US3905395A - Mixing chamber - Google Patents

Mixing chamber Download PDF

Info

Publication number
US3905395A
US3905395A US426417A US42641773A US3905395A US 3905395 A US3905395 A US 3905395A US 426417 A US426417 A US 426417A US 42641773 A US42641773 A US 42641773A US 3905395 A US3905395 A US 3905395A
Authority
US
United States
Prior art keywords
mixing
liquid
grid
mixed
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US426417A
Inventor
Klaus Peter Hupe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard GmbH Germany
Original Assignee
Hewlett Packard GmbH Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard GmbH Germany filed Critical Hewlett Packard GmbH Germany
Application granted granted Critical
Publication of US3905395A publication Critical patent/US3905395A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers

Definitions

  • an apparatus for continuously diluting a medium having a high viscosity wherein the viscous medium and the far greater quantity of diluting liquid are continuously supplied under pressure .to a first common chamber via rectangular inlet means. After sequentially passing through two grid walls the diluting medium is caused to rotate. The turbulent liquid streams are then pressed through the grid walls in order to align the macro-molecules and to avoid interlacings among them.
  • US. Pat. No. 2,509,288 discloses a mixing apparatus, wherein the liquids to be mixed are fed through opposing nozzles into a ball-shaped chamber and the mixed liquid stream is delivered through an outlet pipe connected to the chamber.
  • US. Pat. No. 2,391,110 discloses a mixing chamber for liquids which includes a cascade of screens with circumferentially extending channels.
  • a mixing chamber designed according to the preferred embodiment of this invention mixes two separate streams of liquid under pressure.
  • the mixing chamber comprises two continuous, parallel, pressureresistant grid walls between which liquid mixing occurs, an inlet means for entry of each liquid stream to be mixed into the mixing chamber through the grid walls and an outlet means for exit of the mixed liquid stream from the mixing chamber.
  • the distance between the grid walls is in the mm-range and is at least five times less than the lateral extension of each grid wall.
  • the grid apertures of the grid walls is in the micron, 1.1., range and the flow resistance of the grid walls provides uniform distribution of each liquid flowing under pres sure over the cross-sectional areas of their respective grid walls.
  • the principal object of this invention therefore is to provide an improved apparatus of simple design for mixing two liquids substantially without delay and with increased efficiency, wherein each partial volume of the one liquid is mixed with the partial volume of the other liquid.
  • FIG. I is a cross-sectional view of the preferred embodiment of the invention.
  • solvent A and B are pumped in parallel relation via inlet means 1 and 2 into a mixing apparatus 3.
  • the mixed homogeneous solvent is exited via outlet cally 0.5 mm with a larger cross-section at the point of connection to the mixing apparatus.
  • liquid pumps which do not necessarily operate in timed relation, press liquids to be mixed, A and B, intermittently through metal screens 5 and 6 respectively, thus forming a plurality of intermeshing, thin separate jets of liquid. Additional mixing is provided by the turbulence resulting from the transverse forces acting among the jet streams between the internal screen faces. Thus, a homogeneous solvent liquid is obtained by intense mixing within a very confined space.
  • the screens consist of metal frets, separated by a distance not greater than one fifth of the fret diameter.
  • the said distance may be 0.5 to 3 mm and adjustable according to the volumes of the liquids to be mixed.
  • the aperture size of the screen mesh must be sufficiently fine and the distance between screens must be sufficiently small to create a flow resistance in the mixing chamber that will ensure the uniform distribution of the liquids to be mixed over the entire area of the chamber.
  • several such arrangements may be joined in cascade so that the mixed flow leaving one stage is divided into partial flows and fed to the next stage and achieve a still more thorough mixed of the liquids.
  • the mixing chamber has a minimum dead volume and a maximum active mixing area.
  • the liquids to be mixed are uniformly distributed over the grid walls so that a build-up of flow profile, as would be observed with convection flows, is avoided. Thus, a more homogeneous mixing operation is obtained.
  • Extremely narrow grid apertures provide uniform quantization or division of the oppositely directed liquid flows. Because of the small space between the grid walls, which limit the volume of the mixing chamber, the liquid particles of both streams, after passing through the grid walls, directly impact against each other and, without convection flow, are mixed with each other. This result is obtained without any additional equipment, such as additional mixing chambers, stirring or the like.
  • the preferred embodiment of this invention has been used for the gradient elution in a liquid chromatography system, wherein two solvents are pumped through it in a discontinuous fashion in order to become intensely mixed without substantial time delay during the mixing operation.
  • the amount of the one solvent may be increased and the amount of the other solvent decreased proportionately, thus keeping the total volume of both solvents constant, while the mixing operation takes place'within the small volumeofthe mixing chamber.
  • the amount of the one solvent having a high dissolving power, for example methyl alcohol is continuously varied
  • the quantity of the other solvent for example octane, may also be proportionately varied to correspond withthe variations in the quantity of the first solvent. 7
  • a time-programmed separation of the applied substances is obtainable in accordance with temperature programming. Dead volumes are minimized and thus undue time delays are avoided which would tend to distort the exact time-programming and preclude reproducible results.
  • An apparatus for mixing two separate streams of liquid flowing under pressure comprising:
  • a secondinlet means coupled to theexternal side of the other sc-reenfor entry'of a-second liquid to be mixed into-thechamber through said screen;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)

