US3894073A - Extraction of pyrethrum - Google Patents

Extraction of pyrethrum Download PDF

Info

Publication number
US3894073A
US3894073A US219954A US21995472A US3894073A US 3894073 A US3894073 A US 3894073A US 219954 A US219954 A US 219954A US 21995472 A US21995472 A US 21995472A US 3894073 A US3894073 A US 3894073A
Authority
US
United States
Prior art keywords
pyrethrins
solvent
solution
extracting
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US219954A
Inventor
David George Alexander
Allen Forster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rose Downs and Thompson Ltd
Original Assignee
Rose Downs and Thompson Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rose Downs and Thompson Ltd filed Critical Rose Downs and Thompson Ltd
Application granted granted Critical
Publication of US3894073A publication Critical patent/US3894073A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring

Definitions

  • This invention relates to the extraction of pyrethrins from a pyrethrum material, e.g. oleoresins or pyrethrum flowers.
  • pyrethrins is meant the active constituents of the insecticide derived from the pyrethrum flower, whilst non-pyrethrins are inactive constituents.
  • Pyrethrins extracts are used in aerosol insect sprays. Such an extract needs to be sufficiently refined as to be light in colour and therefore non-staining in domestic use and also to be non-clogging in relation to aerosol nozzles.
  • We have found an advantageous process for producing a pyrethrins extract which can be operated to produce a light-coloured extract of the abovementioned type using commercially acceptable, economical amounts of liquids in a relatively small number of steps, an overall economic process thus resulting.
  • a process of extracting pyrethrins from a pyrethrum material comprises extracting the pyrethrins from a solution of the material in a first organic solvent into a second organic solvent containing water and back-extracting the pyrethrins from the second organic solvent containing water into first organic solvent, the partition coefficients of the pyrethrins and non-pyrethrins being adjusted for the back-extraction step so that the pyrethrins are extracted preferentially into the first organic solvent, the second solvent being miscible with water, and the first solvent forming a separate phase with a mixture of the second solvent and water.
  • the first solvent used in the back-extraction can be the same or different first solvent used in the forward extraction step.
  • Both first and second solvents are, of course, solvents for pyrethrins.
  • the second solvent need not necessarily be miscible in all proportions with water.
  • the first solvent is a low boiling hydrocarbon solvent with 4 to 8 C atoms and especially a low boiling petroleum fraction e.g., commercial isohexane or n-hexane.
  • the second solvent is preferably ethanol or methanol.
  • methanol preferably contains 3 to 15% by volume of water and more desirably 6 to 12%.
  • ethanol preferably contains somewhat more water than those amounts for methanol.
  • a water content for the methanol of less than renders the methanol with water too miscible with the first solvent to effect a good phase separation of the solvents and if the water content is greater than 15% an excessive uneconomic amount of methanol is needed for the forward extraction step.
  • the invention includes a process in which, as a first step, a solution is made up of the pyrethrum material in the first solvent.
  • the said alteration of the partition coefficients permits an economic process to be achieved.
  • the partition coefficients can be altered by evaporation to increase the ratio of water to second organic solvent and/or by cooling. In order to avoid degradation of the pyrethrins it is desirable that the evapo ration takes place under reduced pressure. At some stage dewaxing must be carried out. This is most conveniently brought about by the evaporation and/or cooling to alter the partition coefficients and the wax, thrown out of solution, is removed. Dewaxing can, alternatively or in addition, be carried out on making up a solution of pyrethrum material in the first solvent or as a step carried out after the back-extraction.
  • a preferable process according to the invention of extracting pyrethrins from a pyrethrum material comprises making a solution of the material in commercial isohexane, counter-current extracting the pyrethrins from the hydrocarbon solution into methanol containing at most 15% water, increasing the concentration of the pyrethrins by evaporation of the methanol, lowering the temperature of the methanol solution and filtering to remove solid materials thrown out of solution, and extracting the pyrethrins into a further quantity of commercial isohexane.
  • pyrethrum flowers are extracted into isohexane; if the pyrethrum is available as oleoresins, then these resins are dissolved in the isohexane.
  • the solution is filtered to remove any coarse particles of insoluble matter and is then counter-current extracted with nearly dry (i.e., containing 3 to 15% water) methanol to produce a pyrethrum extract in the methanol layer.
  • nearly dry i.e., containing 3 to 15% water
  • the temperature for the step of extracting of the pyrethrins from the first solvent into the second solvent can be from ambient to 50C, and the more preferred range is 35 to 45C.
