US3887723A - Method of fabrication of composite anode for rotating-anode x-ray tubes - Google Patents

Method of fabrication of composite anode for rotating-anode x-ray tubes Download PDF

Info

Publication number
US3887723A
US3887723A US236898A US23689872A US3887723A US 3887723 A US3887723 A US 3887723A US 236898 A US236898 A US 236898A US 23689872 A US23689872 A US 23689872A US 3887723 A US3887723 A US 3887723A
Authority
US
United States
Prior art keywords
layer
coating
anode
disk
scoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US236898A
Inventor
Richard B Kaplan
Sebastian Gonnella
Walter M Abrams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US236898A priority Critical patent/US3887723A/en
Priority to US00314418A priority patent/US3819971A/en
Priority to DE2313674A priority patent/DE2313674A1/en
Application granted granted Critical
Publication of US3887723A publication Critical patent/US3887723A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • H01J2235/084Target-substrate interlayers or structures, e.g. to control or prevent diffusion or improve adhesion

Definitions

  • the anode compnses a substrate d1sk, a port1or1 of 1 1 pp 236,898 whose focal track is scored, for example by scratching or engraving of one or more annular grooves of [52] CL n 427/58; 427/124; 427/160 rectangular cross-section.
  • the emissive coating is 1 227 22 2 3 C, undercoated With an interlayer Of a material which is a poor emitter of x-rays.
  • the emissive coating and/or [56] Reierences Cited the;1 undercoa tinlg may cover otherlportions 3f thefdisk an 1n part1cu ar, may cover a expose sur aces UNITED STATES PATENTS thereof. 1:233:33?
  • the last step 3,033,008 5/1962 Davis 1 117/49 may be preceded by the application of an 3,136,907 6/1964 i ff r t a1 t w 313/330 undercoating of a material which is a poor x-ray 3,3 ,338 63 51835 313/330 emitter. Either or both coatings may be applied to 3,539,859 11/1970 Bougle 313/330 Dther Surfaces of the disk 3,610,984 10/1971 Seki et al.
  • a rotating-anode x-ray tube comprises a cathode and a disk-shaped anode, housed in an evacuated glass chamber. Electrons emitted by the cathode are caused to impinge upon the anode. The interaction of these electrons with the atomic nuclei of the anode surface material causes this material to emit x radiation. The stream of emitted x'ray exits from the tube at a designated spot ordinarily a hole in a lead shielding surrounding the tube. Focusing means is generally provided for the electron beam, causing it to im pinge on the anode at a fixed distance from its axis (the focal track). The angle of the focal track area of the anode's upper surface, with respect to the axis of the anode, determines the angle of the resultant x-ray beam.
  • the anode which is axially bearing mounted, is rotated at high angular velocity to continuously change the site of x-ray emission. Heat is transferred from the focal track through the anode and its supporting structure to a heat sink.
  • a composite anode comprises a substrate disk usually of graphite or molybdenum on whose focal track is applied a coating of x-ray emissive material.
  • Such anodes particularly those whose substrate disk is composed of graphite, are lightweight and, consequently, are not subject to the aforementioned limitations of solid anodes.
  • composite anodes fabricated according to methods heretofore applied suffer a notoriously high failure rate.
  • the emissive coating (ordinarily a thin, frusto-conical shell) warps, cracks or spalls away when subjected to the thermal stresses resulting from the x-ray generation process. Rotation of the anode at its high operating speed further contributes to separation of the emissive coating.
  • the method of the present invention involves scoring the region of the substrate disk surface to which the x-ray emissive coating is applied (i.e., the focal track). Scoring may comprise abrading, scratching, grooving or any other suitable method.
  • the emissive material is applied to substantially all exposed surfaces of the disk. In other embodiments, it comprises two layers one, a non-emissive layer which may be applied to substan tially all exposed surface of the disk, and a second, emissive layer, overlaying the first, applied to the focal track region.
  • the improved anode of this invention comprises a scored substrate disk overlaid with an x-ray emissive coating on its focal track.
  • this emissive coating is underlaid with a non-x-ray-emissive layer covering substantially all exposed surfaces of the disk.
  • FIG. I is a perspective view of an anode made in accordance with this invention.
  • FIG. 2 is a plan view of a grooved substrate disk according to one embodiment of this invention.
  • FIG. 3 is a plan view of a grooved substrate disk according to another embodiment of this invention.
  • FIG. 4 is a sectional view of the anode shown in FIG. 1 taken along line AA.
  • FIG. 5 is a sectional view of the anode shown in FIG. 1 taken along line AA, illustrating a different embodiment of the invention from that shown in FIG. 4.
  • FIG. 6 is a detail sectional view of the anode shown in FIG. 5.
  • FIG. 7 is a detail sectional view, as in FIG. 6, but illustrating a different embodiment of the invention.
  • a substrate disk 20 In order to fabricate the composite anode of this invention, a substrate disk 20 must first be provided. This is the base to which the x-ray emissive coating is to be applied.
  • the substrate disk 20 is not illustrated in per spective in the drawing. (See FIGS. 4 and 5 for a sectional view). However, its preferred configuration is substantially similar to that of the anode 9, shown in FIG. 1.
  • the substrate disk has a lower surface 18 and a frusto-conical upper surface 14, both symmetric about an axis 10.
  • the lower surface 18 may be planar, as shown in FIG. 4 or of any desired shape, for example that shown in PK]. 5.
  • the upper surface 14 and the lower surface 18 may be separated by a band 17 of any desired width or may directly abut at their peripheries.
  • a cylindrical axial cavity 12 is provided for axial mounting of the anode 9 to the shaft of the x-ray tube (not shown).
  • the anode 9 might be prepared with an integral axial cylindrical shaft which is mounted at either end, remote from the anode 9, itself.
  • the total surface of the anode 9 exposed to the environment within the x-ray tube would, therefore, vary according to the particular mounting structure employed. Accordingly, the exposed surfaces of the substrate disk 20 would normally constitute annular portions of the lower surface 18 and summit 19, the sloped region 16 of the upper surface 14 and the band 17.
