US3907650A - Photosensitive binder layer for xerography - Google Patents

Photosensitive binder layer for xerography Download PDF

Info

Publication number
US3907650A
US3907650A US332044A US33204473A US3907650A US 3907650 A US3907650 A US 3907650A US 332044 A US332044 A US 332044A US 33204473 A US33204473 A US 33204473A US 3907650 A US3907650 A US 3907650A
Authority
US
United States
Prior art keywords
substrate
nickel
acid
effected
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US332044A
Inventor
Heinz W Pinsler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US332044A priority Critical patent/US3907650A/en
Priority to US440907A priority patent/US3914126A/en
Priority to NL7401924A priority patent/NL7401924A/xx
Application granted granted Critical
Publication of US3907650A publication Critical patent/US3907650A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • G03G5/144Inert intermediate layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals

Definitions

  • This invention relates to fast, highly flexible photoreceptor elements and to a process for obtainingsuch elements comprising a nickel or nickel-coated substrate, particularly of the belt type. having a photoconductive layer strongly affixed thereto and joined in good blocking and charge injection-preventing contact with the substrate through the utilization of at least two intermediate nickel oxide blocking layers arranged between the substrate and the photoconductive layer.
  • a photoeonducting insulating layer is first given a uniform electrostatic charge in order to sensitize its surface.
  • the layer is then exposed to an image as defined by electromagnetic radiation, such light, which selectively dissipates the applied charge in the illuminated areas of the photoeonducting insulating layer while leaving behind a latent electrostatic image in the non-illuminated areas.
  • the latent electrostatic image may be developed and made visible by deposited finely divided elcctroscopic marking particles on the surface of the photoconductive layer.
  • a xerographic photoreceptor plate includes a supporting conductive base or substrate which is generally characterized by the ability to accommodate the release of electric charge upon exposure of the photoconductive member to activating radiation such as light.
  • this substrate must have a specific resistivity ofless than about l'" ohm-cm, preferably less than about 10 ohmcm and have sufficient structural strength to provide mechanical support for a photoconductive member.
  • the conventional xerographic plate also normally has a photoconductive insulating layer overlaying the conductive base or substrate.
  • Photoconductive layers may comprise a number of materials known in the art. For example, selenium-containing photoconductive material such as vitreous selenium, or selenium modifled with varying amounts of arsenic are found suitable. In general, however, such photoconductive layer must have a specific resistivity greater than about ohm- .cm in the absence of illumination and preferably at least 10 ohm-cm. In addition, the resistivity should drop at least several orders of magnitude in the presence of activating radiation or light. This layer should also support an electrical potential of at least about 100 volts in the absence of radiation and customarily may vary in thickness from about 10 to 200 microns.
  • a photoconductive layer having the above configura-v tion normally will exhibit some reduction in potential or voltage leak even in the absence of activating radiation. This phenomenon is known as dark decay" and will vary somewhat with usage of a photoreceptor. The existence of the problem ofdark decay" is well known and has been controlled to some extent by incorporation ofthin barrier layers such as dielectric material between the base or substrate and the photoconductive insulating layer.
  • US. Pat. No. 2,901,348 to Dessauer ct al utilizes a film of aluminum oxide (Ex. to 200 angstroms) or an insulating resin layer, such as a polystyrene (Ex. 0.1 to 2 microns) for this purpose. With some limitations.
  • barrier layers function to allow the photoconductive layer to support a charge of high field strength while minimizing charge dissipation in the absence of illumination.
  • the photoconductive layer should still become conductive and permit a migration of the existing ,U.S. Pat. No..3,69l,450).
  • belt'type photoreceptors have the advantage of greater speed for xerographic copying purposes, there are also serious technical problems inherent in their use. For example, high speed machine-cycling conditions demand strong adhesion between a photoconductive layer and the underlying substrate compared with the slower aluminum photoreceptor drum which does not substantially flex.
  • any interface between the electrically conductive supporting substrate and the photoconductive layer be chemically stable since changes at this point will have a substantial effect on the electrical properties of the photo-receptor.
  • belts of this material also have some limitations or deficiencies. For example, it is difficult to find suitable blocking layers for controlling charge-injection while still avoiding a flaking off or spalling of the photoconductive layer.
  • the flowing electrical current in such case, is space-charge-limited, and greater than the normal ohmic current is expected with equilibrium carrier concentrations.
  • the magnitude of such space-chargc-limited current is difficult to predict (in any case) because of the presence and effect of traps on charge transport through a photoconductive material.
  • charge injection can and should be prevented or at least limited to assure chargeabilityof the photoconductor and by dark discharge. Mere thickness of insulating layer alone, however, will not provide a suitable answer since an intolerable residual voltage can be built up if an insulating layer becomes too thick.
  • the term work function is defined as .a difference inlenergy level between electrons-present in a particular-material and thosecalculated: at infinite distance in vacuo; i.e., a binding energy.
  • an electron blocking contact is formed for xerographic purposes whenever the electronic work function of the metal substrate is larger than that of the over-lying photoconductive insulator layer. If, on the other hand, the electronic work function of the.substrate is smaller than the photoconductive insulator, electrons are injected into the sys tem.
  • a material which conducts only holes can also be employed as an electron block'- ing interface, provided it is deposited as a thin layer between the photoconductive layer and the chargeconducting substrate.
  • Such material includes, for instance, chlorineand arsenic-rich selenium.
  • lt- is an object of the present invention to obtain improved flexible photoreceptor elements for xerographic copying purposes, in which a nickel or nickelcoated charge conductive substrate layer and a photoconductive layer, particularly a selenium-containing photoconductive layer are strongly bonded without loss of charge-injection-blocking properties.
  • lt is a further object of the present invention to obtain photoconductive layers affixed to a nickel or nickel coated substrate by chemically stable flex-proof bonding which is easily applied.
  • a nickel or nickelcoated substrate such as metallized paper or metallized plastic belt with an etching composition an inorganic acid, inclusive of phosphoric, sulfuric, or composition comprising acid, or combination thereof, in the presa saturated calomel"electrode,has a maximum value of about 0.85 volt.
  • the substrate is then further treated by depositing a suitable photoconductive layer, particularly a selenium-c'ontaining'.photoconductive layer of one of the usual type" upon the treated substrate to obtain the desired photoreceptor element.
  • a suitable photoconductive layer particularly a selenium-c'ontaining'.photoconductive layer of one of the usual type
  • nickel or nickel-covered substrate suitable for use in photoreceptor elements within the present invention fare kept free of surface contaminants other than necessary additives "sucl1*as dopants.
  • This pre-condition can be easily obtained through the use of one or more cleaning ste'ps wherein the substrate is initially immersed for a brief period into a clea'ning bath.
  • Suitable cleaners for such purpose are 'sold commercially and are exemplified, for instance, by Mitchell Bradford No. 14 Cleaner and by Mobil A'cid Cleaner.
  • the cleaned and well-rinsed substrate is optionally furthertreate'cl with a pre-etch acid washsolution, preferably one containing an inorganic acid solu-. tionsuchas hydrochloric acid or phosphoric acid, and
  • a catalytic amount is' or palladium can be supplied. by inclusion of one or both in (a).the pre-etch acid wash solution, (b) in the .etching composition, or (c) in both the washsolution and etching composition. In each case, however, a total solution concentration of about 0.01%. 0.10% by weight is found sufficientto assure anadequatecata? 'lytic deposition on the nickel belt surface,. provided proper temperature and time conditions are met.