  • the methanol extract from the partitioning is evaporated to about half volume, the evaporation taking place under reduced pressure.
  • the concentration in the methanol solution of the pyrethrins and the water is doubled, the composition of the methanol layer being changed from about 90% methanol and 10% water to about methanol and 20% water.
  • the concentrated solution is now cooled slowly to about 0C to crystallise out a clean, almost white wax which contains only a small proportion of pyrethrins.
  • the methanol solution is filtered in order to remove the wax, and the resulting clear methanol solution is then extracted cold with clean isohexane to give a clear, high purity, pale and dewaxed pyrethrins solution which, when evaporated under reduced pressure, yields a dewaxed pyrethrins extract of high strength.
  • the methanol solution after evaporation, is allowed to cool only slightly to crystallise out a very small amount of wax.
  • the warm solution is filtered to remove the wax which is dark coloured and which contains a significant quantity of pyrethrins.
  • the concentrated solution of pyrethrins in 80% methanol is now cooled slowly to about 0C to crystallise out a further crop of clean white wax which has a negligible pyrethrins content.
  • the methanol solu tion is again filtered in order to remove the wax and the resultant clear methanol solution is then extracted as before.
  • the advantage of removing the wax in two stages as described above is that the pyrethrins-containing impurities are removed with the first impure crop of wa x' crystals, and the pyrethrum content of the wax re moved in the first stage is at a sufficiently high concentration to make the recovery of the contained pyrethrins worth while.
  • the second crop of wax crystals is comparatively pure and of such a low pyrethrins content that pyrethrins recovoery is uneconomic, the wax being sold or otherwise disposed of, for further treatment.
  • EXAMPLE 1 In a typical process, a dewaxed oleoresin at 33.7% pyrethrins content was dissolved in isohexane to make a solution of the oleoresin in the solvent. This was extracted with four times its own volume of a solution of methanol containing 10% by volume of water, at a temperature of 40C. The resulting methanol extract contained 56.8% pyrethrins and 43.2% non-pyrethrins in solution and left a residue of 7.3% pyrethrins and 92.8% non-pyrethrins in the isohexane.
  • the methanol solution was evaporated to approximately half volume and cooled to throw down a wax which contained 74.4% waxes and 25.6% pyrethrins.
  • the cold methanol solution was filtered and then extracted with two volumes of isohexane.
  • the isohexane solution was then evaporated under reduced pressure to give a clear yellow extract containing 83% pyrethrins and 17% nonpyrethrins.
  • the change in the methanol composition resulting from the evaporation alters the partition coefficient of pyrethrins between methanol and isohexane, and causes the extraction of the pyre-' thrins into the isohexane to take place readily. This is particularly true when the extraction from methanol to isohexane to performed cold.
  • the increased concentra- 1 tion of the methanol extract and its increased water content further permits an efficient and easy dewaxing to be performed with a minimum loss of pyrethrins.
  • methanol is vaporised to increase the water content to 20%.
  • the vaporised methanol is condensed in a condenser 5 and is used as a pure methanol feed as is explained below., 7
  • the methanol solution of pyrethrins is withdrawn from the still 4 to be cooled to 0C in a cooler 6 where a coloured waxy residue containing 25.6% pyrethrins in relation to non-pyrethrins precipitates and is separated by a filter 7.
  • the filtrate is a two volume; 80% methanol solution and this is fed to a second ex. tractor 8 operating at 20 C to which four volumes ofisohexane solution are introduced.
  • Isohexane 'vaporised in the still 9 is recovered in a condenser 10 and thereafter supplied as a feed to the extractor 8.
  • Product refined pyrethrum'extract is withdrawn from the still 9.
  • a process for extracting pyrethrins from a pyrethrin containing material comprises the steps of: a. making a solution of the material in a first hydrocarbon solvent for pyrethrins having 4-8 carbon atoms, I I b. extracting the pyrethrins from said solution into a second organic solvent for pyrethrins miscible with water selected from the group consisting of metha nol and ethanol and having a water content such that it achieves substantially completeextraction of said pyrethrins into said second solvent, and c. back-extracting said pyrethrins from said second solvent into an.
  • a process according'to claim 1 including cooling said second solvent, after evaporation, and removing wax thrown out of solution before said back-extraction step.
  • a process according to claim 1 including,.after partially evaporating said second solvent and. before back-extracting. the steps of:
  • a process for extracting pyrethrins from a pyrethrum containing material comprising the steps of:
  • a process according to claim 7 including, after partially evaporating said second solvent and before back-extracting, the steps of:
  • a process for extracting pyrethrins from a pyrethrin containing material comprises the steps of:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