Abstract

A chamber for forceably mixing two streams of liquid under pressure comprising two continuous, parallel, pressure-resistant grid walls having an inlet means for each liquid stream to be mixed and an outlet means for the mixed liquid stream. Each grid wall is a metal screen having a grid aperture in the micron, Mu , range. The distance between the grid walls is in the mm-range and is at least five times less than the diameter of each grid wall. The flow resistance of the grid walls provides uniform distribution of each liquid over each grid wall. Owing to the negligible volume of the mixing chamber, forceable mixing of the liquids, partial volume per partial volume, is achieved with minimum time delay.

Description

United States Patent 1191 Hupe Sept. 16, 1975 [54] MIXING CHAMBER 3,064,680 11/1962 Winslow, Jr. 137/604 [75] Inventor: Klaus Peter Hupe, Karlsruhe,
Germany Primary ExamznerRobert G. Nilson Attorney, Agent, or Firm-Stephen P. Fox [73] Assignee: Hewlett-Packard Gmbl-l, Wurttemberg, Germany [57] ABSTRACT [22] Ffled' 1973 A chamber for forceably mixing two streams of liquid [21] App]. No.1 426,417 under pressure comprising two continuous, parallel, pressure-resistant grid walls having an inlet means for Foreign Application Priority Dam each liquid stream to be mixed and an outlet means for the mixed liquid stream. Each grid wall is a metal Dec. 28, 1972 Germany 2263769 screen having a grid aperture in the micron, M, range The distance between the rid walls is in the mm- 52 us. c1 137/604; 259/4 range and is at least five timges less than the diameter [5 Clof each The lo sista e of e walls [58] Field of Search 137/604; 259/4 provides uniform distribution of each liquid over each grid wall. Owing to the negligible volume of the mix- [56] References C'ted ing chamber, forceable mixing of the liquids, partial UNITED STATES PATENTS volume per partial volume, is achieved with minimum 2,391,110 12/1945 Walker 259/4 time delay. 2,509,288 5/1950 Brochner.... 259/4 2,815,532 12 1957 Braunlich 137/604 X 4 Clalms 1 Drawlng Flgllre A 22. VI
MIXING CHAMBER BACKGROUND OF THE INVENTION. I
Liquid mixingapparatus'is generally of use, wherever a very intensive mixing of media is of importance. This is especially true for the manufacture of agents in the biochemical or pharmaceutical industries, where highly homogeneous products are desired. It is well known that chemical reactions are accelerated with intense mixing of constituents.
A variety of devices by which liquids can be mixed are known. For example, Austrian Pat. No. 270,595
discloses an apparatus for continuously diluting a medium having a high viscosity, wherein the viscous medium and the far greater quantity of diluting liquid are continuously supplied under pressure .to a first common chamber via rectangular inlet means. After sequentially passing through two grid walls the diluting medium is caused to rotate. The turbulent liquid streams are then pressed through the grid walls in order to align the macro-molecules and to avoid interlacings among them.
US. Pat. No. 2,509,288 discloses a mixing apparatus, wherein the liquids to be mixed are fed through opposing nozzles into a ball-shaped chamber and the mixed liquid stream is delivered through an outlet pipe connected to the chamber. US. Pat. No. 2,391,110 discloses a mixing chamber for liquids which includes a cascade of screens with circumferentially extending channels.
The mixing action of prior art devices is achieved by an imposed convection of the liquid streams in a chamber volume. Since a chamber of substantial volume is required to allow the convection to take place, mixing action is delayed. Furthermore, no mixing between partial volumes of both liquids can be obtained because the flow of the liquids exhibit uncontrolled flow profiles which result from turbulence.
SUMMARY OF THE INVENTION A mixing chamber designed according to the preferred embodiment of this invention mixes two separate streams of liquid under pressure. The mixing chamber comprises two continuous, parallel, pressureresistant grid walls between which liquid mixing occurs, an inlet means for entry of each liquid stream to be mixed into the mixing chamber through the grid walls and an outlet means for exit of the mixed liquid stream from the mixing chamber. The distance between the grid walls is in the mm-range and is at least five times less than the lateral extension of each grid wall. The grid apertures of the grid walls is in the micron, 1.1., range and the flow resistance of the grid walls provides uniform distribution of each liquid flowing under pres sure over the cross-sectional areas of their respective grid walls.
The principal object of this invention therefore is to provide an improved apparatus of simple design for mixing two liquids substantially without delay and with increased efficiency, wherein each partial volume of the one liquid is mixed with the partial volume of the other liquid.