  • a pre-etch acid washing step is preferably carried out at a temperature range of about 15C 85C, for a period of about l-5 minutes.
  • The'microetching step can be usefully carried out at a somewhat higher temperature range of about 20C l 10C and for a period of about ence of at least one of palladium chloride, chloroplatinic acid or ferric sulfate. This step is followed by anodizing the resulting microetched chemically oxidized- 2-?15 minutes. Where increased concentration and/or differences in temperature are permitted, however, the treatment time can be varied somewhat without substantially affecting the desired properties.
  • a suitable etching solution for purposes of the present invention can comprise v.l. an inorganic acid solution containing at least one of phosphoric acid, sulfuric acid or hydrochloric
  • the etching bath used in the present invention can usefully include a water soluble alkali metal halide or a metal sulfate salt exemplified by KCl and Fe (SO A concentration range of from up through about 10% by weight of such metal salts is found useful, provided at minimum of about 8% 10% by weight of the metal sulfate such as Fe (SO is utilized in the absence of either platinum or palladium catalyst in the acid washing and etching baths.
  • the amount of inorganic acid or acids present in the etching composition can usefully vary, a concentration of about 10% 60% by weight being suitable, and a concentration of 10% 25% by weight being preferred for purposes of the present invention.
  • the presence of phosphoric acid in this etching composition is a further preferred embodiment of the present invention.
  • the washed microetched and oxide-coated substrate is subject to an anodizing step by immersing and treating as an anode in an electrolytic bath until the potential of the electrode as measured against a saturated calomel electrode changes from a negative value to a value not exceeding about 0.85 volt.
  • a second oxide coat is applied over the previous chemically-applied metal oxide coat on the nickel substrate.
  • additional coat it is convenient, for instance, to immerse the substrate (i.e., the belt) as an anode in an electrolytic bath with a chromate salt solution as electrolyte.
  • This bath can usefully operate at an applied current of about 3-l0m A/cm until the anode potential (with current cut off and measured against a saturated calomel electrode) has the maximum potential value indicated above.
  • This step is most efficiently carried out at a current density of about 5--10mA/cm and for a period varying from about l-l5 minutes.
  • Suitable electrolytes for the electrolytic bath include, for instance, a 515% solution (by weight) of Na- C- r 0 K Cr O Na CrO K CrO or H CrO at room temperature up to about 95C, and preferably about 50C through 95C.
  • the parameters of( l temperature (2) electrolyte concentration and-(3) current density are inversely related to the anodizing treatment time for purposes of obtaining a suitable second oxide layer on the belt.
  • nickel oxide layer by glow discharge techinque.
  • the nickel substrate is made the anode under partial vacuum, with a current density of about 3 X 10 A/cm and a voltage (cathode) of about 2.5 K. ⁇ /. for a period of about 1-5 minutes.
  • This technique is modified and described in detail in Vol. 54 of J. Chimie Physique,
  • a photoconductive layer preferably a se1enium-containing photoconductive layer
  • a photoconductive layer is depos ited upon a surface of the treated and washed substrate to complete the major components of the photoreceptor element.
  • selenium-containing photoconductor material and techniques as described, for instance, in U.S. Pat. Nos, 2,753,278, 2,970,906, 3,312,548 and 3,490,903; a particularly suitable technique involves sealing selenium, arsenic and a halogen in a container under heat to form a homogeneous material, which is then applied onto a cooled substrate by evaporation from a lined crucible under vacuum.
  • Suitable photoconductive layers applicable to the present invention include, for instance, a cadmium selenide, a gallium triselenide, an arsenic triselenide, an antimony-seleniumor seleniumarsenic-halogen layer. Also included are photoconductive layers containing Tellurium, Germanium and Bismuth.
  • Steps A and B are examined microscopically and Gloss measurements made in the usual way in accordance with the following descriptions, and reported in Table I.
  • the morphology of the etched nickel foil is examined by a scanning electron microscope and an optical microscope, applying ultramicrotome techniques to obtain vertical cross sections of the foils.
  • Example II A nickel test belt identical with the one used in Example l, and identified as A-3 is treated as in Example 1 A except that a PdCl catalyst is utilized by immersing the belt in a pre-etch acid wash solution containing O.25g/liter PdCl and 300 ml/liter of concentrated l-ICl.
  • micro etching step is then carried out for 5 minutes in a bath containing 650 ml/liter of 85.5% l-I -,PO and g/liter of KCl; with evolution of some chlorine byproduct.
  • the microetched belt is then rinsed and dried as in Example I and evaluated (Table II) before further treatment.
  • a commercial cleaner Mitsubishi No. 14 Cleaner
  • EXAMPLE IV Four nickel test belts identical with those used in Examples I-IV, and identified as A -8, are cleaned and rinsed in deionized water as in Example I then immersed (without a pre-etch acid wash) in an etching solution containing 184 g/liter of Fe (SO and 97.5 g/liter of H SO at 85C. After treating the four belts in the etching bath for varying periods of time, they are removed, rinsed and driedas in Example I and evaluated (Table II) before further treatment.
  • the oxidized nickel belt has a dull appearance and is evaluated as G (see Table II footnote).
  • EXAMPLE VII -A Samples from test belts A 1-9 of Examples I-IV are next treated for 10 minutes in an electrolytic bath containing sodium chromate solution as electrolyte 10% by weight at pH6), operating at 90C with a cur- I rent density of 5 mA/cm After treatment, the test period the mandril is constantly rotated at about 6 rev-- olutions per minute to obtain an external photoconductor surface having a uniform thickness of about u. Each belt is then tested for mechanical and electrical properties and the results reported in Table III.
  • Test belt A-l0 of Example VI (the Control) is directly coated with a selenium photoconductive layer as in Example VII without the prior 10 minute treatment
  • the belt is bent three times over a cylinder having a 1 /4 inches diameter at Room Temperature and then checked for cracks in the substrate and layers applied thereto.
  • the photoreceptor belt is charged at 900 volt in the dark and the potential checked after 3 seconds. A dark decay or voltage loss of 12% or less is acceptable for general xerographic purposes.
  • Vc. Determination Test An electrical charge is added stepwise to a photoreceptor surface in the dark and it is determined at what voltage the charging behavior of the photoreceptor begins to substantially deviate (by 40 volts) from the desired (linear) charging characteristics. A maximum voltage of 900 volts 950 volts is considered fair, 950 volts l 100 volts is good, 1 I00 1500 volts is very good and 1500 1600 volts is considered excellent.
  • Print Test About 50 square inches of photoreceptor are dark charged at 900 volts and developed without light exposure after about seconds using fine powdered toner. The presence of light or dark spots or a visible pattern is attributed to uneven dark discharge of the photoreceptor attributable to non-uniformities of the interface.
  • a photoreceptor element comprising a nickel or nickel-coated substrate and a photoconductive layer joined in good blocking and charge-injection preventing contact with the substrate through at least two intermediate nickel oxide blocking layers arranged between the substrate and the photoconductive layer
  • the improvement comprising microetching and chemically oxidizing the nickel or nickel-coated substrate with a composition comprising an inorganic acid selected from the group consisting of phosphoric acid, sulfuric acid and hydrochloric acid, in the presence of at least one of palladium chloride, chloroplatinic acid, or ferric sulfate;
  • microetching step is effected with an etching bath comprising phosphoric acid and chloroplatinic acid.
  • microetching step is effected with an etching bath comprising phosphoric acid and palladium chloride.
  • test belt identified as A-ll is prepared as in Example Ill and then the etched and coated belt is subject to Glow Discharge treatment for 2 minutes at a chamber pressure of about 70 p. mercury (100 mA with substrate cathode voltage of 2.5 kv). The treated belt is then coated with a selenium photoconductive layer on a rotating mandrel for minutes as in Example VII.
  • the electrical and mechanical properties of the belt are found to be comparable to those of belts A-3 and A-4 (Table III).
  • etching composition comprising 1. an inorganic acid solution containing at least one of phosphoric acid, sulfuric acid, or hydrochloric acid,