Pyrethrins are extracted from a solution of pyrethrum material in a low boiling hydrocarbon solvent with 4 to 8 C atoms into methanol or ethanol containing water. The pyrethrins are backextracted into the hydrocarbon solvent after adjusting the partition coefficients of the pyrethrins and non-pyrethrins.

Description

United States Patent [191 Alexander et a1.
[ 51 July 8,1975
[ EXTRACTION OF PYRETHRUM [75] Inventors: David George Alexander, Westella;
Allen Forster, Hull, both of England {73] Assignee: Rose, Downs & Thompson Limited,
Kingston-upon-l-lull, England [22] Filed: .Jan. 24, 1972 [21] Appl. No.: 219,954
[30] Foreign Application Priority Data UNITED STATES PATENTS 2,467,859 4/1949 Sankowsky 260/468 7/1962 Haus et a1 260/468 3/1966 Ward 260/468 FOREIGN PATENTS OR APPLICATIONS 1,247,224 9/1971 United Kingdom 260/468 Primary Examiner-Robert Gerstl Attorney, Agent, or FirmBrisebois & Kruger [5 7] ABSTRACT Pyrethrins are extracted from a solution of pyrethrum material in a low boiling hydrocarbon solvent with 4 to 8 C atoms into methanol or ethanol containing water. The pyrethrins are back-extracted into the hydro- .carbon solvent after adjusting the partition coefficients of the pyrethrins and non-pyrethrins.
13 Claims, 11 Drawing Figure EXTRACTTON F PYRETHRlUl /ll This invention relates to the extraction of pyrethrins from a pyrethrum material, e.g. oleoresins or pyrethrum flowers. By the term pyrethrins is meant the active constituents of the insecticide derived from the pyrethrum flower, whilst non-pyrethrins are inactive constituents.
Pyrethrins extracts are used in aerosol insect sprays. Such an extract needs to be sufficiently refined as to be light in colour and therefore non-staining in domestic use and also to be non-clogging in relation to aerosol nozzles. We have found an advantageous process for producing a pyrethrins extract which can be operated to produce a light-coloured extract of the abovementioned type using commercially acceptable, economical amounts of liquids in a relatively small number of steps, an overall economic process thus resulting.
According to the invention a process of extracting pyrethrins from a pyrethrum material comprises extracting the pyrethrins from a solution of the material in a first organic solvent into a second organic solvent containing water and back-extracting the pyrethrins from the second organic solvent containing water into first organic solvent, the partition coefficients of the pyrethrins and non-pyrethrins being adjusted for the back-extraction step so that the pyrethrins are extracted preferentially into the first organic solvent, the second solvent being miscible with water, and the first solvent forming a separate phase with a mixture of the second solvent and water.
The first solvent used in the back-extraction can be the same or different first solvent used in the forward extraction step. Both first and second solvents are, of course, solvents for pyrethrins. The second solvent need not necessarily be miscible in all proportions with water.
The first solvent is a low boiling hydrocarbon solvent with 4 to 8 C atoms and especially a low boiling petroleum fraction e.g., commercial isohexane or n-hexane.
The second solvent is preferably ethanol or methanol. When used, methanol preferably contains 3 to 15% by volume of water and more desirably 6 to 12%. When ethanol is used. it preferably contains somewhat more water than those amounts for methanol.
With methanol as the second solvent and isohexane or n-hexane as the first, a water content for the methanol of less than renders the methanol with water too miscible with the first solvent to effect a good phase separation of the solvents and if the water content is greater than 15% an excessive uneconomic amount of methanol is needed for the forward extraction step.
The invention includes a process in which, as a first step, a solution is made up of the pyrethrum material in the first solvent.
