical signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel relative to the wellhole.
7. An apparatus for detecting the commencement of blowouts or loss circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from the mud system aboard the vessel into the wellhole and circulated back to the mud system, including: means for detecting the rate of flow of the drilling fluid back to the mud system and generating a signal proportional thereto; means for detecting the heaving motion of the vessel relative to the wellhole; and means for modfying the signal to compensate substantially instantaneously for the change in the volume of the flow path of the drilling fluid caused by the heaving motion of the vessel relative to the wellhole.
8. An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system abroad the vessel into the wellhole and circulated back to the mud system, including: a flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a first signal proportional thereto; means associated with the vessel for transducing the heaving motion of the vessel into a second signal proportional thereto; differentiating means coupled to the output of the transducer means for differentiating the second signal with respect to time to produce a third signal proportional to the rate of heave of the vessel; first modifying means coupled to the output of the differentiating means for modifying the third signal to produce a fourth signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; and second modifying means coupled to the outputs of the flowmeter and the first modifying means for modifying the first signal with the fourth signal to produce a fifth signal proportional to the rate of flow of the drilling fluid back to the mud system and the volume of the flow path of the drilling fluid.
9. An apparatus for detecting the commencement of blowouts and lost circulation in a subaqueous wellhole connected through risers or the like with the floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, according to claim 8, including: comparing means coupled to the outpuT of the second modifying means for comparing the fifth signal with preselected threshold valves to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
10. An apparatus for detecting the commencement of blowouts or lost circulation in a subaqueous wellhole connected through risers or the like with a floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, including: a first flowmeter for transducing the rate of flow of the drilling fluid away from the mud system into a first electrical signal proportional thereto; a second flowmeter for transducing the rate of flow of the drilling fluid back to the mud system into a second electrical signal proportional thereto; comparing means coupled to the outputs of the first and second flowmeters for comparing the first and second electrical signals and generating a third electrical signal proportional to the difference therebetween; a third transducer associated with the vessel for transducing the heaving motion of the vessel into a fourth electrical signal proportional thereto; differentiating means coupled to the output of the third transducer for differentiating the fourth electrical signal with respect to time to produce a fifth electrical signal proportional to the rate of heave of the vessel; first modifying means coupled to the output of the differentiating means for modifying the fifth electrical signal to produce a sixth electrical signal proportional to the rate of heave of the vessel and the cross-sectional area of the flow path of the drilling fluid; and second modifying means coupled to the outputs of the comparing means and the first modifying means for modifying the third electrical signal with the sixth electrical signal to produce a seventh electrical signal proportional to the difference in the rates of flow of the drilling fluid away from and back to the mud system and the volume of the flow path of the drilling fluids.
11. An apparatus for detecting the commencement of blowouts and lost circulation in a subaqueous wellhole connected through risers or the like with the floating vessel and in which drilling fluid is being pumped from a mud system aboard the vessel into the wellhole and circulated back to the mud system, according to claim 10, including: comparing means coupled to the output of the second modifying means for comparing the seventh electrical signal with preselected threshold signals to determine the difference therebetween, a preselected difference therebetween being indicative of the commencement of a blowout or lost circulation.
12. In a vessel floating in water and connected to a subaqueous wellhole through risers and the like, an apparatus for monitoring the flow rates of drilling fluid circulating from a mud system aboard the vessel down into the wellhole and back to the mud system, wherein the change in the volume of the flow path of the drilling fluid caused by the motion of the vessel the water is compensated for substantially instantaneously, including: means for detecting the rate of flow of the drilling fluid back to the mud system and generating a first electrical signal proportional thereto; transducer means associated with the vessel for transducing the heaving motion of the vessel relative to the wellhead into a second electrical signal proportional thereto; means for differentiating the second electrical signal with respect to time to produce a third electrical signal proportional to the rate of the heaving motion of the vessel relative to the wellhead; means for scaling the third electrical signal according to the cross-sectional area of the flow path of the drilling fluid; and means for modifying the first electrical signal with the third electrical signal.
US508883A 1973-10-04 1974-09-26 Motion compensated blowout and loss circulation detection Expired - Lifetime US3910110A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US508883A US3910110A (en) 1973-10-04 1974-09-26 Motion compensated blowout and loss circulation detection
GB4245374A GB1453203A (en) 1973-10-04 1974-09-30 Motion compensated blowout and lost circulation detection
NL7412994A NL7412994A (en) 1973-10-04 1974-10-02 METHOD AND DEVICE FOR DETECTING AND BEGINNING ERUPTION OR A CIRCULATION IN A WELL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40338073A 1973-10-04 1973-10-04
US508883A US3910110A (en) 1973-10-04 1974-09-26 Motion compensated blowout and loss circulation detection