Abstract

A process for applying a photoconductive layer to a flexible nickel or nickel-coated substrate by initially subjecting a nickel sheet or belt to an acid etching bath followed by anodizing treatment in an electrolytic bath to obtain at least two intermediate metal oxide layers such as nickel oxide layers having superior adhesive and charge-injection-blocking characteristics; and a flexible photoreceptor element with such structure which is especially useful for high-speed xerographic copy work.

Description

United States Patent 1191 Pinsler [451 Sept. 23, 1975 [75] Inventor: Heinz W. Pinsler, Brighton, NY.
[73] Assignee: Xerox Corporation, Stamford,
Conn.
[22] Filed: Feb. 12, 1973 [21] Appl. No.: 332,044
[52] US. Cl 204/34; 204/32 R; 156/18; 148/614 R; 148/615 R; 96/1.5 [51] Int. Cl. C25D 11/34; C09K 13/04; G03C 3/36; G03G 5/04 [58] Field of Search 204/32 R, 34; 252/792; 156/18; 148/614 R, 6.15 R; 117/34 [56] References Cited UNITED STATES PATENTS 1,818,579 8/1931 Pfleiderer 204/129 2,569,453 10/1951 Chester et al.... 204/34 2,606,866 8/1952 Neish 204/56 R 2,806,000 9/1957 Streicher 156/18 X 2,940,838 6/1960 Snyder et a1 252/79.2 X
3,245,885 4/1966 Asano et al 204/35 N 3,253,968 5/1966 Shepherd et a1 252/792 X 3,316,179 4/1967 Hoornstra et al 252/792 X 3,650,929 3/1972 3,684,368 8/1972 3,685,989 8/1972 Galen 96/15 X Primary Examiner-F. C. Edmundson Attorney, Agent, or Firm-John E. Crowe; James P. OSullivan; James J. Ralabate [57 ABSTRACT A process for applying a photoconductive layer to a flexible nickel or nickel-coated substrate by initially subjecting a nickel sheet or belt to an acid etching bath followed by anodizing treatment in an electrolytic bath to obtain at least two intermediate metal oxide layers such as nickel oxide layers having superior adhesive and charge-injection-blocking characteristics; and a flexible photoreceptor element with such structure which is especially useful for high-speed xerographic copy work.
12 Claims, No Drawings PHOTOSENSITIVE BINDER LAYER FOR XEROGRAPHY This invention relates to fast, highly flexible photoreceptor elements and to a process for obtainingsuch elements comprising a nickel or nickel-coated substrate, particularly of the belt type. having a photoconductive layer strongly affixed thereto and joined in good blocking and charge injection-preventing contact with the substrate through the utilization of at least two intermediate nickel oxide blocking layers arranged between the substrate and the photoconductive layer.
In the xerographic art, a photoeonducting insulating layer is first given a uniform electrostatic charge in order to sensitize its surface. The layer is then exposed to an image as defined by electromagnetic radiation, such light, which selectively dissipates the applied charge in the illuminated areas of the photoeonducting insulating layer while leaving behind a latent electrostatic image in the non-illuminated areas. The latent electrostatic image may be developed and made visible by deposited finely divided elcctroscopic marking particles on the surface of the photoconductive layer. This concept was originally described by Carlson in US. Pat. No. 2,297,691 and is further amplified and de scribed by many related patents in the field.
Conventionally, a xerographic photoreceptor plate includes a supporting conductive base or substrate which is generally characterized by the ability to accommodate the release of electric charge upon exposure of the photoconductive member to activating radiation such as light. Usually, this substrate must have a specific resistivity ofless than about l'" ohm-cm, preferably less than about 10 ohmcm and have sufficient structural strength to provide mechanical support for a photoconductive member.
The conventional xerographic plate also normally has a photoconductive insulating layer overlaying the conductive base or substrate. Photoconductive layers may comprise a number of materials known in the art. For example, selenium-containing photoconductive material such as vitreous selenium, or selenium modifled with varying amounts of arsenic are found suitable. In general, however, such photoconductive layer must have a specific resistivity greater than about ohm- .cm in the absence of illumination and preferably at least 10 ohm-cm. In addition, the resistivity should drop at least several orders of magnitude in the presence of activating radiation or light. This layer should also support an electrical potential of at least about 100 volts in the absence of radiation and customarily may vary in thickness from about 10 to 200 microns.
A photoconductive layer having the above configura-v tion. normally will exhibit some reduction in potential or voltage leak even in the absence of activating radiation. This phenomenon is known as dark decay" and will vary somewhat with usage of a photoreceptor. The existence of the problem ofdark decay" is well known and has been controlled to some extent by incorporation ofthin barrier layers such as dielectric material between the base or substrate and the photoconductive insulating layer. US. Pat. No. 2,901,348 to Dessauer ct al utilizes a film of aluminum oxide (Ex. to 200 angstroms) or an insulating resin layer, such as a polystyrene (Ex. 0.1 to 2 microns) for this purpose. With some limitations. such barrier layers function to allow the photoconductive layer to support a charge of high field strength while minimizing charge dissipation in the absence of illumination. When activated by illumination, however, the photoconductive layer should still become conductive and permit a migration of the existing ,U.S. Pat. No..3,69l,450).
While belt'type photoreceptors have the advantage of greater speed for xerographic copying purposes, there are also serious technical problems inherent in their use. For example, high speed machine-cycling conditions demand strong adhesion between a photoconductive layer and the underlying substrate compared with the slower aluminum photoreceptor drum which does not substantially flex.
It is also very important that any interface between the electrically conductive supporting substrate and the photoconductive layer be chemically stable since changes at this point will have a substantial effect on the electrical properties of the photo-receptor.
In searching for suitable photoreceptor materials it has been found that nickel or nickel-coated substrates are useful. Seamless belts of this material have satisfactory mechanical and chemical properties and can be readily produced by techniques known to the art.
Unfortunately, however,,belts of this material also have some limitations or deficiencies. For example, it is difficult to find suitable blocking layers for controlling charge-injection while still avoiding a flaking off or spalling of the photoconductive layer.