1n the invention the said alteration of the partition coefficients permits an economic process to be achieved. The partition coefficients can be altered by evaporation to increase the ratio of water to second organic solvent and/or by cooling. In order to avoid degradation of the pyrethrins it is desirable that the evapo ration takes place under reduced pressure. At some stage dewaxing must be carried out. This is most conveniently brought about by the evaporation and/or cooling to alter the partition coefficients and the wax, thrown out of solution, is removed. Dewaxing can, alternatively or in addition, be carried out on making up a solution of pyrethrum material in the first solvent or as a step carried out after the back-extraction. When evaporation is followed by cooling, the evaporation is desirably continued until just above the point at which pyrethrins or wax precipitate. The ensuing cooling will then readily bring about precipitation of the wax. It is convenient to adjust the volumes of solvents used so that reduction to half volume by evaporation represents reaching just above the said point. Water can be added to alter the partition coefficients in addition to evaporation.
A preferable process according to the invention of extracting pyrethrins from a pyrethrum material comprises making a solution of the material in commercial isohexane, counter-current extracting the pyrethrins from the hydrocarbon solution into methanol containing at most 15% water, increasing the concentration of the pyrethrins by evaporation of the methanol, lowering the temperature of the methanol solution and filtering to remove solid materials thrown out of solution, and extracting the pyrethrins into a further quantity of commercial isohexane.
In one aspect of extracting pyrethrins, given by way of example, pyrethrum flowers are extracted into isohexane; if the pyrethrum is available as oleoresins, then these resins are dissolved in the isohexane. The solution is filtered to remove any coarse particles of insoluble matter and is then counter-current extracted with nearly dry (i.e., containing 3 to 15% water) methanol to produce a pyrethrum extract in the methanol layer. After this partitioning has been effected finely divided insolubles and brown colouring matter are left in the isohexane, and the methanol layer which has a clear yellow colour contains practically all of the pyrethrins. The partitioning is carried out at about 40C.
The temperature for the step of extracting of the pyrethrins from the first solvent into the second solvent can be from ambient to 50C, and the more preferred range is 35 to 45C.
The methanol extract from the partitioning is evaporated to about half volume, the evaporation taking place under reduced pressure. As a result, the concentration in the methanol solution of the pyrethrins and the water is doubled, the composition of the methanol layer being changed from about 90% methanol and 10% water to about methanol and 20% water. The concentrated solution is now cooled slowly to about 0C to crystallise out a clean, almost white wax which contains only a small proportion of pyrethrins. The methanol solution is filtered in order to remove the wax, and the resulting clear methanol solution is then extracted cold with clean isohexane to give a clear, high purity, pale and dewaxed pyrethrins solution which, when evaporated under reduced pressure, yields a dewaxed pyrethrins extract of high strength.
In one form of the process, the methanol solution, after evaporation, is allowed to cool only slightly to crystallise out a very small amount of wax. The warm solution is filtered to remove the wax which is dark coloured and which contains a significant quantity of pyrethrins. The concentrated solution of pyrethrins in 80% methanol is now cooled slowly to about 0C to crystallise out a further crop of clean white wax which has a negligible pyrethrins content. The methanol solu tion is again filtered in order to remove the wax and the resultant clear methanol solution is then extracted as before.
The advantage of removing the wax in two stages as described above is that the pyrethrins-containing impurities are removed with the first impure crop of wa x' crystals, and the pyrethrum content of the wax re moved in the first stage is at a sufficiently high concentration to make the recovery of the contained pyrethrins worth while. The second crop of wax crystals is comparatively pure and of such a low pyrethrins content that pyrethrins recovoery is uneconomic, the wax being sold or otherwise disposed of, for further treatment.