DESCRIPTION OF THE DRAWING FIG. I is a cross-sectional view of the preferred embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT paratus casing 7 is closed by means of bolts 8a, b. Two
solvent A and B, respectively, are pumped in parallel relation via inlet means 1 and 2 into a mixing apparatus 3. The mixed homogeneous solvent is exited via outlet cally 0.5 mm with a larger cross-section at the point of connection to the mixing apparatus.
During the operation of the, device, liquid pumps which do not necessarily operate in timed relation, press liquids to be mixed, A and B, intermittently through metal screens 5 and 6 respectively, thus forming a plurality of intermeshing, thin separate jets of liquid. Additional mixing is provided by the turbulence resulting from the transverse forces acting among the jet streams between the internal screen faces. Thus, a homogeneous solvent liquid is obtained by intense mixing within a very confined space.
The size and shape of the device described can be varied without parting from the scope and nature of the present invention. Preferably, however, the screens consist of metal frets, separated by a distance not greater than one fifth of the fret diameter. The said distance may be 0.5 to 3 mm and adjustable according to the volumes of the liquids to be mixed. The aperture size of the screen mesh must be sufficiently fine and the distance between screens must be sufficiently small to create a flow resistance in the mixing chamber that will ensure the uniform distribution of the liquids to be mixed over the entire area of the chamber. Finally, several such arrangements may be joined in cascade so that the mixed flow leaving one stage is divided into partial flows and fed to the next stage and achieve a still more thorough mixed of the liquids.
The mixing chamber, as described above, has a minimum dead volume and a maximum active mixing area. The liquids to be mixed are uniformly distributed over the grid walls so that a build-up of flow profile, as would be observed with convection flows, is avoided. Thus, a more homogeneous mixing operation is obtained. Extremely narrow grid apertures provide uniform quantization or division of the oppositely directed liquid flows. Because of the small space between the grid walls, which limit the volume of the mixing chamber, the liquid particles of both streams, after passing through the grid walls, directly impact against each other and, without convection flow, are mixed with each other. This result is obtained without any additional equipment, such as additional mixing chambers, stirring or the like.
The preferred embodiment of this invention has been used for the gradient elution in a liquid chromatography system, wherein two solvents are pumped through it in a discontinuous fashion in order to become intensely mixed without substantial time delay during the mixing operation. The amount of the one solvent may be increased and the amount of the other solvent decreased proportionately, thus keeping the total volume of both solvents constant, while the mixing operation takes place'within the small volumeofthe mixing chamber. Alternatively, where desirable, the amount of the one solvent having a high dissolving power, for example methyl alcohol, is continuously varied, the quantity of the other solvent, for example octane, may also be proportionately varied to correspond withthe variations in the quantity of the first solvent. 7
Using the preferred embodiment of this invention, in a gas chromatography, a time-programmed separation of the applied substances is obtainable in accordance with temperature programming. Dead volumes are minimized and thus undue time delays are avoided which would tend to distort the exact time-programming and preclude reproducible results.
I claim': 1. An apparatus for mixing two separate streams of liquid flowing under pressure comprising:
two continuous, parallel, pressure-resistant screens, each having an external side and an internal side for forming a mixing chamber between the internal sides of said sar'e'ehsg a first inlet means coupled to the external side of the one of the screensfor entry of a first liquid to be mixed-'intoth'e chamber} through said screen;
a secondinlet means coupled to theexternal side of the other sc-reenfor entry'of a-second liquid to be mixed into-thechamber through said screen; and
1 outlet means-coupled to the mixing-chamber for out- Dedication 3,905,395.KZa/us Peter Hupe, Karlsruhe, Germany. MIXING CHAMBER. Patent dated Sept. 16, 1975. Dedication filed Feb. 22, 1980, by the assignee, Hewlett-Packard GmbH.
Hereby dedicates to the Public the entire remaining term of said patent.
[Oyficial Gazette, May 6,1980.]

