US3893935A - Electrographic toner and developer composition - Google Patents

Electrographic toner and developer composition Download PDF

Info

Publication number
US3893935A
US3893935A US399226A US39922673A US3893935A US 3893935 A US3893935 A US 3893935A US 399226 A US399226 A US 399226A US 39922673 A US39922673 A US 39922673A US 3893935 A US3893935 A US 3893935A
Authority
US
United States
Prior art keywords
resin
particles
toner
carbon atoms
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US399226A
Inventor
Thomas A Jadwin
Alec N Mutz
Bruce J Rubin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organization World Intellectual Property
Eastman Kodak Co
Original Assignee
Organization World Intellectual Property
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organization World Intellectual Property filed Critical Organization World Intellectual Property
Priority to US399226A priority Critical patent/US3893935A/en
Application granted granted Critical
Publication of US3893935A publication Critical patent/US3893935A/en
Anticipated expiration legal-status Critical
Assigned to ORGANIZATION - WORLD INTELLECTUAL PROPERTY reassignment ORGANIZATION - WORLD INTELLECTUAL PROPERTY MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ORGANIZATION - WORLD INTELLECTUAL PROPERTY, UNITED STATES OF AMERICA
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09741Organic compounds cationic

Definitions

  • This invention relates to electrography and to a particulate toner composition and a dry electrographic developer composition containing such a toner useful in the development of latent electrostatic charge images.
  • Electrographic imaging and developing processes have been extensively described in both the patent and other literature, for example, U.S. Pat. No. 2,221,776 issued Nov. 19, 1940; No. 2,277,013 issued Mar. 17, 1942; No. 2,297,691 issued Oct. 6, 1942; No. 2,357,809 issued Sept. 12. 1944; No. 2,551,582 issued May 8, 1951; No. 2,825,814 issued Mar. 4, 1958; No. 2,833,648 issued May 6, 1958; No. 3,220,324 issued Nov. 30, 1965; No. 3,220,831 issued Nov. 30, 1965; No. 3,220,833 issued Nov. 30, 1965; and many others.
  • a latent electrostatic charge image on an insulating electrographic element The electrostatic latent image is then rendered visible by a development step in which the charged surface of the electrographic element is brought into contact with a suitable developer mix.
  • a suitable developer mix include toner or marking particles and may also include a carrier vehicle that can be either a magnetic material such as iron filings, powdered iron or iron oxide, or a triboelectrically chargeable, non-magnetic substance like glass beads or crystals of inorganic salts such as sodium or potassium fluoride.
  • the toner or marking particles typically contain a resinous material suitably colored or darkened, for contrast purposes, with a colorant like dyestuffs or pigments such as carbon black.
  • One method for applying a suitable dry developer mix to a charged image-bearing electrographic element is by the well-known magnetic brush process.
  • Such a process generally utilizes an apparatus of the type described, for example, in U.S. Pat. No. 3,003,462 issued Oct. 10, 1961 and customarily comprises a nonmagnetic rotatably mounted cylinder having fixed magnetic means mounted inside.
  • the cylinder is arranged to rotate so that part of the surface is immersed in or otherwise contacted with a supply of developer mix.
  • the granular mass comprising the developer mix is magnetically attracted to the surface of the cylinder.
  • particles thereof arrange themselves in bristle-like formations resembling a brush.
  • the brush formations that are formed by the developer mix tend to conform to the lines of magnetic flux, standing erect in the vicinity of the poles and laying substantially flat when said mix is outside the environment of the magnetic poles.
  • the continually rotating cylinder picks up developer mix from a supply source and returns part or all of this material to this supply. This mode of operation assures that fresh mix is always available to the surface of the charged electrographic element at its point of contact with the brush.
  • the roller performs the successive steps of developer mix pickup, brush formation, brush contact with the electrographic element, eg. a photoconductive element, brush collapse and finally mix release.
  • ln magnetic brush development as well as in various other types of electrographic development wherein a dry triboelectric mixture of a particulate carrier vehicle and a toner powder are utilized, e.g., cascade development such as described in U.S. Pat. Nos. 2,638,416 and 2,618,552, it is advantageous to modify the surface properties of the toner powder so that a uniform, stable high net electrical charge may be imparted to the toner powder by the particulate carrier vehicle.
  • Other materials which have been employed as modifying agents for dry toner compositions include various long-chain anionic or cationic materials such as various surfactants. Typical of these surfactant materials are the long chain quaternary ammonium surfactants. The use of such materials is described for example in British Pat. No. 1,174,573 published Dec. 17, 1969, at page 2, column 2 through page 3.
  • Jacknow et al. U.S. Pat. No. 3,577,345 issued May 4, 1971, describes a solid metal salt of a fatty acid admixed with one of various other described solid additives as a useful modifying combination for a dry toner composition.
  • quaternary ammonium salts incorporated in a dry, particulate toner composition comprising a resin and, if desired, a suitable colorant such as a pigment or dye, provide an effective charge control agent for the toner composition.
  • a suitable colorant such as a pigment or dye
  • Typical of the quaternary ammonium salts useful in the present invention are materials having the following formula:
  • R, R'*', R and R which may be the same or different represent an aliphatic hydrocarbon group having seven or less, preferably 3 to about 7, carbon atoms, including straight-chain and branched-chain aliphatic hydrocarbon groups, and X represents an anionic function.
  • the quaternary ammonium salt charge control agents when incorporated in the toner materials of the present invention, have been found surprisingly effective in providing a particulate toner composition which exhibits a relatively high, uniform and stable net toner charge when admixed with a suitable particulate carrier vehicle and which also exhibits a minimal amount of deleterious toner throwofi.
  • the charge control agent used in the present invention has been found substantially more effective than the somewhat related longchain quaternary ammonium surfactant materials which previously have been incorporated in toner compositions.
  • the quaternary ammonium salts of the present invention have been found to exhibit a substantially higher net toner charge and a substantially lower toner throw-off than long-chain quaternary ammonium salt surfactants (or wetting agents as they are sometimes called). (See Example 1 set forth hereinafter.) in addition, the quaternary ammonium charge control agents used in the present invention have been found to have no deleterious effect on the adhesion properties of the resultant toner composition containing these charge control agents to conventional paper receiving sheets.
  • a further indicia of the uniqueness of the toner compositions of the present invention is the fact that these compositions containing quaternary ammonium salts exhibit substantially better charge control properties than toner compositions containing other types of onium salts, e.g., sulfonium, phosphonium, pyridinium, or quinolinium salts. (see Example l set forth hereinafter.)
  • particulate resinous toner particles containing an effective amount of the above-described quaternary ammonium charge control agents generally result in good to excellent electrographic developed images exhibiting increased and uniform density with little or no background scumming.
  • the resins useful in the practice of the present invention can be used alone or in combination and include those resins conventionally employed in electrostatic toners.
  • Useful resins generally have a glass transition temperature within the range of from 60 to 120C.
  • toner particles prepared from these resinous materials have relatively high caking temperature, for example, higher than about 55C., so that the toner powders may be stored for relatively long periods of time at fairly high temperatures without having individual particles agglomerate and clump together.
  • the melting point of useful resins preferably is within the range of from about 65C. to about 200C. so that the toner particles can readily be fused to conventional paper receiving sheet to form a permanent image.
  • Especially preferred resins are those having a melting point within the range of from about 65C to about 120C.
  • resins having a melting point and glass transition temperature higher than the values specified above may be used.
  • melting point refers to the melting point of a resin as measured by Fisher Johns apparatus, Fisher Scientific Catalog No. 12-144.
  • Glass transition temperature (Tg) refers to the temperature at which a polymeric material changes from a glassy polymer to a rubbery polymer. This temperature (Tg) can be measured by differential thermal analysis as disclosed in Techniques and Methods ofPolymer Evaluation, Vol. l, Marcel Dekker, Inc., NY. 1966.
  • various resins which may be employed in the toner particles of the present invention are polystyrene containing resins, polycarbonates, rosin modified maleic alkyd resins, polyamides, phenol-formaldehyde resins and various derivatives thereof, polyester condensates, modified alkyd resins and the like, aromatic resins containing alternating methylene and aromatic units such as described in Merrill et al., US. Ser. No. 168,389, now Pat. No. 3,809,554 filed Aug. 2, 1971, and the like.
  • Typical useful toner resins include certain polycarbonates such as those described in U.S. Pat. No. 3,694,359 issued Sept. 26, 1972, and which includes polycarbonate materials containing an alkylidene diarylene moiety in a recurring unit and having from 1 to about 10 carbon atoms in the alkyl moiety.
  • Other useful resins having the above-described physical properties include polymeric esters of acrylic and methacrylic acid such as poly(alkylacrylate) including poly(alkylmethacrylate) wherein the alkyl moiety can contain from 1 to about 10 carbon atoms. Additionally, other polyesters having the aforementioned physical properties are also useful.
  • polyesters prepared from terephthalic acid including substituted terephthalic acid, a bis(hydroxyalkoxy) phenylalkane having from 1 to 4 carbon atoms in the alkoxy radical and from 1 to 10 carbon atoms in the alkane moiety and including such halogen substituted alkanes, and an alkylene glycol having from 1 to 4 carbon atoms in the alkylene moiety.
  • Such polymers typically comprise a polymerized blend of from about 40 to about percent by weight of styrene, from about 0 to about 45 percent by weight of a lower alkyl acrylate or methacrylate having from 1 to about 4 carbon atoms in the alkyl moiety such as methyl, ethyl, isopropyl, butyl, etc. and from about 5 to about 50 percent by weight of another vinyl monomer other than styrene, for example, a higher alkyl acrylate or methacrylate having from about 6 to 20 or more carbon atoms in the alkyl group.
  • a typical styrenecontaining resin prepared from a copolymerized blend as described hereinabove are copolymers prepared from a monomeric blend of 40 to 60 percent by weight styrene or styrene homolog, from about 20 to about 50 percent by weight of a lower alkyl acrylate or methacrylate and from about 5 to about 30 percent by weight of a higher alkyl acrylate or methacrylate such as ethylhexyl acrylate.
  • a variety of other useful styrene containing toner materials are disclosed in the following US. Pats. No.: 2,917,460 issued Dec. 15, 1959; Re. No. 25,136 issued Mar. 13, 1962; No. 2,788,288 issued Apr. 9, 1957; No. 2,638,416 issued Apr. 12, 1953; No. 2,618,552 issued Nov. 18, 1952 and No. 2,659,670 issued Nov. 17, 1953.
  • the toner particles of the present invention can be prepared by various methods.
  • One convenient technique for preparing these toners is spray-drying. Spraydrying involves dissolving the polymer and adding the toner colorant and charge control agent to a volatile organic solvent such as dichloromethane. This solution is then sprayed through an atomizing nozzle using a substantially nonreactive gas such as nitrogen as the atomizing agent. During atomization, the volatile solvent evaporates from the airborne droplets, producing toner particles of the uniformly dyed or pigmented resin, The ultimate particle size is determined by varying the size of the atomizing nozzle and the pressure of the gaseous atomizing agent.
  • Particles of a diameter between about 0.1 micron and about 100 microns may be used, although in general present day office copy devices typically employ particles between about I0 and 30 microns. However, larger particles or smaller particles can be used where desired for particular methods of development or particular development conditions. For example, in powder cloud development such as described in US. Pat. No. 2,691,345 issued Oct. l2, 1954, extremely small toner particles are used.
  • melt-blending Another convenient method for preparing the toner composition of the present invention is melt-blending. This technique involves melting a powdered form of polymer or resin and mixing it with suitable colorants, such as dyes or pigments, and the charge control agent.
  • suitable colorants such as dyes or pigments
  • the resin can readily be melted on heated compounding rolls which are also useful to stir or otherwise blend the resin and addenda so as to promote the complete intermixing of these various ingredients.
  • the mixture is cooled and solidified.
  • the resultant solid mass is then broken into small particles and finely ground to form a free-flowing powder of toner particles. These particles typically have an average particle size or average diameter within the range of from about 0.1 to about I00 microns.
  • the quaternary ammonium charge control agents of the invention are added to the resinous toner composition in an amount effective to improve the charge properties of the toner composition.
  • a charge control agent improves the charge uniformity of a particular toner composition, i.e. acts to provide a toner composition in which all or substantially all of the individual discrete toner particles exhibit a triboelectric charge of the same sign (negative or positive) with respect to a given carrier vehicle. increases the net electrical charge exhibited by a specified quantity of toner particles relative to a given carrier vehicle, and reduces the amount of toner throw-off of a given toner composition.
  • toner throw-off is defined as the amount of toner powder thrown out of a developer mix as it is mechanically agitated, e.g., in a development apparatus. Aside from the extraneous contamination problems inherent with airborne toner dust in the development apparatus, toner throw-off also leads to imaging problems such as unwanted background and scumming of the electrographic image-bearing element.