The invention will now be further described by way of specific examples.
EXAMPLE 1 In a typical process, a dewaxed oleoresin at 33.7% pyrethrins content was dissolved in isohexane to make a solution of the oleoresin in the solvent. This was extracted with four times its own volume of a solution of methanol containing 10% by volume of water, at a temperature of 40C. The resulting methanol extract contained 56.8% pyrethrins and 43.2% non-pyrethrins in solution and left a residue of 7.3% pyrethrins and 92.8% non-pyrethrins in the isohexane. The methanol solution was evaporated to approximately half volume and cooled to throw down a wax which contained 74.4% waxes and 25.6% pyrethrins. The cold methanol solution was filtered and then extracted with two volumes of isohexane. The isohexane solution was then evaporated under reduced pressure to give a clear yellow extract containing 83% pyrethrins and 17% nonpyrethrins.
EXAMPLE 2,
In a similar experiment the methanol solution after evaporation was allowed to cool until a pale green wax separated. This was filtered off and found to contain 15.1% pyrethrins. The solution was then further cooled to 0C when a further crop of white wax was separated and this was filtered off and found to contain only 0.3% pyrethrins, v r i The step of evaporating the methanol solution is of importance because the increase in the concentration of the pyrethrins in the methanol allows the recovery of an isohexane solution of the pyrethrins of increased strength. Furthermore, the change in the methanol composition resulting from the evaporation alters the partition coefficient of pyrethrins between methanol and isohexane, and causes the extraction of the pyre-' thrins into the isohexane to take place readily. This is particularly true when the extraction from methanol to isohexane to performed cold. The increased concentra- 1 tion of the methanol extract and its increased water content further permits an efficient and easy dewaxing to be performed with a minimum loss of pyrethrins. It is found that the wax crystals thrown out of the methanol solution on cooling are better formed and easier to remove by filtering, with lower losses of pyrethrins, than the dewaxing achieved by cooling a solution of pyrethrum in isohexane. It is a subsidiary advantage that the wax is free of resinous impurities and has a potential commercial value.
The invention will now be further described, again by way of example, with reference to the accompanying pyrethrins from pyrethrum. I
In the drawing'pyrethrum in isohexane (as first solvent) is mixed in an extractor l with methanol (as second solvent) containing water, and pyrethrins are extracted into-themethanol, the temperature being main-. tained at 40C."The ratio of the phases is 4:1 by volume of 90% methanol: isohexane. After allowing the two phases to separate, isohexane now containing residue material is withdrawn through line 2 from the extractor and returned to the extraction plant..(notshown), whilst the 90% methanol containing pyrethrins is withdrawn through a line 3 to a vacuum still 4. 1
Here, some of the methanol is vaporised to increase the water content to 20%. The vaporised methanol is condensed in a condenser 5 and is used as a pure methanol feed as is explained below., 7
The methanol solution of pyrethrins is withdrawn from the still 4 to be cooled to 0C in a cooler 6 where a coloured waxy residue containing 25.6% pyrethrins in relation to non-pyrethrins precipitates and is separated by a filter 7. The filtrate is a two volume; 80% methanol solution and this is fed to a second ex. tractor 8 operating at 20 C to which four volumes ofisohexane solution are introduced.
After separation of the phases the isohexane contain-' ing 83% pyrethrins in relation to non-pyrethrins is? passed to a second vacuum still 9 and the other phase consisting of 80% methanol is recycled being mixed with pure methanol from the condenser 5 to produce the methanol fed to the extractor l.-
Isohexane 'vaporised in the still 9 is recovered in a condenser 10 and thereafter supplied as a feed to the extractor 8. Product refined pyrethrum'extract is withdrawn from the still 9.