The concept ofcharge-injection is known and recognized, in that electrical currents far in excess of ohmic currents can provably be drawn through insulators from the electrodes, (refs Physical Review 97 No. 6, 1538, l955; Rose, Concepts ln Photoconductivity and Allied Problems, Interscience Publishers, John Wylie and Sons, 1963). The phenomenon is sometimes analogized to a vacuum diode in which the cathode thermally emits electrons into the vacuum and a space charge is built up between the cathode and the anode. Where an insulator is involved, the carrier concentration exceeds the equilibrium concentration whenever charge is injected from the electrodes. The flowing electrical current, insuch case, is space-charge-limited, and greater than the normal ohmic current is expected with equilibrium carrier concentrations. The magnitude of such space-chargc-limited current is difficult to predict (in any case) because of the presence and effect of traps on charge transport through a photoconductive material. Generally speaking, charge injection can and should be prevented or at least limited to assure chargeabilityof the photoconductor and by dark discharge. Mere thickness of insulating layer alone, however, will not provide a suitable answer since an intolerable residual voltage can be built up if an insulating layer becomes too thick.
It is possible to prevent or at least to limit charge injection through the careful choice of interface materials having a work function such that they form a blocking layer with the photoconductive'layer. In .this context the term work function is defined as .a difference inlenergy level between electrons-present in a particular-material and thosecalculated: at infinite distance in vacuo; i.e., a binding energy. Within the above definition, an electron blocking contact is formed for xerographic purposes whenever the electronic work function of the metal substrate is larger than that of the over-lying photoconductive insulator layer. If, on the other hand, the electronic work function of the.substrate is smaller than the photoconductive insulator, electrons are injected into the sys tem.
ln attempting to determine the efficiencyof a particular interface from the relative work functions of the joining materials, it has been found that small amounts of adsorbed impurities on surfaces forming interface materials will also cause substantial changes in work function. Unfortunately, this can happen when amorphous selenium or selenium alloys are utilized in a photoconductive layer. in fact, such material customarily includes small amounts of chlorine and arsenic-(ref. Xerography. and Related Processes; J. H.- Dessauer and H. E. Clark). The injection of electrons from an interface area will dark-discharge a photoreceptor when the photoconductor surface is charged positively and a negative electric counter charge is induced at the substrate. t
It is further noted that a material which conducts only holes canalso be employed as an electron block'- ing interface, provided it is deposited as a thin layer between the photoconductive layer and the chargeconducting substrate. Such material includes, for instance, chlorineand arsenic-rich selenium.
lt-is an object of the present invention to obtain improved flexible photoreceptor elements for xerographic copying purposes, in which a nickel or nickelcoated charge conductive substrate layer and a photoconductive layer, particularly a selenium-containing photoconductive layer are strongly bonded without loss of charge-injection-blocking properties.
lt is a further object of the present invention to obtain photoconductive layers affixed to a nickel or nickel coated substrate by chemically stable flex-proof bonding which is easily applied.
It is a still further object of the present invention to obtain, prepare and employ an efficient metal oxide blocking contact suitable for use with a nickel-selenium alloy interface of a flexible belt-type photoreceptor component.
These and other objects of the instant invention are accomplished by microetching a nickel or nickelcoated substrate such as metallized paper or metallized plastic belt with an etching composition an inorganic acid, inclusive of phosphoric, sulfuric, or composition comprising acid, or combination thereof, in the presa saturated calomel"electrode,has a maximum value of about 0.85 volt.
The substrate is then further treated by depositing a suitable photoconductive layer, particularly a selenium-c'ontaining'.photoconductive layer of one of the usual type" upon the treated substrate to obtain the desired photoreceptor element.
Preferably; nickel or nickel-covered substrate suitable for use in photoreceptor elements within the present inventionfare kept free of surface contaminants other than necessary additives "sucl1*as dopants. This pre-condition can be easily obtained through the use of one or more cleaning ste'ps wherein the substrate is initially immersed for a brief period into a clea'ning bath.
Suitable cleaners for such purpose are 'sold commercially and are exemplified, for instance, by Mitchell Bradford No. 14 Cleaner and by Mobil A'cid Cleaner. The cleaned and well-rinsed substrate is optionally furthertreate'cl with a pre-etch acid washsolution, preferably one containing an inorganic acid solu-. tionsuchas hydrochloric acid or phosphoric acid, and
additionally containing 0% up to about a catalytic amount of at least one of palladium chloride" or chloroplatinic acid. For such purpose a catalytic amount is' or palladium can be supplied. by inclusion of one or both in (a).the pre-etch acid wash solution, (b) in the .etching composition, or (c) in both the washsolution and etching composition. In each case, however, a total solution concentration of about 0.01%. 0.10% by weight is found sufficientto assure anadequatecata? 'lytic deposition on the nickel belt surface,. provided proper temperature and time conditions are met. By way of example, a pre-etch acid washing step is preferably carried out at a temperature range of about 15C 85C, for a period of about l-5 minutes.
The'microetching step, on the otherv hand, can be usefully carried out at a somewhat higher temperature range of about 20C l 10C and for a period of about ence of at least one of palladium chloride, chloroplatinic acid or ferric sulfate. This step is followed by anodizing the resulting microetched chemically oxidized- 2-?15 minutes. Where increased concentration and/or differences in temperature are permitted, however, the treatment time can be varied somewhat without substantially affecting the desired properties.
Generally speaking, a suitable etching solution for purposes of the present invention can comprise v.l. an inorganic acid solution containing at least one of phosphoric acid, sulfuric acid or hydrochloric In addition to the optional inclusion of catalyst, the etching bath used in the present invention can usefully include a water soluble alkali metal halide or a metal sulfate salt exemplified by KCl and Fe (SO A concentration range of from up through about 10% by weight of such metal salts is found useful, provided at minimum of about 8% 10% by weight of the metal sulfate such as Fe (SO is utilized in the absence of either platinum or palladium catalyst in the acid washing and etching baths.
The amount of inorganic acid or acids present in the etching composition can usefully vary, a concentration of about 10% 60% by weight being suitable, and a concentration of 10% 25% by weight being preferred for purposes of the present invention. The presence of phosphoric acid in this etching composition is a further preferred embodiment of the present invention.