Publications (1)

Publication Number Publication Date
US3910110A true US3910110A (en) 1975-10-07

Family

ID=27018265

Family Applications (1)

Application Number Title Priority Date Filing Date
US508883A Expired - Lifetime US3910110A (en) 1973-10-04 1974-09-26 Motion compensated blowout and loss circulation detection

Country Status (3)

Country Link
US (1) US3910110A (en)
GB (1) GB1453203A (en)
NL (1) NL7412994A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976148A (en) * 1975-09-12 1976-08-24 The Offshore Company Method and apparatus for determining onboard a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connecting between the wellhouse and the vessel
US4063602A (en) * 1975-08-13 1977-12-20 Exxon Production Research Company Drilling fluid diverter system
US4099582A (en) * 1976-09-03 1978-07-11 Martin-Decker Company, A Division Of Gardner-Denver Drilling fluid compensation device
US4147222A (en) * 1975-11-28 1979-04-03 Bunker Ramo Corporation Acoustical underwater communication system for command control and data
US4208906A (en) * 1978-05-08 1980-06-24 Interstate Electronics Corp. Mud gas ratio and mud flow velocity sensor
US4273212A (en) * 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4282939A (en) * 1979-06-20 1981-08-11 Exxon Production Research Company Method and apparatus for compensating well control instrumentation for the effects of vessel heave
US4440239A (en) * 1981-09-28 1984-04-03 Exxon Production Research Co. Method and apparatus for controlling the flow of drilling fluid in a wellbore
US4527425A (en) * 1982-12-10 1985-07-09 Nl Industries, Inc. System for detecting blow out and lost circulation in a borehole
US4553429A (en) * 1984-02-09 1985-11-19 Exxon Production Research Co. Method and apparatus for monitoring fluid flow between a borehole and the surrounding formations in the course of drilling operations
US4566318A (en) * 1984-03-30 1986-01-28 Nl Industries, Inc. Method for optimizing the tripping velocity of a drill string
US4610161A (en) * 1985-07-05 1986-09-09 Exxon Production Research Co. Method and apparatus for determining fluid circulation conditions in well drilling operations
US4733232A (en) * 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4815536A (en) * 1985-03-19 1989-03-28 Noel Carroll Analysis of multi-phase mixtures
WO1991010132A1 (en) * 1989-12-22 1991-07-11 Electro-Flow Controls Limited A gas detection system
US5163029A (en) * 1991-02-08 1992-11-10 Teleco Oilfield Services Inc. Method for detection of influx gas into a marine riser of an oil or gas rig
FR2682715A1 (en) * 1991-10-21 1993-04-23 Elf Aquitaine Gas inrush detector
US5205166A (en) * 1991-08-07 1993-04-27 Schlumberger Technology Corporation Method of detecting fluid influxes
US5205165A (en) * 1991-02-07 1993-04-27 Schlumberger Technology Corporation Method for determining fluid influx or loss in drilling from floating rigs
US6499540B2 (en) * 2000-12-06 2002-12-31 Conoco, Inc. Method for detecting a leak in a drill string valve
WO2006050488A1 (en) * 2004-11-03 2006-05-11 Shell Internationale Research Maatschappij B.V. Apparatus and method for retroactively installing sensors on marine elements
US20110253445A1 (en) * 2010-04-16 2011-10-20 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US20120125690A1 (en) * 2010-10-21 2012-05-24 Conocophillips Company Ice worthy jack-up drilling unit with telescoping riser
US20130014991A1 (en) * 2010-02-24 2013-01-17 Managed Pressure Operations PTE, Limited Drilling system and method of operating a drilling system
EP2806100A1 (en) * 2013-05-24 2014-11-26 Geoservices Equipements Method for monitoring the drilling of a well using a floating drilling rig and associated monitoring system
EP2949858A1 (en) * 2014-05-13 2015-12-02 Weatherford Technology Holdings, LLC Marine diverter system with real time kick or loss detection
EP2904202A4 (en) * 2012-10-05 2016-06-22 Halliburton Energy Services Inc Detection of influxes and losses while drilling from a floating vessel
US9500053B2 (en) 2013-12-17 2016-11-22 Managed Pressure Operations Pte. Ltd. Drilling system and method of operating a drilling system
US9506300B2 (en) 2011-04-21 2016-11-29 Managed Pressure Operations Pte Ltd. Slip joint and method of operating a slip joint
US10435966B2 (en) 2013-12-17 2019-10-08 Managed Pressure Operations Pte Ltd Apparatus and method for degassing drilling fluids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO162881C (en) * 1983-06-23 1990-02-28 Teleco Oilfield Services Inc PROCEDURE AND APPARATUS FOR DETECTION OF FLUIDUM FLOW DRAWINGS IN DRILL.
GB2273512A (en) * 1992-12-12 1994-06-22 Timothy Peter Blatch Compensation for mud flow indicators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760891A (en) * 1972-05-19 1973-09-25 Offshore Co Blowout and lost circulation detector
US3811322A (en) * 1972-09-25 1974-05-21 Offshore Co Method and apparatus for monitoring return mud flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760891A (en) * 1972-05-19 1973-09-25 Offshore Co Blowout and lost circulation detector
US3811322A (en) * 1972-09-25 1974-05-21 Offshore Co Method and apparatus for monitoring return mud flow