  • charge control agent to be added will depend, in part, on the particular quaternary ammonium charge control agents selected and the particular resinous binder to which it is added. However, the amounts specified hereinabove are typical of the useful range of charge control agent utilized in conventional dry toner materials.
  • the quaternary ammonium charge control agents contemplated for use according to the present invention have the fonnula:
  • R, R R and R which may be the same or different represent an aliphatic hydrocarbon group having one to seven carbon atoms and X is an anionic function.
  • R, R R and R may be a straight chain or branched chain aliphatic hydrocarbon groups including ally] and alkyl moieties, e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, isopropyl, etc.
  • R, R R and R are each an alkyl moiety having 3-7 carbon atoms and wherein each of R, R R and R represents an identical alkyl moiety.
  • hydrocarbon substituents may be utilized in the quaternary ammonium salt charge control agents of the present invention.
  • anionic moieties may be utilized such as the following: halides such as chloride, bromide, iodide, phosphates; acetates; nitrates; benzoates; methyl sulfate, perchlorate, tetrafluoroborate, benzenesulfonate, and the like.
  • halides such as chloride, bromide, iodide, phosphates; acetates; nitrates; benzoates; methyl sulfate, perchlorate, tetrafluoroborate, benzenesulfonate, and the like.
  • Especially useful anionic moieties are the halides.
  • quaternary salts useful in the invention are the following: Tetrapentylammonium chloride Tetraheptylammonium chloride Tetrapentylammonium hexafluorophosphate Tetraethylammonium benzoate Tetraethylammonium acetate tetrahydrate Tetrapentylammonium bromide Tetrabutylammonium iodide Tetrabutylammonium nitrate Triethylmethylammonium iodide
  • colorant materials selected from dyestuffs or pigments may be employed in the toner materials of the present invention. Such materials serve to color the toner and/or render it more visible.
  • suitable toner materials having the appropriate charging characteristics can be prepared without the use of a colorant material where it is desired to have a developed image of low optical opacity.
  • the colorants used can, in principle, be selected from virtually any of the compounds mentioned in the Colour Index Volumes l and 2, Second Edition.
  • the toners of this invention can be mixed with a carrier vehicle to form developing compositions.
  • the carrier vehicles which can be used with the present toners to form new developer compositions can be selected from a variety of materials.
  • Suitable carrier vehicles useful in the invention include various nonmagnetic particles such as glass beads, crystals of inorganic salts such as sodium or potassium chloride, hard resin particles, metal particles, etc.
  • magnetic carrier particles can be used in accordance with the invention.
  • the toner compositions of the present invention are especially suited for use with magnetic carrier particles as the problem of toner throw-off is especially bothersome in magnetic brush development processes.
  • Suitable magnetic carrier particles are particles of ferromagnetic materials such as iron, cobalt, nickel, and alloys and mixtures thereof.
  • ferromagnetic particles overcoated with a thin layer of various film-forming resins, for example, the alkali-soluble carboxylated polymers described in Miller, U.S. Pat. No. 3,547,822 issued Dec. 15, 1970; Miller, U.S. Pat. No. 3,632,512 issued Jan. 4, 1972; Me- Cabe, U.S. Ser. No. 236,765, now Pat. No. 3,795,617 filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case B"; Kasper et al., U.S. Ser. No. 236,584, now abandoned, filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case C"; and Kasper U.S. Ser. No.
  • Other useful resin coated magnetic carrier particles include carrier particles coated with various fluorocarbons suchas polytetrafluoroethylene, polyvinylidene fluoride, and mixtures thereof including copolymers of vinylidene fluoride and tetrafluoroethylene.
  • a typical developer composition containing the above-described toner and a carrier vehicle generally comprises from about 1 to about 10 percent by weight of particulate toner particles and from about 90 to about 99 percent by weight carrier particles.
  • the carrier particles are larger than the toner particles.
  • Conventional carrier particles have a particle size on the order of from about 30 to about I200 microns, preferably 60-300 microns.
  • the toner and developer compositions of this invention can be used in a variety of ways to develop electrostatic charge patterns or latent images.
  • Such developable charge patterns can be prepared by a number of means and be carried for example, on a light sensitive photoconductive element or a non-light sensitive dielectric-surfaced element such as a receiver sheet.
  • One suitable development technique involves cascading the developer composition across the electrostatic charge pattern; while another technique involves applying toner particles from a magnetic brush. This latter technique involves the use of a magnetically attractable carrier vehicle in forming the developer composition.
  • the image After imagewise deposition of the toner particles, the image can be fixed by heating the toner to cause it to fuse to the substrate carrying the toner. If desired, the unfused image can be transferred to another support such as a blank sheet of copy paper and then fused to form a permanent image.
  • EXAMPLE 1 A poly(4,4'-isopropylidene diphenyl-alt-ethylene carbonate) resin as described in Ser. No. 34,557 filed May 4, 1970 is melted on a rubber compounding mill at a temperature of between l25-l50C. Cabot Corporation Sterling FT Carbon Black is added to yield 5.7 parts of carbon black per parts of polymer. This carbon black-polycarbonate composition is then used as a control toner. A variety of different materials are then added to individual samples of the control toner as described below and then the net toner charge and toner throw-off are measured for each of the sample toner compositions to test the charge control capabilities of the various materials added to the toner.
  • Each toner sample is prepared by blending all ingredients together on the rubber compounding mill for approximately 20 minutes. Each melt is then cooled to room temperature and ground in a laboratory disk grinder to pass through a 20 mesh screen. Final grinding to a particle size less than 30 microns is accomplished in a fluid energy mill. The net toner charge is measured by mixing 6 percent of the toner with an insulating polymer-coated particulate carrier comprising an oxidized sponge iron core coated with a terpolymer of acrylonitrile-vinylidene chloride-acrylic acid as de scribed in McCabe, U.S. Ser. No. 236,765, now U.S. Pat. No. 3,795,617 filed Mar. 21, 1972, Case B.
  • the mixing is accomplished by placing the carrier and toner in a small paper cup which is then rolled on a roll mill for 15 minutes.
  • the net toner charge is measured using a Faraday Cage in the following manner: a weighed portion of each of the developers is placed in an iron tube that is covered at one end with a 200 mesh screen that retains all carrier particles within the tube. The iron tube is connected in series with a capacitor to ground. An air stream is then directed through the tube, blowing toner particles off the carrier, through the 200 mesh screen at the exit end. The potential resulting on the capacitor is measured by an electrometer. The potential obtained is converted to electrical charge in microcoulombs and this figure is divided by the weight in grams of the toner that is removed from the tube, providing the net toner charge in microcoulombs per gram.
  • a test is devised to measure the toner throw-off exhibited by each of the sample toners when admixed with a particulate carrier vehicle as follows: A fixed quantity of a well-mixed developer (i.e. mixture of toner and carrier particles) is measured and placed in an open cup positioned in a de- 3,893,935 9 10 vice oscillating laterally througha0.75 inch distance at tion is collected on filter paper via a vacuum and 6 cycles per second for a fixed period of time. The weighed. The amounts so weighed are reported in toner throw-off of the developer mix due to the oscilla- Table 1 below in milligrams.
  • a well-mixed developer i.e. mixture of toner and carrier particles
  • HDSB Heptyldimethylsulfonium bromide
  • EPC Ethylpyridinium chloride
  • BPC Butylpyridinium chloride
  • Methylquinolinium chloride 1.0 10.1 18.6 MQC 3.0 9.0 24.0 MQC 4.5 6.4 32.0
  • Acetoquatcetyl lrimethyl ammonium bromide 0.5 8.6 9.7
  • Acetoquat*CTAB 1.0 9.0 7.9
  • Acetoquatcetyl trimelhyl ammonium chloride 0.5 8.4 16.4
  • AcetoquatCTAC 1.0 10.2 17.8
  • DPBAC Dimethylphenylbenzylammonium chloride
  • Triethylhenzylammonium chloride 0.5 2 3 294.9 TBAC 1.0 1 1 448.5 TBAC 3.0 O 9 159 5
  • Trimethylphenylammonium chloride TPAC
  • TPAC Trimethylphenylammonium chloride
  • TPACL Tetraphenylammonium chloride
  • TPACL 0.1 10.6 18.3 TPACL 0.3 12.4 14.4 TPACL 0.5 14.3 3.6
  • TPACL 1.0 13.0 4.2 TPACL 1.5 13.3 1.6 TPACL 3.0 12.5 5.2 TPACL 6.0 7.6 46.4
  • TBACCL Tetraheptylammonium chloride
  • THACL 0.3 10.1 Not available (N.A.)
  • THACL 0.5 14.6 N.A. THACI.
  • Tetrapentylummonium hcxafluorophosphate 0.5 8.9 NA.
  • TPAFP 1.0 9.8 NA.
  • TPAFP 2.0 7.9 NA.
  • TEAB Tetraethylammonium benzoute
  • Tctruethylummonium acetate tetrahydrute 0.5 7.7 2.6 TEAAT 1.0 1 1.4 3.4
  • TPAB Tetrapentylummonium bromide 0.25 12.2 N.A. TPAB 0.5 15.7 NA. TPAB 1.0 12.3 3.7 TPAB 3.0 10.1 NA.
  • THAI Telrahutylummonium iodide
  • control agents of our invention provide images that are 25 dense and sharp with little or no coloration, i.e. deposition of toner particles, in non-image background areas, R toner throw-off or dusting in magnetic brush processes R3 is minimal and the prints containing the transferred images can be handled repeatedly, bent, folded and the like without causing undue flake-off of the image e fl- Example wherein R, R R and R represent an aliphatic hydro EXAMPLE 3 carbon group having one to seven carbon atoms and X represents an anionic function.
  • a dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles having a particle size of from about 0.l micron to about 100 microns, said particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin a quaternary ammonium charge control agent having the following formula:
  • a toner with one part tetrabutylammonium nitrate and 5.7 parts Sterling FT carbon black per 100 parts resin is prepared according to Example I.
  • the toner is mixed with a magnetic carrier as described in Example I at 6% concentration.
  • This resultant developer is placed in a magnetic brush of the general type described in U.S. Pat. No. 3,003,462.
  • An organic photoconductor-containing element bearing a latent electrostatic charge image is passed over the magnetic brush.
  • the toned image thus formed on the photoconductor-containing element is subsequently 2 transferred to paper.
  • the toned image is fused to paper with an infrared lamp.
  • the magnetic brush exhibits low toner throwxoff.
  • the images that are formed are sharp, of high density, and advantageously exhibit very low background wherein R, R, R and R represent an aliphatic hydrocoloration.
  • the invention as described in claim 2 wherein said ride and 5.7 parts Sterling FT Carbo b fi P 100 toner composition comprises a pigment or a dyestuff in Parts resin P P (folding P Ex'flmple The an amount effective to color said toner composition.
  • a dry particulate electroscopic toner composition f 6% concslftl'anon This resultant developer is Placed for use in developing electrostatic charge patterns coma magnetic brush of the general yp described in prising finely-divided particles having a particle size of Us 3,003,462-
  • An organic photoconductoffrom about 1.0 to about 30 microns, said particles comcontaining element bearing a latent electrostatic i i a styrene-containing resin having a melting Charge image is Passed Over the magnetic brush- The point within the range of from about C. to about toned image thus form d on the PhOIOCOHdUCIOT- 65 C.
  • magagent having the following formula
  • R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and where X is an anionic function, said particles comprising about 0.3 to about 3.0 parts by weight charge control agent per 100 parts by weight of said resin.
  • R, R R and R represent an alkyl group having from I to about 7 carbon atoms and wherein X" is an anionic function selected from the group consisting of halides, phosphates, acetates and nitrates.
  • R, R R and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a halide.
  • R, R R, and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a chloride.
  • a dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 0.1 mi cron to about 100 microns, said particles comprising a polycarbonate-containing resin having a glass transition temperature within the range of from about 60C. to about 120C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
  • R, R, R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function.
  • R, R R and R represent an aliphatic group having from l to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, phosphates. acetates and nitrates.
  • R, R, R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
  • a dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 1.0 to about 30 microns, said particles comprising a styrenecontaining resin having a melting point within the range of from about 65C.
  • said resin containing from about 40 to about 100 percent by weight of styrene units, from to about 45 percent by weight of alkyl acrylate or alkyl methacrylate units having from I to about 3 carbon atoms in the alkyl moiety, and from about to about 50 percent by weight of alkyl acrylate or alkyl methacrylate units having from about 6 to about carbon atoms in the alkyl moiety, said resin having incorporated therein (a) a pigment or dyestuff in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
  • R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said particles comprising about 0.1 to about 6 parts by weight charge control agent per parts by weight of said resin.
  • R, R, R and R" represent an aliphatic group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, acetates, phosphates, and nitrates.
  • R, R R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
  • An electrographic developing composition comprising particulate magnetic carrier particles having electrostatically attractable thereto a toner composition as described in claim 1.
  • An electrographic developer composition comprising ferromagnetic carrier particles having a particle size within the range of from about 30 to about 1200 microns and having electrostatically attractable thereto dry, finely-divided toner particles having a particle size within the range of about L0 to about 30 microns, said toner particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
  • R, R, R and R represent an aromatic or an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said toner particles comprising about 0.3 to about 3.0 parts by weight of charge control agent per l00 parts by weight of said resin.
  • said resin is a styrene-containing resin having a melting point within the range of about 65 to about [20C. and wherein said toner particles comprise carbon black as a pigment.
  • said resin is a poly(carbonate)-containing resin having a glass transition temperature within the range of from about 60 to about C. and wherein said toner particles comprise carbon black as a pigment.