After exposure tothe etching composition, such as by dipping, the washed microetched and oxide-coated substrate is subject to an anodizing step by immersing and treating as an anode in an electrolytic bath until the potential of the electrode as measured against a saturated calomel electrode changes from a negative value to a value not exceeding about 0.85 volt. In this step a second oxide coat is applied over the previous chemically-applied metal oxide coat on the nickel substrate. For the purpose of applying such additional coat it is convenient, for instance, to immerse the substrate (i.e., the belt) as an anode in an electrolytic bath with a chromate salt solution as electrolyte. This bath can usefully operate at an applied current of about 3-l0m A/cm until the anode potential (with current cut off and measured against a saturated calomel electrode) has the maximum potential value indicated above. This step is most efficiently carried out at a current density of about 5--10mA/cm and for a period varying from about l-l5 minutes.
Suitable electrolytes for the electrolytic bath include, for instance, a 515% solution (by weight) of Na- C- r 0 K Cr O Na CrO K CrO or H CrO at room temperature up to about 95C, and preferably about 50C through 95C. The parameters of( l temperature (2) electrolyte concentration and-(3) current density are inversely related to the anodizing treatment time for purposes of obtaining a suitable second oxide layer on the belt.
In addition to, or as an alternative to, the abovedescribed step, it is also found useful to lay down a nickel oxide layer by glow discharge techinque. Here the nickel substrate is made the anode under partial vacuum, with a current density of about 3 X 10 A/cm and a voltage (cathode) of about 2.5 K.\/. for a period of about 1-5 minutes. This technique is modified and described in detail in Vol. 54 of J. Chimie Physique,
(supra).
After washing, a photoconductive layer, preferably a se1enium-containing photoconductive layer, is depos ited upon a surface of the treated and washed substrate to complete the major components of the photoreceptor element. For this purpose it is found convenient to utilize selenium-containing photoconductor material and techniques as described, for instance, in U.S. Pat. Nos, 2,753,278, 2,970,906, 3,312,548 and 3,490,903; a particularly suitable technique involves sealing selenium, arsenic and a halogen in a container under heat to form a homogeneous material, which is then applied onto a cooled substrate by evaporation from a lined crucible under vacuum. Suitable photoconductive layers applicable to the present invention include, for instance, a cadmium selenide, a gallium triselenide, an arsenic triselenide, an antimony-seleniumor seleniumarsenic-halogen layer. Also included are photoconductive layers containing Tellurium, Germanium and Bismuth.
The following examples specifically demonstrate preferred embodiments of the present invention without limiting it thereby.
EXAMPLE I A. A stain-free nickel alloy test belt identified as A- 1 having a thickness of about 4.5 mil (0.0045 inch), a width of 5 inches and a circumference of 65 inches, is cleaned with an aqueous solution containing 10% by weight of Mitchell Bradford No. 14 Cleaner", water rinsed in deionized water for about 2 minutes, immersed in an acid wash solution 10% by volume 85.5% H PO for 1 minute, and then immersed for 10 minutes at 60C in an etching bath containing l8g/liter KCl, 150 ml/liter of 85.5% H PO,,, and 0.21g/1iter of 10% chloroplatinic acid (H PtCl .6H O) as a catalyst. The belt is then rinsed, dried and evaluated (Table I).
B. An identical nickel test belt identified as A-2 is treated as in procedure A (supra) with the exception that the rinsing step in deionized water prior to microetching is extended to a full 5 minutes.
The results obtained in Steps A and B are examined microscopically and Gloss measurements made in the usual way in accordance with the following descriptions, and reported in Table I.
Microscopic Examination The morphology of the etched nickel foil is examined by a scanning electron microscope and an optical microscope, applying ultramicrotome techniques to obtain vertical cross sections of the foils.
Gloss Measurements Any change of the surface structure of the nickel belt is noticeable by a change in reflectivity. The gloss value is measured with a Hunter Lab D16-75 gloss meter which measures the relative reflectance of treated and untreated surfaces using a incident light beam.
observed on a good microetched belt surface. Gloss 3% reflectance The above results suggest considerable sensitivity to contamination when chloroplatinic acid is used as a catalyst.
EXAMPLE II A nickel test belt identical with the one used in Example l, and identified as A-3 is treated as in Example 1 A except that a PdCl catalyst is utilized by immersing the belt in a pre-etch acid wash solution containing O.25g/liter PdCl and 300 ml/liter of concentrated l-ICl.
The micro etching step is then carried out for 5 minutes in a bath containing 650 ml/liter of 85.5% l-I -,PO and g/liter of KCl; with evolution of some chlorine byproduct. The microetched belt is then rinsed and dried as in Example I and evaluated (Table II) before further treatment.
EXAMPLE III A nickel test belt identical with those used in Examples I-Il, and identified as A-4, is immersed for 5 minutes at about 75C in an agitated alkaline solution containing 10% by weight of a commercial cleaner (Mitchell Bradford No. 14 Cleaner), rinsed for 2 minutes in deionized water then cleaned once more in a commercial cleaning solution (l/12 strength Mobile Acid Cleaner), rinsed for 2 minutes in deionized water, dipped into an acid wash solution (300 ml/liter of concentrated I-ICl) for 30 seconds, dipped into an acid solution containing 0.25 g/liter PdCl and 300 ml/liter of concentrated I-ICl for l seconds, then etched in a KClfree etching bath containing 650 ml/liter of 85.5% H PO the microetched belt is then subject to the usual rinsing and drying steps as in Examples HI and evaluated (Table II) before further treatment.
EXAMPLE IV Four nickel test belts identical with those used in Examples I-IV, and identified as A -8, are cleaned and rinsed in deionized water as in Example I then immersed (without a pre-etch acid wash) in an etching solution containing 184 g/liter of Fe (SO and 97.5 g/liter of H SO at 85C. After treating the four belts in the etching bath for varying periods of time, they are removed, rinsed and driedas in Example I and evaluated (Table II) before further treatment.
EXAMPLE VI (Control) A stain-free nickel test belt identical with those used 'in the preceeding examples, and identified as A-lO, is
cleaned and rinsed, then oxidized at l C for 7 minutes in an etching bath consisting essentially of 650 ml/liter of concentrated H PO solution. The oxidized nickel belt has a dull appearance and is evaluated as G (see Table II footnote).
EXAMPLE VII -A. Samples from test belts A 1-9 of Examples I-IV are next treated for 10 minutes in an electrolytic bath containing sodium chromate solution as electrolyte 10% by weight at pH6), operating at 90C with a cur- I rent density of 5 mA/cm After treatment, the test period the mandril is constantly rotated at about 6 rev-- olutions per minute to obtain an external photoconductor surface having a uniform thickness of about u. Each belt is then tested for mechanical and electrical properties and the results reported in Table III.