Claims (4)

1. An apparatus for mixing two separate streams of liquid flowing under pressure comprising: two continuous, parallel, pressure-resistant screens, each having an external side and an internal side for forming a mixing chamber between the internal sides of said screens; a first inlet means coupled to the external side of the one of the screens for entry of a first liquid to be mixed into the chamber through said screen; a second inlet means coupled to the external side of the other screen for entry of a second liquid to be mixed into the chamber through said screen; and outlet means coupled to the mixing chamber for outflow of the stream of mixed liquid; said screens being disposed a distance apart approximately equal to at least five times less than the lateral extension of the screens.
2. The apparatus as in claim 1 wherein the grid walls are formed of metal frets.
3. The apparatus as in claim 1 wherein the spacing between the grids may vary from 0.5 mm to 3 mm.
4. The apparatus as in claim 1 wherein the average grid aperture size may vary from 1 micron to 10 microns.
US426417A 1972-12-28 1973-12-19 Mixing chamber Expired - Lifetime US3905395A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2263769 1972-12-28

Publications (1)

Publication Number Publication Date
US3905395A true US3905395A (en) 1975-09-16

Family

ID=5865638

Family Applications (1)

Application Number Title Priority Date Filing Date
US426417A Expired - Lifetime US3905395A (en) 1972-12-28 1973-12-19 Mixing chamber

Country Status (5)

Country Link
US (1) US3905395A (en)
JP (1) JPS4992654A (en)
CH (1) CH568093A5 (en)
DE (1) DE2263769C2 (en)
GB (1) GB1420036A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475821A (en) * 1980-10-07 1984-10-09 Bruker-Analytische Messtechnik Gmbh Mixing chamber
US4506987A (en) * 1982-09-08 1985-03-26 The United States Of America As Represented By The United States Department Of Energy High pressure liquid chromatographic gradient mixer
US4647212A (en) * 1986-03-11 1987-03-03 Act Laboratories, Inc. Continuous, static mixing apparatus
US6048496A (en) * 1996-06-05 2000-04-11 Gi Sciences Incorporated Mixer for liquid chromatograph
US6406555B1 (en) * 1997-07-01 2002-06-18 Motorola Inc. Point of use dilution tool and method
US6540715B1 (en) 1997-12-22 2003-04-01 Bayer Aktiengesellschaft Method and device for in-situ formulation of a medicinal solution for parenteral application
US20050068845A1 (en) * 2003-09-29 2005-03-31 Tomoki Oohashi Mixer and liquid analyzer provided with same
US20050213425A1 (en) * 2004-02-13 2005-09-29 Wanjun Wang Micro-mixer/reactor based on arrays of spatially impinging micro-jets
US20170151537A1 (en) * 2014-06-20 2017-06-01 Vrije Universiteit Brussel Mixing of Fluids
US10295512B2 (en) 2015-12-08 2019-05-21 Dionex Corporation Multi-lumen mixing device for chromatography
US10335753B2 (en) 2004-07-13 2019-07-02 Waters Technologies Corporation Fluid mixer assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2195265B (en) * 1986-09-17 1990-06-20 Philips Electronic Associated Liquid chromatograph apparatus
JP4585800B2 (en) * 2003-09-29 2010-11-24 株式会社日立ハイテクノロジーズ Mixer and liquid analyzer
JP2007319815A (en) * 2006-06-02 2007-12-13 Toray Eng Co Ltd Liquid mixing device, and liquid mixing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391110A (en) * 1944-07-03 1945-12-18 Standard Oil Dev Co Mixing device
US2509288A (en) * 1947-01-02 1950-05-30 Internat Morfat Corp Emulsifying apparatus
US2815532A (en) * 1953-05-25 1957-12-10 American Viscose Corp Spinneret mixing element
US3064680A (en) * 1961-07-19 1962-11-20 Virginia Chemicals & Smelting Apparatus for introduction of fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2391110A (en) * 1944-07-03 1945-12-18 Standard Oil Dev Co Mixing device
US2509288A (en) * 1947-01-02 1950-05-30 Internat Morfat Corp Emulsifying apparatus
US2815532A (en) * 1953-05-25 1957-12-10 American Viscose Corp Spinneret mixing element
US3064680A (en) * 1961-07-19 1962-11-20 Virginia Chemicals & Smelting Apparatus for introduction of fluid