Abstract

The present invention relates to the use of certain quaternary ammonium salts as useful charge control agents for an electrostatic toner composition.

Description

United States Patent Jadwin et a1. July 8, 1975 [54] ELECTROGRAPHIC TONER AND 3,502,582 3/1970 Clemens et a1. 252/621 DEVELOPER COMPOSITION 3,565,654 2/1971 Story 252/62.1 3,647,696 3/1972 Olson......... 252/621 n nt rs: Thomas A. Jadwin; Alec N. Mutz; R25,l36 3/]962 Carlson 252162.]
Bruce J. Rubin, all of Rochester, NY. FOREIGN PATENTS OR APPLICATIONS 73 Assigneez Eastman Kodak Company 1,117,224 6/1968 United Kingdom 252/62.l Rochester N Y 1,174,573 12/1969 United Kingdom 252/621 1,169,703 11/1969 United Kingdom 252/621 [22] Filed: Sept. 20, 1973 1,034,849 7/1958 Germany 252/62.1
[21] Appl. No.: 399,226
Primary Examiner-Richard A. Farley Related Apphcamm Data Assistant Examin erT. M. Blum [63] Continuation-impart of Ser. No. 257,524, May 30, Attorney Agent Fi R P Hil 1972, abandoned.
[52] US. Cl 252/62. ll7/DlG. 4 57 ABSTRACT {51} Int. Cl 003g 9/00 [58] Field of Search 252/621, 117/D1G. 4 The present invention relates to the use of certain quaternary ammonium salts as useful charge control [56] References Cited agents for an electrostatic toner composition.
UNITED STATES PATENTS 18 Claims, No Drawings ELECTROGRAPHIC TONER AND DEVELOPER COMPOSITION This application is a continuation-in-part of U.S. Ser. No. 257,524 abondoned filed May 30, 1972.
This invention relates to electrography and to a particulate toner composition and a dry electrographic developer composition containing such a toner useful in the development of latent electrostatic charge images.
Electrographic imaging and developing processes, eg. electrophotographic imaging processes and techniques, have been extensively described in both the patent and other literature, for example, U.S. Pat. No. 2,221,776 issued Nov. 19, 1940; No. 2,277,013 issued Mar. 17, 1942; No. 2,297,691 issued Oct. 6, 1942; No. 2,357,809 issued Sept. 12. 1944; No. 2,551,582 issued May 8, 1951; No. 2,825,814 issued Mar. 4, 1958; No. 2,833,648 issued May 6, 1958; No. 3,220,324 issued Nov. 30, 1965; No. 3,220,831 issued Nov. 30, 1965; No. 3,220,833 issued Nov. 30, 1965; and many others. Generally these processes have in common the steps of forming a latent electrostatic charge image on an insulating electrographic element. The electrostatic latent image is then rendered visible by a development step in which the charged surface of the electrographic element is brought into contact with a suitable developer mix. Conventional dry developer mixes include toner or marking particles and may also include a carrier vehicle that can be either a magnetic material such as iron filings, powdered iron or iron oxide, or a triboelectrically chargeable, non-magnetic substance like glass beads or crystals of inorganic salts such as sodium or potassium fluoride. The toner or marking particles typically contain a resinous material suitably colored or darkened, for contrast purposes, with a colorant like dyestuffs or pigments such as carbon black.
One method for applying a suitable dry developer mix to a charged image-bearing electrographic element is by the well-known magnetic brush process. Such a process generally utilizes an apparatus of the type described, for example, in U.S. Pat. No. 3,003,462 issued Oct. 10, 1961 and customarily comprises a nonmagnetic rotatably mounted cylinder having fixed magnetic means mounted inside. The cylinder is arranged to rotate so that part of the surface is immersed in or otherwise contacted with a supply of developer mix. The granular mass comprising the developer mix is magnetically attracted to the surface of the cylinder. As the developer mix comes within the influence of the field generated by the magnetic means within the cylinder, particles thereof arrange themselves in bristle-like formations resembling a brush. The brush formations that are formed by the developer mix tend to conform to the lines of magnetic flux, standing erect in the vicinity of the poles and laying substantially flat when said mix is outside the environment of the magnetic poles. Within one revolution the continually rotating cylinder picks up developer mix from a supply source and returns part or all of this material to this supply. This mode of operation assures that fresh mix is always available to the surface of the charged electrographic element at its point of contact with the brush. In a typical rotational cycle, the roller performs the successive steps of developer mix pickup, brush formation, brush contact with the electrographic element, eg. a photoconductive element, brush collapse and finally mix release.
ln magnetic brush development, as well as in various other types of electrographic development wherein a dry triboelectric mixture of a particulate carrier vehicle and a toner powder are utilized, e.g., cascade development such as described in U.S. Pat. Nos. 2,638,416 and 2,618,552, it is advantageous to modify the surface properties of the toner powder so that a uniform, stable high net electrical charge may be imparted to the toner powder by the particulate carrier vehicle.
A variety of methods and material for modifying the surface properties of particulate toner particles have been proposed. For example, Olson, U.S. Pat. No. 3,647,696 issued Mar. 7, 1972 describes a uniform polarity resin electrostatic toner containing a monoor di-functional organic acid nigrosine salt. The nigrosine salt described in U.S. Pat. No. 3,647,696 aids in providing a relatively high uniform net electrical charge to a toner powder containing such a nigrosine salt. However, subsequent testing and development relating to the use of such organic acid nigrosine salts has shown that such materials, when incorporated in a toner composition, contribute to a decrease in the adhesion of the toner particles to a suitable paper receiving sheet. For example, it has been found that when a toner image is transferred from a charge image-bearing electrographic element to a paper receiving sheet and fixed to the receiving sheet, the image formed on the receiving sheets tends to flake off when the sheet is bent or folded.
Other materials which have been employed as modifying agents for dry toner compositions include various long-chain anionic or cationic materials such as various surfactants. Typical of these surfactant materials are the long chain quaternary ammonium surfactants. The use of such materials is described for example in British Pat. No. 1,174,573 published Dec. 17, 1969, at page 2, column 2 through page 3. In addition, Jacknow et al., U.S. Pat. No. 3,577,345 issued May 4, 1971, describes a solid metal salt of a fatty acid admixed with one of various other described solid additives as a useful modifying combination for a dry toner composition.
Other patents which describe various components for use in liquid developers include Beyer, U.S. Pat. No. 3,417,019 issued Dec. 17, 1968, which describes, in part, the use of various metal soaps, for example cobalt naphthenate, for use as a charge control agent in a liquid developer toner composition.
In accordance with the present invention, it has been discovered that certain quaternary ammonium salts incorporated in a dry, particulate toner composition comprising a resin and, if desired, a suitable colorant such as a pigment or dye, provide an effective charge control agent for the toner composition. Typical of the quaternary ammonium salts useful in the present invention are materials having the following formula:
wherein R, R'*', R and R which may be the same or different represent an aliphatic hydrocarbon group having seven or less, preferably 3 to about 7, carbon atoms, including straight-chain and branched-chain aliphatic hydrocarbon groups, and X represents an anionic function.
The quaternary ammonium salt charge control agents, when incorporated in the toner materials of the present invention, have been found surprisingly effective in providing a particulate toner composition which exhibits a relatively high, uniform and stable net toner charge when admixed with a suitable particulate carrier vehicle and which also exhibits a minimal amount of deleterious toner throwofi. The charge control agent used in the present invention has been found substantially more effective than the somewhat related longchain quaternary ammonium surfactant materials which previously have been incorporated in toner compositions. More specifically, the quaternary ammonium salts of the present invention have been found to exhibit a substantially higher net toner charge and a substantially lower toner throw-off than long-chain quaternary ammonium salt surfactants (or wetting agents as they are sometimes called). (See Example 1 set forth hereinafter.) in addition, the quaternary ammonium charge control agents used in the present invention have been found to have no deleterious effect on the adhesion properties of the resultant toner composition containing these charge control agents to conventional paper receiving sheets.
A further indicia of the uniqueness of the toner compositions of the present invention is the fact that these compositions containing quaternary ammonium salts exhibit substantially better charge control properties than toner compositions containing other types of onium salts, e.g., sulfonium, phosphonium, pyridinium, or quinolinium salts. (see Example l set forth hereinafter.)
Moreover, it has been found that particulate resinous toner particles containing an effective amount of the above-described quaternary ammonium charge control agents generally result in good to excellent electrographic developed images exhibiting increased and uniform density with little or no background scumming.
The resins useful in the practice of the present invention can be used alone or in combination and include those resins conventionally employed in electrostatic toners. Useful resins generally have a glass transition temperature within the range of from 60 to 120C. Preferably, toner particles prepared from these resinous materials have relatively high caking temperature, for example, higher than about 55C., so that the toner powders may be stored for relatively long periods of time at fairly high temperatures without having individual particles agglomerate and clump together. The melting point of useful resins preferably is within the range of from about 65C. to about 200C. so that the toner particles can readily be fused to conventional paper receiving sheet to form a permanent image. Especially preferred resins are those having a melting point within the range of from about 65C to about 120C. Of course, where other types of receiving elements are used, for example, metal plates such as certain printing plates, resins having a melting point and glass transition temperature higher than the values specified above may be used.
As used herein the terms melting point" refers to the melting point of a resin as measured by Fisher Johns apparatus, Fisher Scientific Catalog No. 12-144. Glass transition temperature (Tg) as used herein refers to the temperature at which a polymeric material changes from a glassy polymer to a rubbery polymer. This temperature (Tg) can be measured by differential thermal analysis as disclosed in Techniques and Methods ofPolymer Evaluation, Vol. l, Marcel Dekker, Inc., NY. 1966.
Among the various resins which may be employed in the toner particles of the present invention are polystyrene containing resins, polycarbonates, rosin modified maleic alkyd resins, polyamides, phenol-formaldehyde resins and various derivatives thereof, polyester condensates, modified alkyd resins and the like, aromatic resins containing alternating methylene and aromatic units such as described in Merrill et al., US. Ser. No. 168,389, now Pat. No. 3,809,554 filed Aug. 2, 1971, and the like.
Typical useful toner resins include certain polycarbonates such as those described in U.S. Pat. No. 3,694,359 issued Sept. 26, 1972, and which includes polycarbonate materials containing an alkylidene diarylene moiety in a recurring unit and having from 1 to about 10 carbon atoms in the alkyl moiety. Other useful resins having the above-described physical properties include polymeric esters of acrylic and methacrylic acid such as poly(alkylacrylate) including poly(alkylmethacrylate) wherein the alkyl moiety can contain from 1 to about 10 carbon atoms. Additionally, other polyesters having the aforementioned physical properties are also useful. Among such other useful polyesters are copolyesters prepared from terephthalic acid including substituted terephthalic acid, a bis(hydroxyalkoxy) phenylalkane having from 1 to 4 carbon atoms in the alkoxy radical and from 1 to 10 carbon atoms in the alkane moiety and including such halogen substituted alkanes, and an alkylene glycol having from 1 to 4 carbon atoms in the alkylene moiety.
Other useful resins are various styrene-containing resins. Such polymers typically comprise a polymerized blend of from about 40 to about percent by weight of styrene, from about 0 to about 45 percent by weight of a lower alkyl acrylate or methacrylate having from 1 to about 4 carbon atoms in the alkyl moiety such as methyl, ethyl, isopropyl, butyl, etc. and from about 5 to about 50 percent by weight of another vinyl monomer other than styrene, for example, a higher alkyl acrylate or methacrylate having from about 6 to 20 or more carbon atoms in the alkyl group. A typical styrenecontaining resin prepared from a copolymerized blend as described hereinabove are copolymers prepared from a monomeric blend of 40 to 60 percent by weight styrene or styrene homolog, from about 20 to about 50 percent by weight of a lower alkyl acrylate or methacrylate and from about 5 to about 30 percent by weight of a higher alkyl acrylate or methacrylate such as ethylhexyl acrylate. A variety of other useful styrene containing toner materials are disclosed in the following US. Pats. No.: 2,917,460 issued Dec. 15, 1959; Re. No. 25,136 issued Mar. 13, 1962; No. 2,788,288 issued Apr. 9, 1957; No. 2,638,416 issued Apr. 12, 1953; No. 2,618,552 issued Nov. 18, 1952 and No. 2,659,670 issued Nov. 17, 1953.
The toner particles of the present invention can be prepared by various methods. One convenient technique for preparing these toners is spray-drying. Spraydrying involves dissolving the polymer and adding the toner colorant and charge control agent to a volatile organic solvent such as dichloromethane. This solution is then sprayed through an atomizing nozzle using a substantially nonreactive gas such as nitrogen as the atomizing agent. During atomization, the volatile solvent evaporates from the airborne droplets, producing toner particles of the uniformly dyed or pigmented resin, The ultimate particle size is determined by varying the size of the atomizing nozzle and the pressure of the gaseous atomizing agent. Particles of a diameter between about 0.1 micron and about 100 microns may be used, although in general present day office copy devices typically employ particles between about I0 and 30 microns. However, larger particles or smaller particles can be used where desired for particular methods of development or particular development conditions. For example, in powder cloud development such as described in US. Pat. No. 2,691,345 issued Oct. l2, 1954, extremely small toner particles are used.
Another convenient method for preparing the toner composition of the present invention is melt-blending. This technique involves melting a powdered form of polymer or resin and mixing it with suitable colorants, such as dyes or pigments, and the charge control agent. The resin can readily be melted on heated compounding rolls which are also useful to stir or otherwise blend the resin and addenda so as to promote the complete intermixing of these various ingredients. After thorough blending, the mixture is cooled and solidified. The resultant solid mass is then broken into small particles and finely ground to form a free-flowing powder of toner particles. These particles typically have an average particle size or average diameter within the range of from about 0.1 to about I00 microns.
As described hereinabove the quaternary ammonium charge control agents of the invention are added to the resinous toner composition in an amount effective to improve the charge properties of the toner composition. The addition of a charge control agent improves the charge uniformity of a particular toner composition, i.e. acts to provide a toner composition in which all or substantially all of the individual discrete toner particles exhibit a triboelectric charge of the same sign (negative or positive) with respect to a given carrier vehicle. increases the net electrical charge exhibited by a specified quantity of toner particles relative to a given carrier vehicle, and reduces the amount of toner throw-off of a given toner composition. As used herein, the phrases net electrical charge exhibited by a toner powder" or net toner charge" are equivalent and are defined as the total electrical charge exhibited by a specified amount of a particular toner when admixed with a specified amount of a particular carrier vehicle. Although the phenomenon by which such an electrical charge is imparted is not fully understood, it is believed due in large to the triboelectric effect caused by the physical admixture of toner and carrier. As used herein, the term toner throw-off is defined as the amount of toner powder thrown out of a developer mix as it is mechanically agitated, e.g., in a development apparatus. Aside from the extraneous contamination problems inherent with airborne toner dust in the development apparatus, toner throw-off also leads to imaging problems such as unwanted background and scumming of the electrographic image-bearing element.
Generally. it has been found desirable to add from about 0.] to about 6 parts and preferably 0.3 to about 3.0 parts by weight of the aforementioned quaternary ammonium salts per l00 parts by weight of a resinous binder to obtain the improved toner composition of the present invention. Although larger and smaller amounts of a charge control agent may be added, it has been found that if amounts much lower than those specified above are utilized, the charge control agent tends to exhibit little or substantially no improvement in the properties of the toner composition. As amounts more than about 6 parts of charge control agent per lOO parts of resinous binder are added, it has been found that the net toner charge exhibited by the resultant toner composition tends to be reduced. Of course, it must be recognized that the optimum amount of charge control agent to be added will depend, in part, on the particular quaternary ammonium charge control agents selected and the particular resinous binder to which it is added. However, the amounts specified hereinabove are typical of the useful range of charge control agent utilized in conventional dry toner materials.
As indicated, the quaternary ammonium charge control agents contemplated for use according to the present invention have the fonnula:
wherein R, R R and R which may be the same or different represent an aliphatic hydrocarbon group having one to seven carbon atoms and X is an anionic function. R, R R and R may be a straight chain or branched chain aliphatic hydrocarbon groups including ally] and alkyl moieties, e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, isopropyl, etc. Especially good results have been obtained wherein R, R R and R are each an alkyl moiety having 3-7 carbon atoms and wherein each of R, R R and R represents an identical alkyl moiety. As can be observed from the above list, a variety of hydrocarbon substituents may be utilized in the quaternary ammonium salt charge control agents of the present invention. In addition, a variety of conventional anionic moieties may be utilized such as the following: halides such as chloride, bromide, iodide, phosphates; acetates; nitrates; benzoates; methyl sulfate, perchlorate, tetrafluoroborate, benzenesulfonate, and the like. Especially useful anionic moieties are the halides. Typical of the quaternary salts useful in the invention are the following: Tetrapentylammonium chloride Tetraheptylammonium chloride Tetrapentylammonium hexafluorophosphate Tetraethylammonium benzoate Tetraethylammonium acetate tetrahydrate Tetrapentylammonium bromide Tetrabutylammonium iodide Tetrabutylammonium nitrate Triethylmethylammonium iodide A variety of colorant materials selected from dyestuffs or pigments may be employed in the toner materials of the present invention. Such materials serve to color the toner and/or render it more visible. Of course, suitable toner materials having the appropriate charging characteristics can be prepared without the use of a colorant material where it is desired to have a developed image of low optical opacity. In those instances where it is desired to utilize a colorant, the colorants used, can, in principle, be selected from virtually any of the compounds mentioned in the Colour Index Volumes l and 2, Second Edition.
Included among the vast number of useful colorants would be such materials as Hansa Yellow G (CI. 1 1680), Nigrosine Spirit soluble (CI. 50415) Chromogen Black ETOO (CI. 45170), Solvent Black 3 (CI. 26150), Fuchsine N (Cl. 42510), C]. Basic Blue 9 (CI. 52015), etc. Carbon black also provides a useful colorant. The amount of colorant added may vary over a wide range, for example, from about 1 to about 20 percent of the weight of the thermoplastic resin. Particularly good results are obtained when the amount is from about 2 to about 10 percent. In certain instances, it may be desirable to omit the colorant, in which case the lower limit of concentration would be zero.
The toners of this invention can be mixed with a carrier vehicle to form developing compositions. The carrier vehicles which can be used with the present toners to form new developer compositions can be selected from a variety of materials. Suitable carrier vehicles useful in the invention include various nonmagnetic particles such as glass beads, crystals of inorganic salts such as sodium or potassium chloride, hard resin particles, metal particles, etc. In addition, magnetic carrier particles can be used in accordance with the invention. In fact, the toner compositions of the present invention are especially suited for use with magnetic carrier particles as the problem of toner throw-off is especially bothersome in magnetic brush development processes. Suitable magnetic carrier particles are particles of ferromagnetic materials such as iron, cobalt, nickel, and alloys and mixtures thereof. Other useful magnetic carriers are ferromagnetic particles overcoated with a thin layer of various film-forming resins, for example, the alkali-soluble carboxylated polymers described in Miller, U.S. Pat. No. 3,547,822 issued Dec. 15, 1970; Miller, U.S. Pat. No. 3,632,512 issued Jan. 4, 1972; Me- Cabe, U.S. Ser. No. 236,765, now Pat. No. 3,795,617 filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case B"; Kasper et al., U.S. Ser. No. 236,584, now abandoned, filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case C"; and Kasper U.S. Ser. No. 236,614, now U.S. Pat. No. 3,795,618 filed Mar. 2|, 1972, entitled, Electrographic Carrier Vehicle and Developer Composition Case D". Other useful resin coated magnetic carrier particles include carrier particles coated with various fluorocarbons suchas polytetrafluoroethylene, polyvinylidene fluoride, and mixtures thereof including copolymers of vinylidene fluoride and tetrafluoroethylene.
A typical developer composition containing the above-described toner and a carrier vehicle generally comprises from about 1 to about 10 percent by weight of particulate toner particles and from about 90 to about 99 percent by weight carrier particles. Typically, the carrier particles are larger than the toner particles. Conventional carrier particles have a particle size on the order of from about 30 to about I200 microns, preferably 60-300 microns.
The toner and developer compositions of this invention can be used in a variety of ways to develop electrostatic charge patterns or latent images. Such developable charge patterns can be prepared by a number of means and be carried for example, on a light sensitive photoconductive element or a non-light sensitive dielectric-surfaced element such as a receiver sheet. One suitable development technique involves cascading the developer composition across the electrostatic charge pattern; while another technique involves applying toner particles from a magnetic brush. This latter technique involves the use of a magnetically attractable carrier vehicle in forming the developer composition. After imagewise deposition of the toner particles, the image can be fixed by heating the toner to cause it to fuse to the substrate carrying the toner. If desired, the unfused image can be transferred to another support such as a blank sheet of copy paper and then fused to form a permanent image.
The following examples are included for a further understanding of the invention.
EXAMPLE 1 A poly(4,4'-isopropylidene diphenyl-alt-ethylene carbonate) resin as described in Ser. No. 34,557 filed May 4, 1970 is melted on a rubber compounding mill at a temperature of between l25-l50C. Cabot Corporation Sterling FT Carbon Black is added to yield 5.7 parts of carbon black per parts of polymer. This carbon black-polycarbonate composition is then used as a control toner. A variety of different materials are then added to individual samples of the control toner as described below and then the net toner charge and toner throw-off are measured for each of the sample toner compositions to test the charge control capabilities of the various materials added to the toner.
Each toner sample is prepared by blending all ingredients together on the rubber compounding mill for approximately 20 minutes. Each melt is then cooled to room temperature and ground in a laboratory disk grinder to pass through a 20 mesh screen. Final grinding to a particle size less than 30 microns is accomplished in a fluid energy mill. The net toner charge is measured by mixing 6 percent of the toner with an insulating polymer-coated particulate carrier comprising an oxidized sponge iron core coated with a terpolymer of acrylonitrile-vinylidene chloride-acrylic acid as de scribed in McCabe, U.S. Ser. No. 236,765, now U.S. Pat. No. 3,795,617 filed Mar. 21, 1972, Case B. The mixing is accomplished by placing the carrier and toner in a small paper cup which is then rolled on a roll mill for 15 minutes. The net toner charge is measured using a Faraday Cage in the following manner: a weighed portion of each of the developers is placed in an iron tube that is covered at one end with a 200 mesh screen that retains all carrier particles within the tube. The iron tube is connected in series with a capacitor to ground. An air stream is then directed through the tube, blowing toner particles off the carrier, through the 200 mesh screen at the exit end. The potential resulting on the capacitor is measured by an electrometer. The potential obtained is converted to electrical charge in microcoulombs and this figure is divided by the weight in grams of the toner that is removed from the tube, providing the net toner charge in microcoulombs per gram.
In addition to net toner charge, a test is devised to measure the toner throw-off exhibited by each of the sample toners when admixed with a particulate carrier vehicle as follows: A fixed quantity of a well-mixed developer (i.e. mixture of toner and carrier particles) is measured and placed in an open cup positioned in a de- 3,893,935 9 10 vice oscillating laterally througha0.75 inch distance at tion is collected on filter paper via a vacuum and 6 cycles per second for a fixed period of time. The weighed. The amounts so weighed are reported in toner throw-off of the developer mix due to the oscilla- Table 1 below in milligrams.
TABLE 1 Concentration (pans/100 Charge Throw-01f Charge Agent (outside invention] parts polycarbonate) (pcoul/g] (mg) Control (no charge agent) 0.4 350.7
671 cobalt naphthenate solution 0.5 7.0 73.7 6% cobalt naphthenate solution 1.0 5.6 92.8 6% cobalt naphthenate solution 3.0 6.0 101.5 6% cobalt naphthenate solution 6.0 5.5 169.6
Heptyldimethylsulfonium bromide (HDSB) 1.0 4.8 110.4 HDSB 3.0 3.5 91.5
Tetruhutylphosphonium bromide (TBPBJ 1.0 9.0 39.3 TBPB 3.0 11.2 30.0
Ethylpyridinium chloride (EPC) 1.0 10.3 12.9 EPC 3.0 8.3 22.9
Butylpyridinium chloride (BPC) 1.0 12.6 13.0 BPC 3.0 10.7
Methylquinolinium chloride (MQC) 1.0 10.1 18.6 MQC 3.0 9.0 24.0 MQC 4.5 6.4 32.0
Acetoquatcetyl lrimethyl ammonium bromide (CTAB) 0.5 8.6 9.7 Acetoquat*CTAB 1.0 9.0 7.9 Acetoq uatCl'AB 3.0 8.9 9.0
Acetoquatcetyl trimelhyl ammonium chloride (CTAC) 0.5 8.4 16.4 AcetoquatCTAC 1.0 10.2 17.8
Dimethylphenylbenzylammonium chloride (DPBAC) 0.5 2 7 391.8 DPBAC 1.0 3 1 248.8 DPBAC 3.0 6 6 44. 1
Triethylhenzylammonium chloride (TBAC) 0.5 2 3 294.9 TBAC 1.0 1 1 448.5 TBAC 3.0 O 9 159 5 Trimethylphenylammonium chloride (TPAC) 0.5 1.2 21.6 TPAC 1.0 0.3 7.2 TPAC 3.0 O.9 3.3 Tetraphenylammonium chloride (TPACL) 0.1 10.6 18.3 TPACL 0.3 12.4 14.4 TPACL 0.5 14.3 3.6 TPACL 1.0 13.0 4.2 TPACL 1.5 13.3 1.6 TPACL 3.0 12.5 5.2 TPACL 6.0 7.6 46.4 (Avg) Tetraheptylammonium chloride (THACL) 0.3 10.1 Not available (N.A.) THACL 0.5 14.6 N.A. THACI. 1.0 11.6 NA.
Tetrapentylummonium hcxafluorophosphate (TPAFP) 0.5 8.9 NA. TPAFP 1.0 9.8 NA. TPAFP 2.0 7.9 NA.
Tetraethylammonium benzoute (TEAB) 1.0 11.4 4.0 TEAB 3.0 5.0 45.3
Tctruethylummonium acetate tetrahydrute (TEAAT) 0.5 7.7 2.6 TEAAT 1.0 1 1.4 3.4
Tetrapentylummonium bromide (TPAB) 0.25 12.2 N.A. TPAB 0.5 15.7 NA. TPAB 1.0 12.3 3.7 TPAB 3.0 10.1 NA.
Telrahutylummonium iodide (THAI) 0.5 13.5 8.6 TBAI 1.0 10.8 4.1 TBA] 1.5 1 1.5 4.9 TBAI 3.0 9.9 1 1.2
Tetrahulylammonium nitrate [TBAN] 1.0 1 1.7 4.9 TBAN 3.0 10.2 6.3
"lrudumark of Auto Chemical Co. Inc
1 1 l 2 EXAMPLE 2 netic brush exhibits low toner throwoff. The images that are formed are sharp, of high density, and advanta- Toners are prepared and tested according to Examgeously exhibit very low background coloration. The pie 1, except that a polystyrene resin (Piccolastic images, after fusing, exhibit good adhesion to paper.
D125) is substituted for the polycarbonate and 6.0 5 The invention has been described in detail with parparts of the carbon black are used per 100 parts of ticular reference to preferred embodiments thereof,
polymer. The results obtained are given in Table II. but, it will be understood that variations and modifica- TABLE II Concentration (parts/lOO Char e Tl'lf0WOff Charge Agent parts Piccolastic Dl) (pcOuF/g) (mg) Control [no charge agent) 2.6 l88.5 Tetrapentylammonium chloride (TPAC) 0.1 6.6 20.7 TPAC 0.5 8.0 16.5
These results indicate that the significant effect on tions can be effected within the spirit and scope of the charge obtained with the charge control agents of our invention. invention is applicable to a variety of polymeric binders W l i and is not restricted to the use of polycarbonate bind- 2O 1, A d ti l t l ot o i toner composition I for use in developing electrostatic charge patterns com- Electl'ophotographlc electrostatls Charge Patterns prising finely-divided particles comprising a resin hav- Obtained in the Conventional manner and processed ing incorporated therein a quaternary ammonium with developer composmcns Containmg the charge charge control agent having the following formula:
control agents of our invention provide images that are 25 dense and sharp with little or no coloration, i.e. deposition of toner particles, in non-image background areas, R toner throw-off or dusting in magnetic brush processes R3 is minimal and the prints containing the transferred images can be handled repeatedly, bent, folded and the like without causing undue flake-off of the image e fl- Example wherein R, R R and R represent an aliphatic hydro EXAMPLE 3 carbon group having one to seven carbon atoms and X represents an anionic function.
2. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles having a particle size of from about 0.l micron to about 100 microns, said particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin a quaternary ammonium charge control agent having the following formula:
A toner with one part tetrabutylammonium nitrate and 5.7 parts Sterling FT carbon black per 100 parts resin is prepared according to Example I. The toner is mixed with a magnetic carrier as described in Example I at 6% concentration. This resultant developer is placed in a magnetic brush of the general type described in U.S. Pat. No. 3,003,462. An organic photoconductor-containing element bearing a latent electrostatic charge image is passed over the magnetic brush. The toned image thus formed on the photoconductor-containing element is subsequently 2 transferred to paper. The toned image is fused to paper with an infrared lamp. Using the above-described developer, the magnetic brush exhibits low toner throwxoff. The images that are formed are sharp, of high density, and advantageously exhibit very low background wherein R, R, R and R represent an aliphatic hydrocoloration. The images, after fusing, exhibit good adhecarbon group having one to seven carbon atoms and X- sion to paper. represents an anionic function, said particles compris- EXAMPLE 4 mg about 0.] to about 6 parts by weight charge control agent per 100 parts by weight of said resin.
A toner with 0.5 parts tetrapentylamm n m ChlO- 3. The invention as described in claim 2 wherein said ride and 5.7 parts Sterling FT Carbo b fi P 100 toner composition comprises a pigment or a dyestuff in Parts resin P P (folding P Ex'flmple The an amount effective to color said toner composition. toner a mixed \fvllh a (farmer descl'lbed Example 1 4. A dry particulate electroscopic toner composition f 6% concslftl'anon This resultant developer is Placed for use in developing electrostatic charge patterns coma magnetic brush of the general yp described in prising finely-divided particles having a particle size of Us 3,003,462- An organic photoconductoffrom about 1.0 to about 30 microns, said particles comcontaining element bearing a latent electrostatic i i a styrene-containing resin having a melting Charge image is Passed Over the magnetic brush- The point within the range of from about C. to about toned image thus form d on the PhOIOCOHdUCIOT- 65 C. and having incorporated in said resin (at) a pigcontaining element is subsequently transferred to pam or d t ff i an amount ff ti t color aid per. The toned image is fused to paper with an infrared resin and (b) a quaternary ammonium charge control lamp. Using the above-described developer, the magagent having the following formula;
wherein R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and where X is an anionic function, said particles comprising about 0.3 to about 3.0 parts by weight charge control agent per 100 parts by weight of said resin.
5. The invention as described in claim 4 wherein R, R R and R represent an alkyl group having from I to about 7 carbon atoms and wherein X" is an anionic function selected from the group consisting of halides, phosphates, acetates and nitrates.
6. The invention as described in claim 4 wherein R, R R and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a halide.
7. The invention as described in claim 4 wherein R, R R, and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a chloride.
8. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 0.1 mi cron to about 100 microns, said particles comprising a polycarbonate-containing resin having a glass transition temperature within the range of from about 60C. to about 120C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
wherein R, R, R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function.
9. The invention as described in claim 8 wherein R, R R and R represent an aliphatic group having from l to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, phosphates. acetates and nitrates.
10. The invention as described in claim 8 wherein R, R, R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
11. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 1.0 to about 30 microns, said particles comprising a styrenecontaining resin having a melting point within the range of from about 65C. to about 120C., said resin containing from about 40 to about 100 percent by weight of styrene units, from to about 45 percent by weight of alkyl acrylate or alkyl methacrylate units having from I to about 3 carbon atoms in the alkyl moiety, and from about to about 50 percent by weight of alkyl acrylate or alkyl methacrylate units having from about 6 to about carbon atoms in the alkyl moiety, said resin having incorporated therein (a) a pigment or dyestuff in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
wherein R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said particles comprising about 0.1 to about 6 parts by weight charge control agent per parts by weight of said resin.
12. The invention as described in claim 11 wherein R, R, R and R" represent an aliphatic group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, acetates, phosphates, and nitrates.
13. The invention as described in claim 11 wherein said particles contain carbon black as a pigment.
14. The invention as described in claim 11 wherein R, R R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
15. An electrographic developing composition comprising particulate magnetic carrier particles having electrostatically attractable thereto a toner composition as described in claim 1.
16. An electrographic developer composition comprising ferromagnetic carrier particles having a particle size within the range of from about 30 to about 1200 microns and having electrostatically attractable thereto dry, finely-divided toner particles having a particle size within the range of about L0 to about 30 microns, said toner particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
wherein R, R, R and R represent an aromatic or an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said toner particles comprising about 0.3 to about 3.0 parts by weight of charge control agent per l00 parts by weight of said resin.
17. The invention as described in claim 16 wherein said resin is a styrene-containing resin having a melting point within the range of about 65 to about [20C. and wherein said toner particles comprise carbon black as a pigment.
18. The invention as described in claim 16 wherein said resin is a poly(carbonate)-containing resin having a glass transition temperature within the range of from about 60 to about C. and wherein said toner particles comprise carbon black as a pigment.