B. Test belt A-l0 of Example VI (the Control) is directly coated with a selenium photoconductive layer as in Example VII without the prior 10 minute treatment Table II (Step I) Belt Cat. Pre-etch Etch Time Observation and Gloss No. Bath( s) Bath (min. Test A-3 PdCl Yes, with H PQ, 5 Ex.* etching and oxide Cat. KCl layer. Gloss=2% reflectance. Cl evolved.
A-4 PdCl Yes, with H PO 5 Ex.* etching and oxide Cat. layer. Gloss=3% reflectance. No Cl evolved.
A-5 NO H 50 A 2 G.* etching and oxide Fe (SO layer. Gloss=7% reflectance.
A-6 2 Vg.* etching and oxide layer. Gloss=3% reflectance.
A-7 5 Ex.* etching and oxide layer. GIOSS=2% reflectance.
A-8 S Vg.* etching and oxide layer. GIOSF3% reflectance.
*Ex. Excellent Vg. Very Good I G. Good XAMPLE V in an electrolytic bath. This belt 15 then tested for me- A stain-free nickel test belt identical with those used in the preceeding examples and identified as A-9 is cleaned and rinsed, then microetched at C for 10 minutes. Both the acid wash and etching baths are identical with Example II except that the etching solution contains 650 ml/liter of a 7:1 by volume of concentrated H PO /HCl solution. The etched nickel belt is otherwise treated identically with Example II. The microetching and the oxide layer on the belt is found to be of comparable quality to that obtained in Examples 11 and III (i.e., A 3-4 supporting floor. To pass the test the belt must remain intact and be substantially undamaged.
Flex Test Each belt is mounted on a tri-roller assembly adapted to rotate the belt over each roller at about 43C. The belt iscycled for 1000 cycles in 30 minutes. The test is repeated (with minute hiatus) for 30,000 cycles or until the belt structurally fails. To pass this test the belt must complete 30,000 cycles without exhibiting cracks which are visible to the eye.
Mandrel Test The belt is bent three times over a cylinder having a 1 /4 inches diameter at Room Temperature and then checked for cracks in the substrate and layers applied thereto.
Electrical Dark Discharge Test The photoreceptor belt is charged at 900 volt in the dark and the potential checked after 3 seconds. A dark decay or voltage loss of 12% or less is acceptable for general xerographic purposes.
Vc. Determination Test An electrical charge is added stepwise to a photoreceptor surface in the dark and it is determined at what voltage the charging behavior of the photoreceptor begins to substantially deviate (by 40 volts) from the desired (linear) charging characteristics. A maximum voltage of 900 volts 950 volts is considered fair, 950 volts l 100 volts is good, 1 I00 1500 volts is very good and 1500 1600 volts is considered excellent.
Print Test About 50 square inches of photoreceptor are dark charged at 900 volts and developed without light exposure after about seconds using fine powdered toner. The presence of light or dark spots or a visible pattern is attributed to uneven dark discharge of the photoreceptor attributable to non-uniformities of the interface.
1. In a process for producing a photoreceptor element comprising a nickel or nickel-coated substrate and a photoconductive layer joined in good blocking and charge-injection preventing contact with the substrate through at least two intermediate nickel oxide blocking layers arranged between the substrate and the photoconductive layer the improvement comprising microetching and chemically oxidizing the nickel or nickel-coated substrate with a composition comprising an inorganic acid selected from the group consisting of phosphoric acid, sulfuric acid and hydrochloric acid, in the presence of at least one of palladium chloride, chloroplatinic acid, or ferric sulfate;
anodically oxidizing the resulting microetched chemically oxidized substrate; and
depositing a selenium-containing photoconductive layer upon the treated substrate to obtain the desired photoreceptor element.
2. The process of claim 1 wherein the anodizing step is effected by glow discharge.
3. The process of claim 1 wherein the anodizing step is effected by immersing the substrate as an anode in an electrolytic bath until its potential, as measured against a saturated calomel electrode, has a maximum value of about 0.85 volt.
4. The process of claim 1 wherein the microetching step is effected with an etching bath comprising phosphoric acid and chloroplatinic acid.
5. The process of claim 1 wherein the microetching step is effected with an etching bath comprising phosphoric acid and palladium chloride.
6. A process for producing a photoreceptor element Table lll Belt Mandrel Cold and Shock Flex Electrical Vc Print (coated) Test Test (-28.8C Test Dark Dis- Test Test 1.25" charge Test Diam) l271 3 See A-l Passed Passed Failed Passed Failed A-2 Passed l 100v. Passed 30,000 cycles I H H i, [560% AA H H H l560v H A-5 Failed Failed H I p d Passed H H I, H ,1
n H H I, H
H H I, H 500v H A-lO Failed Failed (900v.) (control) EXAMPLE Vlll A test belt identified as A-ll is prepared as in Example Ill and then the etched and coated belt is subject to Glow Discharge treatment for 2 minutes at a chamber pressure of about 70 p. mercury (100 mA with substrate cathode voltage of 2.5 kv). The treated belt is then coated with a selenium photoconductive layer on a rotating mandrel for minutes as in Example VII. The electrical and mechanical properties of the belt are found to be comparable to those of belts A-3 and A-4 (Table III).
While the above Examples are directed to preferred embodiments of the invention, it will be understood that the invention is not limited thereby.
What is claimed is: t
comprising a nickel or nickel-covered substrate and a selenium-containing photoconductive layer joined in good blocking contact through at least two intermediate blocking layers arranged between said substrate and the applied photoconductive layer, comprising a. microetching the nickel or nickel-coated substrate with an etching composition comprising 1. an inorganic acid solution containing at least one of phosphoric acid, sulfuric acid, or hydrochloric acid,
2. a balance of 0% up to about a catalytic amount of at least one of palladium chloride or chloroplatinic acid based on the total amount of cata lyst utilized in steps (a) and (b), and
3. from 0% up through about 10% by weight of a water soluble alkali metal halide or iron sulfate;
about 8% 10% of the metal sulfate being utilized in the absence of platinum or palladium catalyst;
b. anodically oxidizing the washed microetched and oxide-coated substrate by immersing and treating as an anode in an electrolytic bath until the potential of the resulting etched double oxide coated electrode as measured against a saturated calomel electrode changes from a negative value to a value not exceeding about 0.85 volt; and
c. depositing a selenium-containing photoconductive layer upon a surface of the treated and washed substrate to obtain-the desired element.
7. A process according to claim 6 in which the clean substrate is treated with a pre-etch and wash solution containing 0% up to a catalytic amount of at least one of palladium chloride or chloroplatinic acid.
8. The process of claim 7 wherein the initial acid treatment of step is effected with a phosphoric acid solution or a hydrochloric acid solution in the presence of about 0% 0.1% by weight of palladium chloride or chloropla'tinic acid. I 1
9. The process of claim 6 wherein the microetching acid and ferric sulfate.