We claim:
1. A process for extracting pyrethrins from a pyrethrin containing material, which process comprises the steps of: a. making a solution of the material in a first hydrocarbon solvent for pyrethrins having 4-8 carbon atoms, I I b. extracting the pyrethrins from said solution into a second organic solvent for pyrethrins miscible with water selected from the group consisting of metha nol and ethanol and having a water content such that it achieves substantially completeextraction of said pyrethrins into said second solvent, and c. back-extracting said pyrethrins from said second solvent into an. organic solvent for pyrethrins different from said second solvent after partially evap-' orating said second solvent to increase the propor tion of water and pyrethrins therein until the pyrethrins are extracted preferentially into said different solvent. 2. A process according'to claim 1 including cooling said second solvent, after evaporation, and removing wax thrown out of solution before said back-extraction step. I
3. A process according to claim 1 including,.after partially evaporating said second solvent and. before back-extracting. the steps of:
cooling said second solution to a first'temperature and thereby. throwing out of solution a minor portion ofjwax containing pyrethrins, removing said minor portion of wax, cooling..,said secondsolution' to a second and lower temperature and thereby throwing out of solution a major portion of wax containing substantially no pyrethrins, and
removing said major portion of wax.
4. A process according to claim 3 in which the amount of water in said second solution is 6 to 12% by volume.
5. A process according to claim 1 in which the first solvent is a low boiling petroleum fraction.
6. A process according to claim 1 in which the first solvent is commercial lsohexane or n-hexane.
7. A process for extracting pyrethrins from a pyrethrum containing material comprising the steps of:
a. making a solution of the material in a hydrocarbon solvent with 4 to 8 carbon atoms,
b. extracting said pyrethrins substantially completely from said solution into a solution of methanol containing between 3% and 15% by volume of water to form a second solution,
c. back-extracting said pyrethrins from said second solvent into a further quantity of said hydrocarbon solvent after partially evaporating said methanol to increase the proportion of water and pyrethrins in said second solvent until the pyrethrins are extracted preferentially into said hydrocarbon solvent.
8. A process according to claim 7 in which the step of extraction into the second solvent is carried out at ambient temperature to 50C.
9. A process according to claim 8 in which the said extraction is carried out at 35 to 45C.
10. A process according to claim 7 in which the evaporation is carried out under reduced pressure.
111. A process according to claim 7 including, after partially evaporating said second solvent and before back-extracting, the steps of:
cooling said second solution slightly and thereby throwing out of solution a minor portion of wax containing pyrethrins,
removing said minor portion of wax,
cooling said second solution further to about 0C and thereby throwing out of solution a major portion of wax containing substantially no pyrethrins, and
removing said major portion of wax.
12. A process according to claim 7 in which said methanol is evaporated to about half volume.
113. A process for extracting pyrethrins from a pyrethrin containing material, which process comprises the steps of:
a. making a solution of the material in a first hydrocarbon solvent having 48 carbon atoms,
b. extracting the pyrethrins from said solution into a second organic solvent miscible with water selected from the group consisting of methanol and ethanol and having a water content such that it achieves substantially complete extraction of said pyrethrins into said second solvent, and
c. back-extracting said pyrethrins from said second solvent into an organic solvent different from said second solvent after lowering the temperature of said second solvent until the pyrethrins are extracted preferentially into said different solvent.