Claims (18)

1. A DRY PARTICULATE ELECTROSCOPIC TONER COMPOSITION FOR USE IN DEVELOPING ELECTROSTATIC CHARGE PATTERNS COMPRISING FINELYDIVIDED PARTICLES COMPRISING A RESIN INCORPORATED THEREIN A QUATERNARY AMMONIUM CHARGE CONTROL AGENT HAVING THE FOLLOWING FORMULA:
2. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles having a particle size of from about 0.1 micron to about 100 microns, said particles comprising a resin having a melting point within the range of from about 65* to about 200*C. and having incorporated in said resin a quaternary ammonium charge control agent having the following formula:
3. The invention as described in claim 2 wherein said toner composition comprises a pigment or a dyestuff in an amount effective to color said toner composition.
4. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles having a particle size of from about 1.0 to about 30 microns, said particles comprising a styrene-containing resin having a melting point within the range of from about 65*C. to about 120*C. and having incorporated in said resin (a) a pigment or dyestuff in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
5. The invention as described in claim 4 wherein R1, R2, R3 and R4 represent an alkyl group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, phosphates, acetates and nitrates.
6. The invention as described in claim 4 wherein R1, R2, R3, and R4 are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X is a halide.
7. The invention as described in claim 4 wherein R1, R2, R3, and R4 are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X is a chloride.
8. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 0.1 micron to about 100 microns, said particles comprising a polycarbonate-containing resin having a glass transition temperature within the range of from about 60*C. to about 120*C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammoniUm charge control agent having the following formula:
9. The invention as described in claim 8 wherein R1, R2, R3 and R4 represent an aliphatic group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, phosphates, acetates and nitrates.
10. The invention as described in claim 8 wherein R1, R2, R3 and R4 represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
11. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 1.0 to about 30 microns, said particles comprising a styrene-containing resin having a melting point within the range of from about 65*C. to about 120*C., said resin containing from about 40 to about 100 percent by weight of styrene units, from 0 to about 45 percent by weight of alkyl acrylate or alkyl methacrylate units having from 1 to about 3 carbon atoms in the alkyl moiety, and from about 5 to about 50 percent by weight of alkyl acrylate or alkyl methacrylate units having from about 6 to about 20 carbon atoms in the alkyl moiety, said resin having incorporated therein (a) a pigment or dyestuff in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
12. The invention as described in claim 11 wherein R1, R2, R3 and R4 represent an aliphatic group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, acetates, phosphates, and nitrates.
13. The invention as described in claim 11 wherein said particles contain carbon black as a pigment.
14. The invention as described in claim 11 wherein R1, R2, R3 and R4 represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.
15. An electrographic developing composition comprising particulate magnetic carrier particles having electrostatically attractable thereto a toner composition as described in claim 1.
16. An electrographic developer composition comprising ferromagnetic carrier particles having a particle size within the range of from about 30 to about 1200 microns and having electrostatically attractable thereto dry, finely-divided toner particles having a particle size within the range of about 1.0 to about 30 microns, said toner particles comprising a resin having a melting point within the range of from about 65* to about 200*C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:
17. The invention as described in claim 16 wherein said resin is a styrene-containing resin having a melting point within the range of about 65* to about 120*C. and wherein said toner particles comprise carbon black as a pigment.
18. The invention as described in claim 16 wherein said resin is a poly(carbonate)-containing resin having a glass transition temperature within the range of from about 60* to about 120*C. and wherein said toner particles comprise carbon black as a pigment.
US399226A 1972-05-30 1973-09-20 Electrographic toner and developer composition Expired - Lifetime US3893935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US399226A US3893935A (en) 1972-05-30 1973-09-20 Electrographic toner and developer composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25752472A 1972-05-30 1972-05-30
US399226A US3893935A (en) 1972-05-30 1973-09-20 Electrographic toner and developer composition

Publications (1)

Publication Number Publication Date
US3893935A true US3893935A (en) 1975-07-08

Family

ID=26946027

Family Applications (1)

Application Number Title Priority Date Filing Date
US399226A Expired - Lifetime US3893935A (en) 1972-05-30 1973-09-20 Electrographic toner and developer composition

Country Status (1)

Country Link
US (1) US3893935A (en)