Claims (14)

1. IN A PROCESS FOR PRODUCING A PHOTORECTOR ELEMENT COMPRISING A NICKEL OR NICKEL-COATED SUBSTRATE AND A PHOTOCONDUCTIVE LAYER JOINED IN GOOD BLOCKING AND CHANGE-INJECTION PREVENTING CONTACT WITH THE SUBSTRATE THROUGH AT LEAST TWO INTERMEDIATE NICKEL OXIDE BLOCKING LAYERS ARRANGED BETWEEN THE SUBSTRATE AND THE PHOTOCONDUCTIVE LAYER THE IMPROVEMENT COMPRISING MICROETCHING AND CHEMICALLY OXIDIZING THE NICKEL OR NICKELCOATED SUBSTRATE WITH A COMPOSITION COMPRISING AN INORGANIC ACID SELECTED FROM THE GROUP CONSISTING OF PHOSPHORIC ACID, SULFURIC ACID HAVING HYDROCHLOLIC ACID, IN THE PRESENCE OF AT LEAST ONE PALLADIUM CHLORIDE, CHLOROPLATININ ACID, OR FERRIC SULFATE, ANODICAALLY OXIDIZING THE RESULTING MICROETCHED CHEMICALLY OXIDIZED SUBSTRATE, AND DEPOSITING A DELENIU,-CONTAINING PGHOTCONDUCTIVE LAYER UPON THE TREATED SUBSTRATE TO OBTAIN THE DESIRED PHOTORE CEPTOR ELEMENT.
2. The process of claim 1 wherein the anodizing step is effected by glow discharge.
2. a balance of 0% up to about a catalytic amount of at least one of palladium chloride or chloroplatinic acid based on the total amount of catalyst utilized in steps (a) and (b), and
3. from 0% up through about 10% by weight of a water soluble alkali metal halide or iron sulfate; about 8% - 10% of the metal sulfate being utilized in the absence of platinum or palladium catalyst; b. anodically oxidizing the washed microetched and oxide-coated substrate by immersing and treating as an anode in an electrolytic bath until the potential of the resulting etched double oxide coated electrode as measured against a saturated calomel electrode changes from a negative value to a value not exceeding about 0.85 volt; and c. depositing a selenium-containing photoconductive layer upon a surface of the treated and washed substrate to obtain the desired element.
3. The process of claim 1 wherein the anodizing step is effected by immersing the substrate as an anode in an electrolytic bath until its potential, as measured against a saturated calomel electrode, has a maximum value of about 0.85 volt.
4. The process of claim 1 wherein the microetching step is effected with an etching bath comprising phosphoric acid and chloroplatinic acid.
5. The process of claim 1 wherein the microetching step is effected with an etching bath comprising phosphoric acid and palladium chloride.
6. A process for producing a photoreceptor element comprising a nickel or nickel-covered substrate and a selenium-containing photoconductive layer joined in good blocking contact through at least two intermediate blocking layers arranged between said substrate and the applied photoconductive layer, comprising a. microetching the nickel or nickel-coated substrate with an etching composition comprising
7. A process according to claim 6 in which the clean substrate is treated with a pre-etch and wash solution containing 0% up to a catalytic amount of at least one of palladium chloride or chloroplatinic acid.
8. The process of claim 7 wherein the initial acid treatment of step is effected with a phosphoric acid solution or a hydrochloric acid solution in the presence of about 0% - 0.1% by weight of palladium chloride or chloroplatinic acid.
9. The process of claim 6 wherein the microetching step is effected with an etching bath comprising phosphoric acid and potassium chloride.
10. The process of claim 6 wherein the anodizing step is effected in an acidic electrolytic bath containing an alkali metal chromate salt solution as an electrolyte.
11. The procesS of claim 6 wherein the selenium-containing photoconductive layer comprises a cadmium selenide, a gallium triselenide, an arsenic triselenide, an antimony-selenium or a selenium-arsenic-halogen-alloy.
12. The process of claim 6 wherein the microetching step is effected with an etching bath comprising sulfuric acid and ferric sulfate.
US332044A 1973-02-12 1973-02-12 Photosensitive binder layer for xerography Expired - Lifetime US3907650A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US332044A US3907650A (en) 1973-02-12 1973-02-12 Photosensitive binder layer for xerography
US440907A US3914126A (en) 1973-02-12 1974-02-08 Nickel oxide interlayers for photoconductive elements
NL7401924A NL7401924A (en) 1973-02-12 1974-02-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US332044A US3907650A (en) 1973-02-12 1973-02-12 Photosensitive binder layer for xerography

Publications (1)

Publication Number Publication Date
US3907650A true US3907650A (en) 1975-09-23

Family

ID=23296484

Family Applications (1)

Application Number Title Priority Date Filing Date
US332044A Expired - Lifetime US3907650A (en) 1973-02-12 1973-02-12 Photosensitive binder layer for xerography

Country Status (2)