Claims (13)

1. A PROCESS FOR EXTRACTING PYRETHRINS FROM A PYRETHRIN CONTAINING MATERIAL, WHICH PROCESS COMPRISES THE STEPS OF: A. MAKING A SOLUTION OF THE MATERIAL IN A FIRST HYDROCARBON SOLVENT FOR PYRETHRINS HAVING 4-8 CARBON ATOMS, B. EXTRACTING THE PYRETHRINS FROM SAID SOLUTION INTO A SECOND ORGANIC SOLVENT FOR PYRETHRINS MISCIBLE WITH WATER SELECTED FROM THE GROUP CONSISTING OF METHANOL AND ETHANOL AND HAVING A WATER CONTENT SUCH THAT IT ACHIEVES SUBSTANTIALLY COMPLETE EXTRACTION OF SAID PYRETHRINS INTO SAID SECOND SOLVENT, AND C. BACK-EXTRACTING SAID PYRETHRINS FROM SAID SECOND SOLVENT INTO AN ORGANIC SOLVENT FOR PYRETHRINS DIFFERENT FROM SAID SECOND SOLVENT AFTER PARTIALLY EVAPORATING SAID SECOND SOLVENT TO INCREASE THE PROPORTION OF WATER AND PYRETHRINS THEREIN UNTIL THE PYRETHRINS ARE EXTRACTED PREFERENTIALLY INTO SAID DIFFERENT SOLVENT.
2. A process according to claim 1 including cooling said second solvent, after evaporation, and removing wax thrown out of solution before said back-extraction step.
3. A process according to claim 1 including, after partially evaporating said second solvent and before back-extracting, the steps of: cooling said second solution to a first temperature and thereby throwing out of solution a minor portion of wax containing pyrethrins, removing said minor portion of wax, cooling said second solution to a second and lower temperature and thereby throwing out of solution a major portion of wax containing substantially no pyrethrins, and removing said major portion of wax.
4. A process according to claim 3 in which the amount of water in said second solution is 6 to 12% by volume.
5. A process according to claim 1 in which the first solvent is a low boiling petroleum fraction.
6. A process according to claim 1 in which the first solvent is commercial isohexane or n-hexane.
7. A process for extracting pyrethrins from a pyrethrum containing material comprising the steps of: a. making a solution of the material in a hydrocarbon solvent with 4 to 8 carbon atoms, b. extracting said pyrethrins substantially completely from said solution into a solution of methanol containing between 3% and 15% by volume of water to form a second solution, c. back-extracting said pyrethrins from said second solvent into a further quantity of said hydrocarbon solvent after partially evaporating said methanol to increase the proportion of water and pyrethrins in said second solvent until the pyrethrins are extracted preferentially into said hydrocarbon solvent.
8. A process according to claim 7 in which the step of extraction into the second solvent is carried out at ambient temperature to 50*C.
9. A process according to claim 8 in which the said extraction is carried out at 35* to 45*C.
10. A process according to claim 7 in which the evaporation is carried out under reduced pressure.
11. A process according to claim 7 including, after partially evaporating said second solvent and before back-extracting, the steps of: cooling said second Solution slightly and thereby throwing out of solution a minor portion of wax containing pyrethrins, removing said minor portion of wax, cooling said second solution further to about 0*C and thereby throwing out of solution a major portion of wax containing substantially no pyrethrins, and removing said major portion of wax.
12. A process according to claim 7 in which said methanol is evaporated to about half volume.
13. A process for extracting pyrethrins from a pyrethrin containing material, which process comprises the steps of: a. making a solution of the material in a first hydrocarbon solvent having 4-8 carbon atoms, b. extracting the pyrethrins from said solution into a second organic solvent miscible with water selected from the group consisting of methanol and ethanol and having a water content such that it achieves substantially complete extraction of said pyrethrins into said second solvent, and c. back-extracting said pyrethrins from said second solvent into an organic solvent different from said second solvent after lowering the temperature of said second solvent until the pyrethrins are extracted preferentially into said different solvent.
US219954A 1971-01-28 1972-01-24 Extraction of pyrethrum Expired - Lifetime US3894073A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB336671 1971-01-28

Publications (1)

Publication Number Publication Date
US3894073A true US3894073A (en) 1975-07-08

Family

ID=9756967

Family Applications (1)

Application Number Title Priority Date Filing Date
US219954A Expired - Lifetime US3894073A (en) 1971-01-28 1972-01-24 Extraction of pyrethrum