Cited By (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977983A (en) * 1974-05-17 1976-08-31 Canon Kabushiki Kaisha Liquid developer for use in development of an electrostatic latent image comprising a copolymer containing an amino group converted into a quaternary ammonium salt or hydroxide
DE2702526A1 (en) * 1976-01-23 1977-07-28 Oce Van Der Grinten Nv SINGLE-COMPONENT DEVELOPER POWDER AND METHOD FOR MANUFACTURING IT
US4079014A (en) * 1976-07-21 1978-03-14 Eastman Kodak Company Electrographic toner and developer composition containing a 4-aza-1-azoniabicyclo(2.2.2) octane salt as a charge control agent
DE2806691A1 (en) * 1977-02-16 1978-08-31 Mita Industrial Co Ltd SOLID, CONDUCTIVE MEANS
EP0005952A1 (en) * 1978-06-01 1979-12-12 Xerox Corporation Electrostatographic toner containing an alkyl pyridinium compound and imaging method
US4206088A (en) * 1978-02-07 1980-06-03 Mita Industrial Company Limited Solid conducting agent
US4254205A (en) * 1980-04-14 1981-03-03 Xerox Corporation Positive toners containing alkyl picolinium compounds as charge control agents
US4256824A (en) * 1979-03-12 1981-03-17 Xerox Corporation Method using positively charged electrophotographic toner containing amido dialkyl hydroxy ammonium compound
US4263389A (en) * 1979-07-16 1981-04-21 Xerox Corporation Positively charged toners containing vinyl pyrrolidone polymers
US4264697A (en) * 1979-07-02 1981-04-28 Xerox Corporation Imaging system
US4264702A (en) * 1979-03-12 1981-04-28 Xerox Corporation Positive toners containing alkyl morpholinium compounds as charge control agents
US4269922A (en) * 1979-03-12 1981-05-26 Xerox Corporation Positive toners containing long chain hydrazinium compounds
US4286038A (en) * 1979-03-12 1981-08-25 Xerox Corporation Positive toners containing alkyl picolinium compounds
US4287284A (en) * 1979-03-12 1981-09-01 Xerox Corporation Method of imagining using positive toners containing alkyl morpholinium compounds
US4291112A (en) * 1978-09-11 1981-09-22 Xerox Corporation Modification of pigment charge characteristics
US4291111A (en) * 1977-11-25 1981-09-22 Xerox Corporation Nitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4304830A (en) * 1980-01-14 1981-12-08 Xerox Corporation Toner additives
US4310611A (en) * 1979-06-29 1982-01-12 Eastman Kodak Company Electrographic magnetic carrier particles
US4312933A (en) * 1979-02-09 1982-01-26 Xerox Corporation Method of imaging using nitrogen-containing additives for magnetic toners
US4324851A (en) * 1979-12-20 1982-04-13 Xerox Corporation Positive color toners
US4338390A (en) * 1980-12-04 1982-07-06 Xerox Corporation Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
US4341854A (en) * 1980-09-22 1982-07-27 Eastman Kodak Company Method for flash fusing toner images
US4355167A (en) * 1981-05-01 1982-10-19 Xerox Corporation Telomeric quaternary salt compositions
DE3213615A1 (en) * 1981-04-14 1982-10-28 Eastman Kodak Co., 14650 Rochester, N.Y. TONER AND DEVELOPER FOR PERFORMING ELECTROPHOTOGRAPHIC DEVELOPMENT PROCESSES
US4371601A (en) * 1981-05-01 1983-02-01 Xerox Corporation Positively charged developer compositions containing telomeric amines
US4373131A (en) * 1980-09-22 1983-02-08 Eastman Kodak Company Apparatus for flash fusing tuner images
US4378419A (en) * 1981-05-01 1983-03-29 Xerox Corporation Developer compositions containing telomeric quaternary salts
US4391890A (en) * 1981-12-03 1983-07-05 Xerox Corporation Developer compositions containing alkyl pyridinium toluene sulfonates
US4396697A (en) * 1981-12-03 1983-08-02 Xerox Corporation Organic sulfonate charge enhancing additives
US4397934A (en) * 1981-12-31 1983-08-09 Xerox Corporation Developer compositions containing quaternized vinylpyridine polymers, and copolymers
US4397935A (en) * 1982-01-18 1983-08-09 Xerox Corporation Positively charged developer compositions containing quaternized vinyl pyridine polymers
US4404270A (en) * 1980-05-22 1983-09-13 Hitachi Chemical Company, Ltd. Positively chargeable powdered electrophotographic toner containing dialkyl tin oxide charge control agent
US4410617A (en) * 1982-04-12 1983-10-18 Xerox Corporation Colored toner and developer composition
US4411974A (en) * 1982-04-12 1983-10-25 Xerox Corporation Ortho-halo phenyl carboxylic acid charge enhancing additives
US4411975A (en) * 1982-04-12 1983-10-25 Xerox Corporation Para-halo phenyl carboxylic acid charge enhancing additives
US4415646A (en) * 1982-03-03 1983-11-15 Xerox Corporation Nitrogen containing polymers as charge enhancing additive for electrophotographic toner
US4442790A (en) * 1982-09-29 1984-04-17 Eastman Kodak Company Magnetic brush development apparatus
US4454214A (en) * 1982-12-03 1984-06-12 Xerox Corporation Toner compositions containing pyridinium tetrafluoroborates
US4464452A (en) * 1983-05-02 1984-08-07 Xerox Corporation Developer compositions containing diaryl sulfonimides
US4480003A (en) * 1982-09-20 1984-10-30 Minnesota Mining And Manufacturing Company Construction for transparency film for plain paper copiers
US4482620A (en) * 1982-12-03 1984-11-13 Xerox Corporation Method of fusing toner compositions containing pyridinium tetrafluoroborates
US4496643A (en) * 1984-03-23 1985-01-29 Eastman Kodak Company Two-component dry electrostatic developer composition containing onium charge control agent
US4496644A (en) * 1983-02-28 1985-01-29 Eastman Kodak Company Electric field adjustment for magnetic brushes
US4557856A (en) * 1978-02-18 1985-12-10 Mita Industrial Co., Ltd. Electrically conductive composition for electro-responsive recording materials
US4560635A (en) * 1984-08-30 1985-12-24 Xerox Corporation Toner compositions with ammonium sulfate charge enhancing additives
US4614420A (en) * 1983-05-31 1986-09-30 Xerox Corporation Magnetically agitated development system
US4654175A (en) * 1982-05-12 1987-03-31 Xerox Corporation Organic sulfate and sulfonate compositions
US4672018A (en) * 1985-12-16 1987-06-09 Xerox Corporation Flash fusing process with prespheroidized toner
JPS6363054A (en) * 1986-09-02 1988-03-19 ゼロツクス コ−ポレ−シヨン 1-component red developing composition
US4789614A (en) * 1987-12-17 1988-12-06 Eastman Kodak Company Toners and developers containing benzyldimethylalkylammonium charge-control agents
US4797341A (en) * 1985-09-10 1989-01-10 Ricoh Co., Ltd. Liquid developer for electrophotography
US4803017A (en) * 1987-12-17 1989-02-07 Eastman Kodak Company Quaternary ammonium salts
US4806284A (en) * 1987-12-17 1989-02-21 Eastman Kodak Company New quaternary ammonium salts
US4806283A (en) * 1987-12-17 1989-02-21 Eastman Kodak Company Quaternary ammonium salts
USRE32883E (en) * 1980-12-04 1989-03-07 Xerox Corporation Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
US4812381A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4812382A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4812380A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4812378A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing charge-control agents
US4834920A (en) * 1987-12-17 1989-05-30 Eastman Kodak Company New quaternary ammonium salts
US4834921A (en) * 1987-12-17 1989-05-30 Eastman Kodak Company Quaternary ammonium salts
US4840864A (en) * 1987-12-17 1989-06-20 Eastman Kodak Company New electrostatographic toners and developers containing new charge-control agents
US4851561A (en) * 1987-12-17 1989-07-25 Eastman Kodak Company Quaternary ammonium salts
US4904762A (en) * 1989-08-21 1990-02-27 Xerox Corporation Toner compositions with charge enhancing additives
US4925764A (en) * 1988-12-23 1990-05-15 E. I. Du Pont De Nemours & Co. Positive solid block toner
US4937157A (en) * 1989-08-21 1990-06-26 Xerox Corporation Toner and developer compositions with charge enhancing additives
US4990426A (en) * 1990-01-11 1991-02-05 International Business Machines Corporation Di- and tricationic negative charge control agents for electrophotographic developers
US5051330A (en) * 1989-12-15 1991-09-24 Eastman Kodak Company Fluorinated onium salts as toner electrostatic transfer agents and charge control agents
US5061586A (en) * 1990-04-05 1991-10-29 Eastman Kodak Company Glass composite magnetic carrier particles
US5079122A (en) * 1990-07-03 1992-01-07 Xerox Corporation Toner compositions with charge enhancing additives
US5082758A (en) * 1990-08-31 1992-01-21 Xerox Corporation Toner and developer compositions with charge enhancing additives
US5108859A (en) * 1990-04-16 1992-04-28 Eastman Kodak Company Photoelectrographic elements and imaging method
US5114821A (en) * 1990-07-02 1992-05-19 Xerox Corporation Toner and developer compositions with charge enhancing additives
US5147748A (en) * 1989-04-15 1992-09-15 Hoechst Aktiengesellschaft Use of colorless highly fluorine-substituted phosphonium compounds as charge control agents for electrophotographic recording processes
US5190841A (en) * 1991-12-19 1993-03-02 Eastman Kodak Company Two-phase ferroelectric-ferromagnetic composite and carrier therefrom
US5190842A (en) * 1991-12-19 1993-03-02 Eastman Kodak Company Two phase ferroelectric-ferromagnetic composite carrier
US5268249A (en) * 1992-10-29 1993-12-07 Eastman Kodak Company Magnetic carrier particles
US5306592A (en) * 1992-10-29 1994-04-26 Eastman Kodak Company Method of preparing electrographic magnetic carrier particles
US5308363A (en) * 1992-02-18 1994-05-03 Xerox Corporation Process for quaternary ammonium bisulfates
US5314778A (en) * 1992-06-09 1994-05-24 Xerox Corporation Toner compositions containing complexed ionomeric materials
US5332637A (en) * 1993-08-31 1994-07-26 Eastman Kodak Company Electrostatographic dry toner and developer compositions with hydroxyphthalimide
US5358818A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Ortho-benzoic sulfimide as charge-controlling agent
US5358815A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing negative charge-controlling additive
US5358817A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent the calcium salt of ortho-benzoic sulfimide
US5358816A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Zinc salt of ortho-benzoic sulfimide as negative charge-controlling additive for toner and developer compositions
US5358814A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent a mixture of ortho-benzoic sulfimide and para-anisic acid
US5364725A (en) * 1993-03-15 1994-11-15 Eastman Kodak Company Toner and developer containing acyloxy-t-alkylated benzoic acids as charge-control agent
US5382492A (en) * 1993-11-29 1995-01-17 Xerox Corporation Quaternary ammonium compound as charge adjuvants for positive electrostatic liquid developers
US5401809A (en) * 1990-09-19 1995-03-28 Hoechst Aktiengesellschaft Polymer ammonium borates and processes for their preparation
US5480757A (en) * 1994-06-08 1996-01-02 Eastman Kodak Company Two component electrophotographic developers and preparation method
US5516615A (en) * 1995-01-31 1996-05-14 Eastman Kodak Company Stabilized carriers with β phase poly(vinylidenefluoride)
US5521268A (en) * 1995-03-29 1996-05-28 Eastman Kodak Company Odor reduction in toner polymers
WO1997009656A1 (en) * 1995-09-06 1997-03-13 Hodogaya Chemical Co., Ltd. Electrostatic image developing toner
US5637431A (en) * 1995-07-03 1997-06-10 Konica Corporation Developer for electrophotography
US5716752A (en) * 1997-04-17 1998-02-10 Xerox Corporation Method of making toner compositions
US5763132A (en) * 1997-04-17 1998-06-09 Xerox Corporation Toner compositions
US5783346A (en) * 1996-03-06 1998-07-21 Eastman Kodak Company Toner compositions including polymer binders with adhesion promoting and charge control monomers
US5916722A (en) * 1998-02-05 1999-06-29 Xerox Corporation Toner compositions
US5948583A (en) * 1998-04-13 1999-09-07 Xerox Corp Toner composition and processes thereof
US5968700A (en) * 1995-07-28 1999-10-19 Eastman Kodak Company Toner compositions including crosslinked polymer binders
US5968702A (en) * 1997-11-24 1999-10-19 Eastman Kodak Company Toner particles of controlled shape and method of preparation
US6004714A (en) * 1998-08-11 1999-12-21 Xerox Corporation Toner compositions
US6017668A (en) * 1999-05-26 2000-01-25 Xerox Corporation Toner compositions
US6087059A (en) * 1999-06-28 2000-07-11 Xerox Corporation Toner and developer compositions
USH1889H (en) * 1999-10-12 2000-10-03 Xerox Corporation Toner compositions
US6190815B1 (en) 1998-08-11 2001-02-20 Xerox Corporation Toner compositions
US6194117B1 (en) 1999-08-26 2001-02-27 Xerox Corporation Carrier composition and processes thereof
US6207338B1 (en) 1999-03-10 2001-03-27 Eastman Kodak Company Toner particles of controlled morphology
US6228549B1 (en) 2000-05-17 2001-05-08 Heidelberg Digital L.L.C. Magnetic carrier particles
US6232026B1 (en) 2000-05-17 2001-05-15 Heidelberg Digital L.L.C. Magnetic carrier particles
US6369136B2 (en) 1998-12-31 2002-04-09 Eastman Kodak Company Electrophotographic toner binders containing polyester ionomers
US6380297B1 (en) 1999-08-12 2002-04-30 Nexpress Solutions Llc Polymer particles of controlled shape
US6420078B1 (en) 2000-12-28 2002-07-16 Xerox Corporation Toner compositions with surface additives
US6426170B1 (en) 2001-05-07 2002-07-30 Xerox Corporation Toner and developer compositions with charge enhancing additives
US6451495B1 (en) 2001-05-07 2002-09-17 Xerox Corporation Toner and developer compositions with charge enhancing additives
US6482562B2 (en) 1999-03-10 2002-11-19 Eastman Kodak Company Toner particles of controlled morphology
US6566025B1 (en) 2002-01-16 2003-05-20 Xerox Corporation Polymeric particles as external toner additives
US6589703B2 (en) 2000-05-17 2003-07-08 Heidelberger Druckmaschinen Ag Electrographic methods using hard magnetic carrier particles
US6610451B2 (en) 2000-12-26 2003-08-26 Heidelberger Druckmaschinen Ag Development systems for magnetic toners having reduced magnetic loadings
US20030232267A1 (en) * 2002-06-13 2003-12-18 Fields Robert D. Electrophotographic toner with uniformly dispersed wax
US20040023144A1 (en) * 2002-08-02 2004-02-05 Pickering Jerry A. Fuser member, apparatus and method for electrostatographic reproduction
US6692880B2 (en) 2001-05-14 2004-02-17 Heidelberger Druckmaschinen Ag Electrophotographic toner with stable triboelectric properties
US6696212B2 (en) 2001-03-27 2004-02-24 Heidelberger Druckmaschinen Ag Single component toner for improved magnetic image character recognition
US6723481B2 (en) 2000-05-17 2004-04-20 Heidelberger Druckmaschinen Ag Method for using hard magnetic carriers in an electrographic process
US20040096243A1 (en) * 2002-06-24 2004-05-20 Jan Bares Electrophotographic toner and development process using chemically prepared toner
US6797448B2 (en) 2001-05-14 2004-09-28 Eastman Kodak Company Electrophotographic toner and development process with improved image and fusing quality
US20050111891A1 (en) * 2002-05-30 2005-05-26 Jiann-Hsing Chen Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images
US20050220518A1 (en) * 2004-03-31 2005-10-06 Eastman Kodak Company Treatment of preprinted media for improved toner adhesion
US20050244201A1 (en) * 2004-04-30 2005-11-03 Muhammed Aslam Method for producing an enhanced gloss toner image on a substrate
US20050266332A1 (en) * 2004-05-28 2005-12-01 Pavlisko Joseph A Oil-free process for full color digital printing
US20060019188A1 (en) * 2004-07-26 2006-01-26 Xerox Corporation Toner compositions
US7087355B2 (en) 2001-09-05 2006-08-08 Eastman Kodak Company Electrophotographic toner containing polyalkylene wax or high crystallinity wax
WO2007075941A1 (en) 2005-12-21 2007-07-05 Eastman Kodak Company Chemically prepared porous toner
US20070280758A1 (en) * 2006-06-01 2007-12-06 Eastman Kodak Company Chilled finish roller system and method
US7314696B2 (en) 2001-06-13 2008-01-01 Eastman Kodak Company Electrophotographic toner and development process with improved charge to mass stability
WO2008027184A1 (en) 2006-08-28 2008-03-06 Eastman Kodak Company Custom color toner
US20090155704A1 (en) * 2007-12-12 2009-06-18 Fields Robert D Toner composition
WO2009142726A1 (en) 2008-05-21 2009-11-26 Eastman Kodak Company Developer for selective printing of raised information by electrography
US20100075247A1 (en) * 2008-09-25 2010-03-25 Xin Jin Method and preparation of chemically prepared toners
WO2010074720A1 (en) 2008-12-23 2010-07-01 Eastman Kodak Company Method of preparing toner having controlled morphology
WO2010080099A1 (en) 2008-12-18 2010-07-15 Eastman Kodak Company Toner surface treatment
WO2011003898A1 (en) 2009-07-10 2011-01-13 Basf Se Toner resins for electronic copying purposes
WO2011136997A1 (en) 2010-04-26 2011-11-03 Eastman Kodak Company Toner containing metallic flakes
WO2012015633A1 (en) 2010-07-29 2012-02-02 Eastman Kodak Company Bending receiver using heat-shrinkable film
WO2012015676A1 (en) 2010-07-29 2012-02-02 Eastman Kodak Company Bending receiver using heat-shrinkable toner
WO2012015891A1 (en) 2010-07-30 2012-02-02 Eastman Kodak Company Surface decorated particles
WO2012015786A1 (en) 2010-07-30 2012-02-02 Eastman Kodak Company Method for forming surface decorated particles
US8147948B1 (en) 2010-10-26 2012-04-03 Eastman Kodak Company Printed article
WO2012109045A2 (en) 2011-02-08 2012-08-16 Eastman Kodak Company Printed product with authentication bi-fluorescence feature
WO2012109081A1 (en) 2011-02-08 2012-08-16 Eastman Kodak Company Security enhanced printed products and methods
WO2013043475A1 (en) 2011-09-19 2013-03-28 Eastman Kodak Company Antibacterial and antifungal protection for toner image
US8465899B2 (en) 2010-10-26 2013-06-18 Eastman Kodak Company Large particle toner printing method
US8530126B2 (en) 2010-10-26 2013-09-10 Eastman Kodak Company Large particle toner
WO2013166227A1 (en) 2012-05-02 2013-11-07 Eastman Kodak Company Use of fluorescing toners for imaging
US8626015B2 (en) 2010-10-26 2014-01-07 Eastman Kodak Company Large particle toner printer
WO2014022252A1 (en) 2012-07-31 2014-02-06 Eastman Kodak Company Printing system with noise reduction
US8749845B2 (en) 2012-07-31 2014-06-10 Eastman Kodak Company System for determining efficient combinations of toner colors to form prints with enhanced gamut
US8755699B2 (en) 2012-07-31 2014-06-17 Eastman Kodak Company Noise reduction in toner prints
US8805217B2 (en) 2012-07-31 2014-08-12 Eastman Kodak Company Toner printing with increased gamut
WO2014149800A1 (en) 2013-03-15 2014-09-25 Eastman Kodak Company Fluorescing yellow toner particles and methods of use
WO2015057474A1 (en) 2013-10-18 2015-04-23 Eastman Kodak Company Polymeric composite materials, manufacture and uses
US9259953B2 (en) 2013-09-27 2016-02-16 Eastman Kodak Company Tactile images having coefficient of friction differences
US9921509B2 (en) 2014-11-18 2018-03-20 Esprix Technologies, Lp Process for preparing novel composite charge control agents and novel composite charge control agents prepared by the process
US11248127B2 (en) 2019-11-14 2022-02-15 Swimc Llc Metal packaging powder coating compositions, coated metal substrates, and methods
US11249410B2 (en) * 2018-12-12 2022-02-15 Canon Kabushiki Kaisha Toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320169A (en) * 1962-09-06 1967-05-16 Addressograph Multigraph Developer mixes
US3502582A (en) * 1967-06-19 1970-03-24 Xerox Corp Imaging systems
US3565654A (en) * 1966-08-29 1971-02-23 Owens Illinois Inc Process for treating polyamide-based resin particles for use in electro-photography
US3647696A (en) * 1968-06-13 1972-03-07 Eastman Kodak Co Uniform polarity resin electrostatic toners