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063602A (en) * 1975-08-13 1977-12-20 Exxon Production Research Company Drilling fluid diverter system
US3976148A (en) * 1975-09-12 1976-08-24 The Offshore Company Method and apparatus for determining onboard a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connecting between the wellhouse and the vessel
US4147222A (en) * 1975-11-28 1979-04-03 Bunker Ramo Corporation Acoustical underwater communication system for command control and data
US4099582A (en) * 1976-09-03 1978-07-11 Martin-Decker Company, A Division Of Gardner-Denver Drilling fluid compensation device
US4208906A (en) * 1978-05-08 1980-06-24 Interstate Electronics Corp. Mud gas ratio and mud flow velocity sensor
US4273212A (en) * 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4282939A (en) * 1979-06-20 1981-08-11 Exxon Production Research Company Method and apparatus for compensating well control instrumentation for the effects of vessel heave
US4440239A (en) * 1981-09-28 1984-04-03 Exxon Production Research Co. Method and apparatus for controlling the flow of drilling fluid in a wellbore
US4527425A (en) * 1982-12-10 1985-07-09 Nl Industries, Inc. System for detecting blow out and lost circulation in a borehole
US4733232A (en) * 1983-06-23 1988-03-22 Teleco Oilfield Services Inc. Method and apparatus for borehole fluid influx detection
US4553429A (en) * 1984-02-09 1985-11-19 Exxon Production Research Co. Method and apparatus for monitoring fluid flow between a borehole and the surrounding formations in the course of drilling operations
US4566318A (en) * 1984-03-30 1986-01-28 Nl Industries, Inc. Method for optimizing the tripping velocity of a drill string
US4815536A (en) * 1985-03-19 1989-03-28 Noel Carroll Analysis of multi-phase mixtures
US4610161A (en) * 1985-07-05 1986-09-09 Exxon Production Research Co. Method and apparatus for determining fluid circulation conditions in well drilling operations
WO1991010132A1 (en) * 1989-12-22 1991-07-11 Electro-Flow Controls Limited A gas detection system
US5205165A (en) * 1991-02-07 1993-04-27 Schlumberger Technology Corporation Method for determining fluid influx or loss in drilling from floating rigs
US5163029A (en) * 1991-02-08 1992-11-10 Teleco Oilfield Services Inc. Method for detection of influx gas into a marine riser of an oil or gas rig
US5205166A (en) * 1991-08-07 1993-04-27 Schlumberger Technology Corporation Method of detecting fluid influxes
FR2682715A1 (en) * 1991-10-21 1993-04-23 Elf Aquitaine Gas inrush detector
US6499540B2 (en) * 2000-12-06 2002-12-31 Conoco, Inc. Method for detecting a leak in a drill string valve
GB2434863A (en) * 2004-11-03 2007-08-08 Shell Int Research Apparatus and method for retroactively installing sensors on marine elements
WO2006050488A1 (en) * 2004-11-03 2006-05-11 Shell Internationale Research Maatschappij B.V. Apparatus and method for retroactively installing sensors on marine elements
US7398697B2 (en) 2004-11-03 2008-07-15 Shell Oil Company Apparatus and method for retroactively installing sensors on marine elements
AU2005302031B2 (en) * 2004-11-03 2008-10-09 Shell Internationale Research Maatschappij B.V. Apparatus and method for retroactively installing sensors on marine elements
GB2434863B (en) * 2004-11-03 2010-02-03 Shell Int Research Apparatus and method for retroactively installing sensors on marine elements
US20060115335A1 (en) * 2004-11-03 2006-06-01 Allen Donald W Apparatus and method for retroactively installing sensors on marine elements
US20130014991A1 (en) * 2010-02-24 2013-01-17 Managed Pressure Operations PTE, Limited Drilling system and method of operating a drilling system
US8973674B2 (en) * 2010-02-24 2015-03-10 Managed Pressure Operations Pte Ltd. Drilling system and method of operating a drilling system
US8863858B2 (en) * 2010-04-16 2014-10-21 Weatherford/Lamb, Inc. System and method for managing heave pressure from a floating rig
US20130118806A1 (en) * 2010-04-16 2013-05-16 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US20150034326A1 (en) * 2010-04-16 2015-02-05 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US20110253445A1 (en) * 2010-04-16 2011-10-20 Weatherford/Lamb, Inc. System and Method for Managing Heave Pressure from a Floating Rig
US9260927B2 (en) * 2010-04-16 2016-02-16 Weatherford Technology Holdings, Llc System and method for managing heave pressure from a floating rig
US8347982B2 (en) * 2010-04-16 2013-01-08 Weatherford/Lamb, Inc. System and method for managing heave pressure from a floating rig
US20120125690A1 (en) * 2010-10-21 2012-05-24 Conocophillips Company Ice worthy jack-up drilling unit with telescoping riser
US9506300B2 (en) 2011-04-21 2016-11-29 Managed Pressure Operations Pte Ltd. Slip joint and method of operating a slip joint
US9874081B2 (en) 2012-10-05 2018-01-23 Halliburton Energy Services, Inc. Detection of influxes and losses while drilling from a floating vessel
EP2904202A4 (en) * 2012-10-05 2016-06-22 Halliburton Energy Services Inc Detection of influxes and losses while drilling from a floating vessel
EP2806100A1 (en) * 2013-05-24 2014-11-26 Geoservices Equipements Method for monitoring the drilling of a well using a floating drilling rig and associated monitoring system
US9500053B2 (en) 2013-12-17 2016-11-22 Managed Pressure Operations Pte. Ltd. Drilling system and method of operating a drilling system
US9845649B2 (en) 2013-12-17 2017-12-19 Managed Pressure Operations Pte. Ltd. Drilling system and method of operating a drilling system
US10435966B2 (en) 2013-12-17 2019-10-08 Managed Pressure Operations Pte Ltd Apparatus and method for degassing drilling fluids
US9822630B2 (en) 2014-05-13 2017-11-21 Weatherford Technology Holdings, Llc Marine diverter system with real time kick or loss detection
EP2949858A1 (en) * 2014-05-13 2015-12-02 Weatherford Technology Holdings, LLC Marine diverter system with real time kick or loss detection