Country Status (1)

Country Link
US (1) US3894073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281171A (en) * 1979-07-26 1981-07-28 Marc Sims Liquid carbon dioxide extraction of pyrethrins
CN1058958C (en) * 1997-09-14 2000-11-29 中国科学院昆明植物研究所 Refining process of pyrethrin
CN106349075A (en) * 2016-08-31 2017-01-25 安吉威龙塑木环保材料有限公司 Extraction method for high-purity and high-extraction-rate pyrethrin
CN110694300A (en) * 2019-10-23 2020-01-17 金川集团股份有限公司 Platinum-palladium efficient extraction and separation system and extraction and separation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467859A (en) * 1945-12-15 1949-04-19 Standard Oil Dev Co Preparation of pyrethrin concentrate
US3042706A (en) * 1960-01-22 1962-07-03 S B Penick And Company Process for purifying pyrethrum extracts
US3243451A (en) * 1961-09-27 1966-03-29 Mitchell Cotts Pyrethrum Ltd Extraction of pyrethrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467859A (en) * 1945-12-15 1949-04-19 Standard Oil Dev Co Preparation of pyrethrin concentrate
US3042706A (en) * 1960-01-22 1962-07-03 S B Penick And Company Process for purifying pyrethrum extracts
US3243451A (en) * 1961-09-27 1966-03-29 Mitchell Cotts Pyrethrum Ltd Extraction of pyrethrum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281171A (en) * 1979-07-26 1981-07-28 Marc Sims Liquid carbon dioxide extraction of pyrethrins
CN1058958C (en) * 1997-09-14 2000-11-29 中国科学院昆明植物研究所 Refining process of pyrethrin
CN106349075A (en) * 2016-08-31 2017-01-25 安吉威龙塑木环保材料有限公司 Extraction method for high-purity and high-extraction-rate pyrethrin
CN110694300A (en) * 2019-10-23 2020-01-17 金川集团股份有限公司 Platinum-palladium efficient extraction and separation system and extraction and separation method thereof
CN110694300B (en) * 2019-10-23 2021-08-27 金川集团股份有限公司 Platinum-palladium efficient extraction and separation system and extraction and separation method thereof

Similar Documents

Publication Publication Date Title
US4439629A (en) Extraction process for beta-carotene
US5695763A (en) Method for the production of storage stable azadirachtin from seed kernels of the neem tree
US3894073A (en) Extraction of pyrethrum
US4013731A (en) Process for the manufacture of solanesol
DE3037476C2 (en)
US4152402A (en) Partial purification of wet-process phosphoric acid with acetone and ammonia
US6335373B1 (en) Process to produce stabilized carnosic acid in high concentration
US4879042A (en) Method of crystallizing salts from aqueous solutions
GB2069520A (en) Process for separating the components of a mixture of fatty compounds
US2224804A (en) Digitalis glucosides and process for producing the same
DE2745829A1 (en) PROCESS FOR MANUFACTURING SUITABLE ISO ALPHA ACIDS FOR BEER MANUFACTURING
US2106200A (en) Method of extracting perfume materials unstable to heat
DE3301995A1 (en) METHOD FOR CRYSTALLIZING TRIMELLITHIC ACID
CN111154511A (en) Method and system for extracting montan wax from lignite
US3944625A (en) Separation of mannitol from galactitol
Fenton XXXVIII.—A new synthesis in the sugar group
US5440053A (en) Recovery of maltol through aqueous extraction
US3449446A (en) Purification of alcohols
US1842002A (en) Method of refining carnauba wax and similar vegetable waxes
DE1568081A1 (en) Process for the separation of (meth) acrylic acid
US5804192A (en) Process for obtaining procyanidol oligomers from plants by extractions
Jörgensen et al. Carbon Assimilation. A Review of Recent Work on the Pigments of the Green Leaf and the Processes connected with them (Continued)
US2467859A (en) Preparation of pyrethrin concentrate
DE3213095C2 (en)
DE2526716C2 (en) Process for the production of sorbic acid