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320169A (en) * 1962-09-06 1967-05-16 Addressograph Multigraph Developer mixes
US3565654A (en) * 1966-08-29 1971-02-23 Owens Illinois Inc Process for treating polyamide-based resin particles for use in electro-photography
US3502582A (en) * 1967-06-19 1970-03-24 Xerox Corp Imaging systems
US3647696A (en) * 1968-06-13 1972-03-07 Eastman Kodak Co Uniform polarity resin electrostatic toners

Cited By (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977983A (en) * 1974-05-17 1976-08-31 Canon Kabushiki Kaisha Liquid developer for use in development of an electrostatic latent image comprising a copolymer containing an amino group converted into a quaternary ammonium salt or hydroxide
DE2702526A1 (en) * 1976-01-23 1977-07-28 Oce Van Der Grinten Nv SINGLE-COMPONENT DEVELOPER POWDER AND METHOD FOR MANUFACTURING IT
US4286037A (en) * 1976-01-23 1981-08-25 Oce-Van Der Grinten N.V. Electrostatic image one-component electrically conductive thermoplastic resin containing powdered developer prepared by coagulation in emulsion
US4079014A (en) * 1976-07-21 1978-03-14 Eastman Kodak Company Electrographic toner and developer composition containing a 4-aza-1-azoniabicyclo(2.2.2) octane salt as a charge control agent
DE2806691A1 (en) * 1977-02-16 1978-08-31 Mita Industrial Co Ltd SOLID, CONDUCTIVE MEANS
US4291111A (en) * 1977-11-25 1981-09-22 Xerox Corporation Nitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4206088A (en) * 1978-02-07 1980-06-03 Mita Industrial Company Limited Solid conducting agent
US4557856A (en) * 1978-02-18 1985-12-10 Mita Industrial Co., Ltd. Electrically conductive composition for electro-responsive recording materials
EP0005952A1 (en) * 1978-06-01 1979-12-12 Xerox Corporation Electrostatographic toner containing an alkyl pyridinium compound and imaging method
US4291112A (en) * 1978-09-11 1981-09-22 Xerox Corporation Modification of pigment charge characteristics
US4312933A (en) * 1979-02-09 1982-01-26 Xerox Corporation Method of imaging using nitrogen-containing additives for magnetic toners
US4256824A (en) * 1979-03-12 1981-03-17 Xerox Corporation Method using positively charged electrophotographic toner containing amido dialkyl hydroxy ammonium compound
US4264702A (en) * 1979-03-12 1981-04-28 Xerox Corporation Positive toners containing alkyl morpholinium compounds as charge control agents
US4269922A (en) * 1979-03-12 1981-05-26 Xerox Corporation Positive toners containing long chain hydrazinium compounds
US4286038A (en) * 1979-03-12 1981-08-25 Xerox Corporation Positive toners containing alkyl picolinium compounds
US4287284A (en) * 1979-03-12 1981-09-01 Xerox Corporation Method of imagining using positive toners containing alkyl morpholinium compounds
US4310611A (en) * 1979-06-29 1982-01-12 Eastman Kodak Company Electrographic magnetic carrier particles
US4264697A (en) * 1979-07-02 1981-04-28 Xerox Corporation Imaging system
US4263389A (en) * 1979-07-16 1981-04-21 Xerox Corporation Positively charged toners containing vinyl pyrrolidone polymers
US4324851A (en) * 1979-12-20 1982-04-13 Xerox Corporation Positive color toners
US4304830A (en) * 1980-01-14 1981-12-08 Xerox Corporation Toner additives
US4254205A (en) * 1980-04-14 1981-03-03 Xerox Corporation Positive toners containing alkyl picolinium compounds as charge control agents
US4404270A (en) * 1980-05-22 1983-09-13 Hitachi Chemical Company, Ltd. Positively chargeable powdered electrophotographic toner containing dialkyl tin oxide charge control agent
US4341854A (en) * 1980-09-22 1982-07-27 Eastman Kodak Company Method for flash fusing toner images
US4373131A (en) * 1980-09-22 1983-02-08 Eastman Kodak Company Apparatus for flash fusing tuner images
US4338390A (en) * 1980-12-04 1982-07-06 Xerox Corporation Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
USRE32883E (en) * 1980-12-04 1989-03-07 Xerox Corporation Quarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
DE3213615A1 (en) * 1981-04-14 1982-10-28 Eastman Kodak Co., 14650 Rochester, N.Y. TONER AND DEVELOPER FOR PERFORMING ELECTROPHOTOGRAPHIC DEVELOPMENT PROCESSES
US4394430A (en) * 1981-04-14 1983-07-19 Eastman Kodak Company Electrophotographic dry toner and developer compositions
US4371601A (en) * 1981-05-01 1983-02-01 Xerox Corporation Positively charged developer compositions containing telomeric amines
US4378419A (en) * 1981-05-01 1983-03-29 Xerox Corporation Developer compositions containing telomeric quaternary salts
US4355167A (en) * 1981-05-01 1982-10-19 Xerox Corporation Telomeric quaternary salt compositions
US4391890A (en) * 1981-12-03 1983-07-05 Xerox Corporation Developer compositions containing alkyl pyridinium toluene sulfonates
US4396697A (en) * 1981-12-03 1983-08-02 Xerox Corporation Organic sulfonate charge enhancing additives
US4397934A (en) * 1981-12-31 1983-08-09 Xerox Corporation Developer compositions containing quaternized vinylpyridine polymers, and copolymers
US4397935A (en) * 1982-01-18 1983-08-09 Xerox Corporation Positively charged developer compositions containing quaternized vinyl pyridine polymers
US4415646A (en) * 1982-03-03 1983-11-15 Xerox Corporation Nitrogen containing polymers as charge enhancing additive for electrophotographic toner
US4410617A (en) * 1982-04-12 1983-10-18 Xerox Corporation Colored toner and developer composition
US4411974A (en) * 1982-04-12 1983-10-25 Xerox Corporation Ortho-halo phenyl carboxylic acid charge enhancing additives
US4411975A (en) * 1982-04-12 1983-10-25 Xerox Corporation Para-halo phenyl carboxylic acid charge enhancing additives
US4654175A (en) * 1982-05-12 1987-03-31 Xerox Corporation Organic sulfate and sulfonate compositions
US4480003A (en) * 1982-09-20 1984-10-30 Minnesota Mining And Manufacturing Company Construction for transparency film for plain paper copiers
US4442790A (en) * 1982-09-29 1984-04-17 Eastman Kodak Company Magnetic brush development apparatus
US4482620A (en) * 1982-12-03 1984-11-13 Xerox Corporation Method of fusing toner compositions containing pyridinium tetrafluoroborates
US4454214A (en) * 1982-12-03 1984-06-12 Xerox Corporation Toner compositions containing pyridinium tetrafluoroborates
US4496644A (en) * 1983-02-28 1985-01-29 Eastman Kodak Company Electric field adjustment for magnetic brushes
US4464452A (en) * 1983-05-02 1984-08-07 Xerox Corporation Developer compositions containing diaryl sulfonimides
US4614420A (en) * 1983-05-31 1986-09-30 Xerox Corporation Magnetically agitated development system
EP0161128A1 (en) * 1984-03-23 1985-11-13 EASTMAN KODAK COMPANY (a New Jersey corporation) Two-component dry electrostatic developer composition
US4496643A (en) * 1984-03-23 1985-01-29 Eastman Kodak Company Two-component dry electrostatic developer composition containing onium charge control agent
US4560635A (en) * 1984-08-30 1985-12-24 Xerox Corporation Toner compositions with ammonium sulfate charge enhancing additives
US4797341A (en) * 1985-09-10 1989-01-10 Ricoh Co., Ltd. Liquid developer for electrophotography
US4672018A (en) * 1985-12-16 1987-06-09 Xerox Corporation Flash fusing process with prespheroidized toner
JPS6363054A (en) * 1986-09-02 1988-03-19 ゼロツクス コ−ポレ−シヨン 1-component red developing composition
US4812382A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4806284A (en) * 1987-12-17 1989-02-21 Eastman Kodak Company New quaternary ammonium salts
US4806283A (en) * 1987-12-17 1989-02-21 Eastman Kodak Company Quaternary ammonium salts
US4803017A (en) * 1987-12-17 1989-02-07 Eastman Kodak Company Quaternary ammonium salts
US4812381A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4789614A (en) * 1987-12-17 1988-12-06 Eastman Kodak Company Toners and developers containing benzyldimethylalkylammonium charge-control agents
US4812380A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing new charge-control agents
US4812378A (en) * 1987-12-17 1989-03-14 Eastman Kodak Company Electrostatographic toners and developers containing charge-control agents
US4834920A (en) * 1987-12-17 1989-05-30 Eastman Kodak Company New quaternary ammonium salts
US4834921A (en) * 1987-12-17 1989-05-30 Eastman Kodak Company Quaternary ammonium salts
US4840864A (en) * 1987-12-17 1989-06-20 Eastman Kodak Company New electrostatographic toners and developers containing new charge-control agents
US4851561A (en) * 1987-12-17 1989-07-25 Eastman Kodak Company Quaternary ammonium salts
US4925764A (en) * 1988-12-23 1990-05-15 E. I. Du Pont De Nemours & Co. Positive solid block toner
US5147748A (en) * 1989-04-15 1992-09-15 Hoechst Aktiengesellschaft Use of colorless highly fluorine-substituted phosphonium compounds as charge control agents for electrophotographic recording processes
US4904762A (en) * 1989-08-21 1990-02-27 Xerox Corporation Toner compositions with charge enhancing additives
US4937157A (en) * 1989-08-21 1990-06-26 Xerox Corporation Toner and developer compositions with charge enhancing additives
US5051330A (en) * 1989-12-15 1991-09-24 Eastman Kodak Company Fluorinated onium salts as toner electrostatic transfer agents and charge control agents
US4990426A (en) * 1990-01-11 1991-02-05 International Business Machines Corporation Di- and tricationic negative charge control agents for electrophotographic developers
US5061586A (en) * 1990-04-05 1991-10-29 Eastman Kodak Company Glass composite magnetic carrier particles
US5108859A (en) * 1990-04-16 1992-04-28 Eastman Kodak Company Photoelectrographic elements and imaging method
US5114821A (en) * 1990-07-02 1992-05-19 Xerox Corporation Toner and developer compositions with charge enhancing additives
US5079122A (en) * 1990-07-03 1992-01-07 Xerox Corporation Toner compositions with charge enhancing additives
US5082758A (en) * 1990-08-31 1992-01-21 Xerox Corporation Toner and developer compositions with charge enhancing additives
US5401809A (en) * 1990-09-19 1995-03-28 Hoechst Aktiengesellschaft Polymer ammonium borates and processes for their preparation
US5190841A (en) * 1991-12-19 1993-03-02 Eastman Kodak Company Two-phase ferroelectric-ferromagnetic composite and carrier therefrom
US5190842A (en) * 1991-12-19 1993-03-02 Eastman Kodak Company Two phase ferroelectric-ferromagnetic composite carrier
US5308363A (en) * 1992-02-18 1994-05-03 Xerox Corporation Process for quaternary ammonium bisulfates
US5314778A (en) * 1992-06-09 1994-05-24 Xerox Corporation Toner compositions containing complexed ionomeric materials
US5268249A (en) * 1992-10-29 1993-12-07 Eastman Kodak Company Magnetic carrier particles
US5306592A (en) * 1992-10-29 1994-04-26 Eastman Kodak Company Method of preparing electrographic magnetic carrier particles
US5364725A (en) * 1993-03-15 1994-11-15 Eastman Kodak Company Toner and developer containing acyloxy-t-alkylated benzoic acids as charge-control agent
US5332637A (en) * 1993-08-31 1994-07-26 Eastman Kodak Company Electrostatographic dry toner and developer compositions with hydroxyphthalimide
US5358817A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent the calcium salt of ortho-benzoic sulfimide
US5358816A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Zinc salt of ortho-benzoic sulfimide as negative charge-controlling additive for toner and developer compositions
US5358814A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing as a negative charge-controlling agent a mixture of ortho-benzoic sulfimide and para-anisic acid
US5358815A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Toner compositions containing negative charge-controlling additive
US5358818A (en) * 1993-08-31 1994-10-25 Eastman Kodak Company Ortho-benzoic sulfimide as charge-controlling agent
US5382492A (en) * 1993-11-29 1995-01-17 Xerox Corporation Quaternary ammonium compound as charge adjuvants for positive electrostatic liquid developers
US5480757A (en) * 1994-06-08 1996-01-02 Eastman Kodak Company Two component electrophotographic developers and preparation method
US5516615A (en) * 1995-01-31 1996-05-14 Eastman Kodak Company Stabilized carriers with β phase poly(vinylidenefluoride)
US5521268A (en) * 1995-03-29 1996-05-28 Eastman Kodak Company Odor reduction in toner polymers
US5637431A (en) * 1995-07-03 1997-06-10 Konica Corporation Developer for electrophotography
US5968700A (en) * 1995-07-28 1999-10-19 Eastman Kodak Company Toner compositions including crosslinked polymer binders