Country Link
US (1) US3907650A (en)
NL (1) NL7401924A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098655A (en) * 1977-09-23 1978-07-04 Xerox Corporation Method for fabricating a photoreceptor
US4557993A (en) * 1984-08-03 1985-12-10 Xerox Corporation Process for preparing an electrophotographic imaging member with NiO interlayer
US4702980A (en) * 1983-08-03 1987-10-27 Toray Industries, Incorporated Conductive sheet and electrostatic recording medium formed therefrom
US4921769A (en) * 1988-10-03 1990-05-01 Xerox Corporation Photoresponsive imaging members with polyurethane blocking layers
US4954413A (en) * 1987-03-17 1990-09-04 Mitsubishi Denki Kabushiki Kaisha Method of making photoconductive particles
US5264256A (en) * 1992-09-08 1993-11-23 Xerox Corporation Apparatus and process for glow discharge comprising substrate temperature control by shutter adjustment
US5532093A (en) * 1995-02-27 1996-07-02 Xerox Corporation Imaging member
US5654118A (en) * 1996-07-15 1997-08-05 Xerox Corporation Imaging member including a blocking layer containing an enriched amount of nickel hydroxide
US6051148A (en) * 1998-03-05 2000-04-18 Xerox Corporation Photoreceptor fabrication method
GB2351089A (en) * 1999-06-15 2000-12-20 Hong Kong Productivity Council Platinum electroforming/electroplating using haloplatinics
US20060191139A1 (en) * 2005-02-25 2006-08-31 Kyocera Mita Corporation Developing roller and manufacturing method thereof
US10359573B2 (en) 1999-11-05 2019-07-23 Board Of Regents, The University Of Texas System Resonant waveguide-granting devices and methods for using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818579A (en) * 1923-11-01 1931-08-11 Ig Farbenindustrie Ag Electrode
US2569453A (en) * 1949-09-14 1951-10-02 Poor & Co Vitreous enamel base stock, vitreous enameled articles and method
US2606866A (en) * 1948-10-27 1952-08-12 United States Steel Corp Method of treating tin plate
US2806000A (en) * 1956-06-21 1957-09-10 Du Pont Cleaning stainless steel
US2940838A (en) * 1957-08-19 1960-06-14 Boeing Co Chemical milling
US3245885A (en) * 1964-10-05 1966-04-12 Yawata Iron & Steel Co Method of manufacturing nickel-plated steel plate
US3253968A (en) * 1961-10-03 1966-05-31 North American Aviation Inc Etching composition and process
US3316179A (en) * 1965-08-24 1967-04-25 Dow Chemical Co Inhibition of corrosivity of sulfuric acid on carbon steel
US3650929A (en) * 1963-08-16 1972-03-21 Licentia Gmbh Oxidizing method and apparatus
US3684368A (en) * 1968-07-10 1972-08-15 Hitachi Ltd Xerographic apparatus
US3685989A (en) * 1970-12-18 1972-08-22 Xerox Corp Ambipolar photoreceptor and method of imaging

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818579A (en) * 1923-11-01 1931-08-11 Ig Farbenindustrie Ag Electrode
US2606866A (en) * 1948-10-27 1952-08-12 United States Steel Corp Method of treating tin plate
US2569453A (en) * 1949-09-14 1951-10-02 Poor & Co Vitreous enamel base stock, vitreous enameled articles and method
US2806000A (en) * 1956-06-21 1957-09-10 Du Pont Cleaning stainless steel
US2940838A (en) * 1957-08-19 1960-06-14 Boeing Co Chemical milling
US3253968A (en) * 1961-10-03 1966-05-31 North American Aviation Inc Etching composition and process
US3650929A (en) * 1963-08-16 1972-03-21 Licentia Gmbh Oxidizing method and apparatus
US3245885A (en) * 1964-10-05 1966-04-12 Yawata Iron & Steel Co Method of manufacturing nickel-plated steel plate
US3316179A (en) * 1965-08-24 1967-04-25 Dow Chemical Co Inhibition of corrosivity of sulfuric acid on carbon steel
US3684368A (en) * 1968-07-10 1972-08-15 Hitachi Ltd Xerographic apparatus
US3685989A (en) * 1970-12-18 1972-08-22 Xerox Corp Ambipolar photoreceptor and method of imaging

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098655A (en) * 1977-09-23 1978-07-04 Xerox Corporation Method for fabricating a photoreceptor
US4702980A (en) * 1983-08-03 1987-10-27 Toray Industries, Incorporated Conductive sheet and electrostatic recording medium formed therefrom
US4557993A (en) * 1984-08-03 1985-12-10 Xerox Corporation Process for preparing an electrophotographic imaging member with NiO interlayer
US4954413A (en) * 1987-03-17 1990-09-04 Mitsubishi Denki Kabushiki Kaisha Method of making photoconductive particles
US4921769A (en) * 1988-10-03 1990-05-01 Xerox Corporation Photoresponsive imaging members with polyurethane blocking layers
US5264256A (en) * 1992-09-08 1993-11-23 Xerox Corporation Apparatus and process for glow discharge comprising substrate temperature control by shutter adjustment
US5532093A (en) * 1995-02-27 1996-07-02 Xerox Corporation Imaging member
US5654118A (en) * 1996-07-15 1997-08-05 Xerox Corporation Imaging member including a blocking layer containing an enriched amount of nickel hydroxide
US6051148A (en) * 1998-03-05 2000-04-18 Xerox Corporation Photoreceptor fabrication method
GB2351089A (en) * 1999-06-15 2000-12-20 Hong Kong Productivity Council Platinum electroforming/electroplating using haloplatinics
GB2351089B (en) * 1999-06-15 2001-04-18 Hong Kong Productivity Council Platinum electroforming/electroplating bath and method
US10359573B2 (en) 1999-11-05 2019-07-23 Board Of Regents, The University Of Texas System Resonant waveguide-granting devices and methods for using same
US20060191139A1 (en) * 2005-02-25 2006-08-31 Kyocera Mita Corporation Developing roller and manufacturing method thereof

Also Published As

Publication number Publication date
NL7401924A (en) 1974-08-14

Similar Documents

Publication Publication Date Title
US3907650A (en) Photosensitive binder layer for xerography
US2803541A (en) Xerographic plate
US4338387A (en) Overcoated photoreceptor containing inorganic electron trapping and hole trapping layers
US3914126A (en) Nickel oxide interlayers for photoconductive elements
US2901348A (en) Radiation sensitive photoconductive member
US3174855A (en) Method for a production of a xerographic plate
CA1162433A (en) Overcoated photoreceptor containing gold injecting layer
US4121981A (en) Electrochemical method for forming a selenium-tellurium layer in a photoreceptor
US2970906A (en) Xerographic plate and a process of copy-making
US4123267A (en) Photoconductive element having a barrier layer of aluminum hydroxyoxide
US3685989A (en) Ambipolar photoreceptor and method of imaging
US4369242A (en) Non-porous and porous Al2 O3 barrier zones in layered electrophotographic device
US3010884A (en) Electrophotosensitive copy-sheet
US3712810A (en) Ambipolar photoreceptor and method
US4098655A (en) Method for fabricating a photoreceptor
US4152747A (en) Ionization promoting electrode and method for increasing ionization efficiency
KR100525326B1 (en) Substrate for Electrophotographic Photoconductor and Electrophotographic Photoconductor Using the Same
US3317409A (en) Electrolytic electrophotography
US3418217A (en) Electrolytic image formation
US3844919A (en) Method of preparing photosensitive surfaces
US4537846A (en) Multiconductive layer electrophotographic photosensitive device and method of manufacture thereof
US4072518A (en) Method of making trigonal selenium interlayers by glow discharge
US3257304A (en) Process of electrodepositing insulative material on photoconductive copysheet
US3072541A (en) Developer
US3619153A (en) Photoconductive element and process employing a substituted silylisobutylethylenediamine adhesive interlayer