Also Published As

Publication number Publication date
GB1453203A (en) 1976-10-20
NL7412994A (en) 1975-04-08

Similar Documents

Publication Publication Date Title
US3910110A (en) Motion compensated blowout and loss circulation detection
CA1057081A (en) Method and apparatus for determining on-board a heaving vessel the flow rate of drilling fluid flowing out of a wellhole and into a telescoping marine riser connected between the wellhole and vessel
US4282939A (en) Method and apparatus for compensating well control instrumentation for the effects of vessel heave
US3955411A (en) Method for measuring the vertical height and/or density of drilling fluid columns
US10132129B2 (en) Managed pressure drilling with rig heave compensation
US5006845A (en) Gas kick detector
US5168932A (en) Detecting outflow or inflow of fluid in a wellbore
US4535851A (en) Fluid flow measurement system
US4703664A (en) Fluid flow measurement system sensor mounting block
US5978739A (en) Disconnect information and monitoring system for dynamically positioned offshore drilling rigs
US4063602A (en) Drilling fluid diverter system
US20040065440A1 (en) Dual-gradient drilling using nitrogen injection
US5163029A (en) Method for detection of influx gas into a marine riser of an oil or gas rig
US10487599B2 (en) Bell nipple
CA1275714C (en) Method and apparatus for determining fluid circulation conditions in well drilling operations
EP0302558A1 (en) Method of analysing fluid influxes in hydrocarbon wells
Bode et al. Well-control methods and practices in small-diameter wellbores
US3811322A (en) Method and apparatus for monitoring return mud flow
US3809170A (en) Method and apparatus for detecting fluid influx in offshore drilling operations
Stokka et al. Gas kick warner-an early gas influx detection method
US4099582A (en) Drilling fluid compensation device
US3369600A (en) Offshore operations in wells
US4612993A (en) Riser position indication apparatus
Spreux et al. Logging Horizontal Wells–Field Practice for Various Techniques
Doria et al. Kick detection in floating drilling rigs

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONAT OFFSHORE DRILLING INC.

Free format text: CHANGE OF NAME;ASSIGNOR:OFFSHORE COMPANY, THE;REEL/FRAME:004048/0943

Effective date: 19820105