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475821A (en) * 1980-10-07 1984-10-09 Bruker-Analytische Messtechnik Gmbh Mixing chamber
US4506987A (en) * 1982-09-08 1985-03-26 The United States Of America As Represented By The United States Department Of Energy High pressure liquid chromatographic gradient mixer
US4647212A (en) * 1986-03-11 1987-03-03 Act Laboratories, Inc. Continuous, static mixing apparatus
US6048496A (en) * 1996-06-05 2000-04-11 Gi Sciences Incorporated Mixer for liquid chromatograph
US6406555B1 (en) * 1997-07-01 2002-06-18 Motorola Inc. Point of use dilution tool and method
US6540715B1 (en) 1997-12-22 2003-04-01 Bayer Aktiengesellschaft Method and device for in-situ formulation of a medicinal solution for parenteral application
US20050068845A1 (en) * 2003-09-29 2005-03-31 Tomoki Oohashi Mixer and liquid analyzer provided with same
US7147364B2 (en) * 2003-09-29 2006-12-12 Hitachi High-Technologies Corporation Mixer and liquid analyzer provided with same
US20050213425A1 (en) * 2004-02-13 2005-09-29 Wanjun Wang Micro-mixer/reactor based on arrays of spatially impinging micro-jets
US10335753B2 (en) 2004-07-13 2019-07-02 Waters Technologies Corporation Fluid mixer assembly
US20170151537A1 (en) * 2014-06-20 2017-06-01 Vrije Universiteit Brussel Mixing of Fluids
US10807054B2 (en) * 2014-06-20 2020-10-20 Vrue Universiteit Brussel Mixing of fluids
US10295512B2 (en) 2015-12-08 2019-05-21 Dionex Corporation Multi-lumen mixing device for chromatography

Also Published As

Publication number Publication date
CH568093A5 (en) 1975-10-31
GB1420036A (en) 1976-01-07
DE2263769C2 (en) 1974-10-03
DE2263769B1 (en) 1974-02-28
JPS4992654A (en) 1974-09-04

Similar Documents

Publication Publication Date Title
US3905395A (en) Mixing chamber
EP0150776B1 (en) Passive fluid mixing system
US3861652A (en) Mixing device
US3856270A (en) Static fluid mixing apparatus
US2747844A (en) Device for mixing fluids
US20070205307A1 (en) Device and method for creating hydrodynamic cavitation in fluids
JPH0687120A (en) Static laminar flow mixer device
Shi et al. Experimental study of mixing enhancement of viscous liquids in confined impinging jets reactor at low jet Reynolds numbers
KR880001059B1 (en) Fluid mixing apparatus
KR920700778A (en) Paint conductivity measuring system
US3402916A (en) Fluid mixing device
US20070140046A1 (en) Multiple-stream annular fluid processor
US2791404A (en) Apparatus for making cellular products
JPS6467232A (en) Impingement mixing, discharging or ejecting method of liquid and apparatus therefor
US4129624A (en) Fluid mixer
RU174710U1 (en) Mixing device
SU1678428A1 (en) Apparatus to prepare solutions of paste-like substances
US20080144430A1 (en) Annular fluid processor with different annular path areas
DE4308139C2 (en) Process for mixing two media of different viscosities and device for carrying out the process
RU2625874C1 (en) Hydrodynamic mixer
RU2631878C1 (en) Gas-liquid mixture dispergation device
DE19902697A1 (en) Dynamic mixing chamber for high pressure liquid chromatography process has minimum dwell volume and exactly reproduces liquid gradients
JP2513479B2 (en) Method and apparatus for mixing and ejecting liquid
SU899107A1 (en) Mixer
SU1273150A1 (en) Apparatus for obtaining mixtures