WO1997009656A1 (en) * 1995-09-06 1997-03-13 Hodogaya Chemical Co., Ltd. Electrostatic image developing toner
US5783346A (en) * 1996-03-06 1998-07-21 Eastman Kodak Company Toner compositions including polymer binders with adhesion promoting and charge control monomers
US5716752A (en) * 1997-04-17 1998-02-10 Xerox Corporation Method of making toner compositions
US5763132A (en) * 1997-04-17 1998-06-09 Xerox Corporation Toner compositions
US5968702A (en) * 1997-11-24 1999-10-19 Eastman Kodak Company Toner particles of controlled shape and method of preparation
US5916722A (en) * 1998-02-05 1999-06-29 Xerox Corporation Toner compositions
US5948583A (en) * 1998-04-13 1999-09-07 Xerox Corp Toner composition and processes thereof
US6190815B1 (en) 1998-08-11 2001-02-20 Xerox Corporation Toner compositions
US6004714A (en) * 1998-08-11 1999-12-21 Xerox Corporation Toner compositions
US6369136B2 (en) 1998-12-31 2002-04-09 Eastman Kodak Company Electrophotographic toner binders containing polyester ionomers
US6207338B1 (en) 1999-03-10 2001-03-27 Eastman Kodak Company Toner particles of controlled morphology
US6482562B2 (en) 1999-03-10 2002-11-19 Eastman Kodak Company Toner particles of controlled morphology
US6017668A (en) * 1999-05-26 2000-01-25 Xerox Corporation Toner compositions
US6087059A (en) * 1999-06-28 2000-07-11 Xerox Corporation Toner and developer compositions
US6380297B1 (en) 1999-08-12 2002-04-30 Nexpress Solutions Llc Polymer particles of controlled shape
US6194117B1 (en) 1999-08-26 2001-02-27 Xerox Corporation Carrier composition and processes thereof
USH1889H (en) * 1999-10-12 2000-10-03 Xerox Corporation Toner compositions
US6723481B2 (en) 2000-05-17 2004-04-20 Heidelberger Druckmaschinen Ag Method for using hard magnetic carriers in an electrographic process
US6232026B1 (en) 2000-05-17 2001-05-15 Heidelberg Digital L.L.C. Magnetic carrier particles
US6589703B2 (en) 2000-05-17 2003-07-08 Heidelberger Druckmaschinen Ag Electrographic methods using hard magnetic carrier particles
US6228549B1 (en) 2000-05-17 2001-05-08 Heidelberg Digital L.L.C. Magnetic carrier particles
US20040219447A1 (en) * 2000-12-26 2004-11-04 Jadwin Thomas A. Development systems for magnetic toners and toners having reduced magnetic loadings
US6766136B2 (en) 2000-12-26 2004-07-20 Eastman Kodak Company Development systems for magnetic toners and toners having reduced magnetic loadings
US7033720B2 (en) 2000-12-26 2006-04-25 Eastman Kodak Company Development systems for magnetic toners and toners having reduced magnetic loadings
US6610451B2 (en) 2000-12-26 2003-08-26 Heidelberger Druckmaschinen Ag Development systems for magnetic toners having reduced magnetic loadings
US6420078B1 (en) 2000-12-28 2002-07-16 Xerox Corporation Toner compositions with surface additives
US6696212B2 (en) 2001-03-27 2004-02-24 Heidelberger Druckmaschinen Ag Single component toner for improved magnetic image character recognition
US6451495B1 (en) 2001-05-07 2002-09-17 Xerox Corporation Toner and developer compositions with charge enhancing additives
US6426170B1 (en) 2001-05-07 2002-07-30 Xerox Corporation Toner and developer compositions with charge enhancing additives
US6692880B2 (en) 2001-05-14 2004-02-17 Heidelberger Druckmaschinen Ag Electrophotographic toner with stable triboelectric properties
US6797448B2 (en) 2001-05-14 2004-09-28 Eastman Kodak Company Electrophotographic toner and development process with improved image and fusing quality
US7314696B2 (en) 2001-06-13 2008-01-01 Eastman Kodak Company Electrophotographic toner and development process with improved charge to mass stability
US7087355B2 (en) 2001-09-05 2006-08-08 Eastman Kodak Company Electrophotographic toner containing polyalkylene wax or high crystallinity wax
US6566025B1 (en) 2002-01-16 2003-05-20 Xerox Corporation Polymeric particles as external toner additives
US7211362B2 (en) 2002-05-30 2007-05-01 Eastman Kodak Company Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images
US20050111891A1 (en) * 2002-05-30 2005-05-26 Jiann-Hsing Chen Fuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images
US20030232267A1 (en) * 2002-06-13 2003-12-18 Fields Robert D. Electrophotographic toner with uniformly dispersed wax
US7056637B2 (en) 2002-06-13 2006-06-06 Eastman Kodak Company Electrophotographic toner with uniformly dispersed wax
US7016632B2 (en) 2002-06-24 2006-03-21 Eastman Kodak Company Electrophotographic toner and development process using chemically prepared toner
US20040096243A1 (en) * 2002-06-24 2004-05-20 Jan Bares Electrophotographic toner and development process using chemically prepared toner
US7014976B2 (en) 2002-08-02 2006-03-21 Eastman Kodak Company Fuser member, apparatus and method for electrostatographic reproduction
US20040023144A1 (en) * 2002-08-02 2004-02-05 Pickering Jerry A. Fuser member, apparatus and method for electrostatographic reproduction
US20050220518A1 (en) * 2004-03-31 2005-10-06 Eastman Kodak Company Treatment of preprinted media for improved toner adhesion
US20050244201A1 (en) * 2004-04-30 2005-11-03 Muhammed Aslam Method for producing an enhanced gloss toner image on a substrate
US20050266332A1 (en) * 2004-05-28 2005-12-01 Pavlisko Joseph A Oil-free process for full color digital printing
US20060019188A1 (en) * 2004-07-26 2006-01-26 Xerox Corporation Toner compositions
US7229735B2 (en) 2004-07-26 2007-06-12 Xerox Corporation Toner compositions
WO2007075941A1 (en) 2005-12-21 2007-07-05 Eastman Kodak Company Chemically prepared porous toner
US20090239172A1 (en) * 2006-06-01 2009-09-24 Andrew Ciaschi Chilled finish roller system and method
US20070280758A1 (en) * 2006-06-01 2007-12-06 Eastman Kodak Company Chilled finish roller system and method
US7867678B2 (en) 2006-06-01 2011-01-11 Eastman Kodak Company Toner for use in a chilled finish roller system
WO2008027184A1 (en) 2006-08-28 2008-03-06 Eastman Kodak Company Custom color toner
US20090155704A1 (en) * 2007-12-12 2009-06-18 Fields Robert D Toner composition
US7914963B2 (en) 2007-12-12 2011-03-29 Eastman Kodak Company Toner composition
WO2009142726A1 (en) 2008-05-21 2009-11-26 Eastman Kodak Company Developer for selective printing of raised information by electrography
US20090291274A1 (en) * 2008-05-21 2009-11-26 Dinesh Tyagi Developer for selective printing of raised information by electrography
US8435712B2 (en) 2008-05-21 2013-05-07 Eastman Kodak Company Developer for selective printing of raised information by electrography
US20100075247A1 (en) * 2008-09-25 2010-03-25 Xin Jin Method and preparation of chemically prepared toners
US7956118B2 (en) 2008-09-25 2011-06-07 Eastman Kodak Company Method and preparation of chemically prepared toners
WO2010080099A1 (en) 2008-12-18 2010-07-15 Eastman Kodak Company Toner surface treatment
WO2010074720A1 (en) 2008-12-23 2010-07-01 Eastman Kodak Company Method of preparing toner having controlled morphology
WO2011003898A1 (en) 2009-07-10 2011-01-13 Basf Se Toner resins for electronic copying purposes
US8865856B2 (en) 2009-07-10 2014-10-21 Basf Se Toner resins for electronic copying purposes
WO2011136997A1 (en) 2010-04-26 2011-11-03 Eastman Kodak Company Toner containing metallic flakes
WO2012015676A1 (en) 2010-07-29 2012-02-02 Eastman Kodak Company Bending receiver using heat-shrinkable toner
US8227165B2 (en) 2010-07-29 2012-07-24 Eastman Kodak Company Bending receiver using heat-shrinkable film
WO2012015633A1 (en) 2010-07-29 2012-02-02 Eastman Kodak Company Bending receiver using heat-shrinkable film
US8406672B2 (en) 2010-07-29 2013-03-26 Eastman Kodak Company Bending receiver using heat-shrinkable toner
WO2012015786A1 (en) 2010-07-30 2012-02-02 Eastman Kodak Company Method for forming surface decorated particles
WO2012015891A1 (en) 2010-07-30 2012-02-02 Eastman Kodak Company Surface decorated particles
US8465899B2 (en) 2010-10-26 2013-06-18 Eastman Kodak Company Large particle toner printing method
US8147948B1 (en) 2010-10-26 2012-04-03 Eastman Kodak Company Printed article
US8626015B2 (en) 2010-10-26 2014-01-07 Eastman Kodak Company Large particle toner printer
US8530126B2 (en) 2010-10-26 2013-09-10 Eastman Kodak Company Large particle toner
US8404424B2 (en) 2011-02-08 2013-03-26 Eastman Kodak Company Security enhanced printed products and methods
WO2012109045A2 (en) 2011-02-08 2012-08-16 Eastman Kodak Company Printed product with authentication bi-fluorescence feature
WO2012109081A1 (en) 2011-02-08 2012-08-16 Eastman Kodak Company Security enhanced printed products and methods
WO2013043475A1 (en) 2011-09-19 2013-03-28 Eastman Kodak Company Antibacterial and antifungal protection for toner image
WO2013166227A1 (en) 2012-05-02 2013-11-07 Eastman Kodak Company Use of fluorescing toners for imaging
WO2014022252A1 (en) 2012-07-31 2014-02-06 Eastman Kodak Company Printing system with noise reduction
US8749845B2 (en) 2012-07-31 2014-06-10 Eastman Kodak Company System for determining efficient combinations of toner colors to form prints with enhanced gamut
US8755699B2 (en) 2012-07-31 2014-06-17 Eastman Kodak Company Noise reduction in toner prints
US8760719B2 (en) 2012-07-31 2014-06-24 Eastman Kodak Company Printing system with observable noise-reduction using fluorescent toner
US8805217B2 (en) 2012-07-31 2014-08-12 Eastman Kodak Company Toner printing with increased gamut
WO2014149800A1 (en) 2013-03-15 2014-09-25 Eastman Kodak Company Fluorescing yellow toner particles and methods of use
US9259953B2 (en) 2013-09-27 2016-02-16 Eastman Kodak Company Tactile images having coefficient of friction differences
WO2015057474A1 (en) 2013-10-18 2015-04-23 Eastman Kodak Company Polymeric composite materials, manufacture and uses
US9921509B2 (en) 2014-11-18 2018-03-20 Esprix Technologies, Lp Process for preparing novel composite charge control agents and novel composite charge control agents prepared by the process
US11249410B2 (en) * 2018-12-12 2022-02-15 Canon Kabushiki Kaisha Toner
US11248127B2 (en) 2019-11-14 2022-02-15 Swimc Llc Metal packaging powder coating compositions, coated metal substrates, and methods
US11834585B2 (en) 2019-11-14 2023-12-05 Swimc Llc Metal packaging powder coating compositions, coated metal substrates, and methods

Similar Documents

Publication Publication Date Title
US3893935A (en) Electrographic toner and developer composition
US4323634A (en) Electrographic toner and developer composition containing quaternary ammonium salt charge control agent
US3944493A (en) Electrographic toner and developer composition
US4079014A (en) Electrographic toner and developer composition containing a 4-aza-1-azoniabicyclo(2.2.2) octane salt as a charge control agent
US4684596A (en) Electrographic toner and developer composition containing quaternary ammonium salt charge-control agent
US3970571A (en) Method for producing improved electrographic developer
US3694359A (en) Dry electroscopic toner compositions
US4814250A (en) Electrophotographic toner and developer compositions containing dioctylsulfosuccinate and sodium benzoate charge control agents
US3809554A (en) Dry electrostatic toner composition and process of developing
US3553133A (en) Toner material and compositions of a polymeric organic-silicon dye
US4988600A (en) Particulate electrophotographic toner material
US4078930A (en) Developer compositions comprising toner and carrier
US4269922A (en) Positive toners containing long chain hydrazinium compounds
US4140644A (en) Polyester toner compositions
US5188919A (en) Particulate toner material containing charge controlling compound
JPS60169857A (en) Electrostatic charge image developing toner
US4304830A (en) Toner additives
US4254205A (en) Positive toners containing alkyl picolinium compounds as charge control agents
US5013628A (en) Particulate toner material with charge control agent
US4206065A (en) Electrostatographic developer compositions using terpolymer coated carrier
US4256824A (en) Method using positively charged electrophotographic toner containing amido dialkyl hydroxy ammonium compound
US4286038A (en) Positive toners containing alkyl picolinium compounds
US4264702A (en) Positive toners containing alkyl morpholinium compounds as charge control agents
US4293631A (en) Electrographic toner compositions
EP0382285B1 (en) Particulate toner material