  • the site of x-ray generation is located in the sloped region 16 of the upper surface 14.
  • the electron beam from the cathode impinges upon the anode 9, causing the generation of x-rays.
  • the angle of inclination of the sloped region 16 with re spect to the summit 19 depends on the desired angle of the resulting x-ray beam and, ultimately, on the dimensional and other require ments of the particular x-ray tube itself. For some ap plications, this inclination angle might even be negative, i.e., the upper surface 14 might be recessed; or zero, i.e., the upper surface 14 might be flat.
  • the substrate disk 20 must be composed of refractory material, since extreme heat is created during the ofa generation process. It is desirable, that the material selected also possess high heat capacity, light weight and a low atomic number, the latter reducing the tendency toward x-radiation by the substrate. Examples of materials possessing all these characteristics are molybdenum, silicon carbide and sintered graphite, the latter being employed in the preferred embodiment of this invention.
  • the substrate disk 20 may be prepared by any method, such as sintering, casting, forging, machining, etc., which is appropriate to the particular material selected and the form in which it is obtained. Those skilled in the art of basic structural fabrication will doubtless be able both to select a satisfactory material for the substrate disk 20, and to devise and implement suitable procedures for fabricating a substrate disk 20 from this material.
  • the second step in fabricating the composite anode is that of scoring the substrate disk 20.
  • scoring is here used in the broadest generic sense and should be understood to mean any method of creating an impression of any size, shape or depth in a surface.
  • scoring may comprise scratching, indenting, abrading, etching, drilling or grooving.
  • the preferred method is the last named.
  • one or more grooves are produced in at least a portion of the sloped region 16 of the upper sur face 14 of the substrate disk 20, forming a grooved disk 8.
  • the portion of the sloped region 16 in which the grooves 24 are produced is that portion at or in proximity to the focal track, where the x-ray emissive coating is to be applied. Any desired number of grooves 24 may be fashioned in this region, and grooves 24 may, of course, be produced in any other portion of any or all surfaces of the substrate disk 20.
  • the grooves 24 may be produced by any desired method.
  • the substrate disk 20 may, itself, be molded, cast, etc., already grooved. in the preferred embodiment, however, they are produced by machin' ing the already-fabricated sintered graphite substrate disk 20.
  • They may be machined concentrically, producing one or more annular grooves 24, as shown in FIG. 2. Likewise, they may be machined in a spiral fashion, for example by revolving the substrate disk 20 on its axis 10 and impressing a stylus, in the manner in which master phonograph discs are made. producing a spiral groove 25 as shown in FIG. 3. Indeed, any desired method may be employed to machine any desired number of grooves of any desired configuration.
  • grooves 24 of rectangular or square cross'section, as illustrated in FIGS. 4-7, are machined into the sintered graphite substrate disk 20.
  • the anode of this invention exhibits greater structural integrity and improved heat transfer characteristics over those fabricated by methods previously known in the art.
  • the scoring adds additional constraints to the movement of the coating 22. From a study of FIG. 4 it can be under stood that the abutment of the portion of the coating 22 within the grooves 24 with the outer edges 27 thereof restrains radial movement of the coating 22. The shear forces generated within the grooves 24 would also tend to restrain action of the coating 22 in a direction perpendicular to the sloped region 16, whether caused by centrifugal force or thermal stresses.
  • the coating 22 will, as hereinafter more thoroughly discussed, tend to enter the grooves 24 upon application, the coating 22 on the sloped region 16 will have a more complex geometry than the simple, thin frusto-conical shell of the prior art anodes.
  • the preferred embodiment of the method of this invention in which grooves 24 are machined into the substrate disk 20 will yield a coating 22 with integral ribs. These ribs, or the other structures integral to the coating 22 provided by the other types of scoring which may be applied to the substrate disk, enable the coating 22 to further resist the tendency to warp and crack under thermal stress and other severe conditions of the operating environment.
  • step of scoring ultimately yields an anode 9 having increased structural integrity as well as improved heat transfer characteristics.
  • the final step in fabricating composite anodes by the method of this invention is that of applying a coating 22 of a second, x-ray emissive material to the sloped region 16 of the scored substrate disk 8.
  • the material itself may be any of those which have the ability to emit x-rays in response to electron bombardment. As is well-known to those in the art of roentgenology, these are elements having a relatively high atomic number ordinarily over 70. Typical of such materials are tantalum, tungsten, rhenium and alloys of tungsten and rhenium. In the preferred embodiment of this invention, tungsten and alloys of tungsten and rhenium are employed for this purpose.
  • the coating 22 is applied to at least that area of the sloped region l6 of the substrate disk 20 comprising the focal track of the anode.
  • the coating may be applied to other areas of the disk 20 and, in particular, may be applied to all exposed surfaces thereof. This latter is desirable for reasons hereinafter explained.
  • the coating 22 is applied, at least in part, to areas of the exposed surfaces of the disk 20 which have been previously scored as hereinabove described.
  • the coating 22 may be applied by any suitable method, many of which will be known to those skilled in the plating art.
  • the method of fused salt electrolysis may be applied.
  • a fused mixture of po tassium fluoride (and/or sodium fluoride) and a salt of the emissive material is brought in contact with the surface to which the coating is applied, and a dc current is passed through the mixture, causing the emissive material to be electroplated onto the substrate surface.
  • the coating 22 is applied by the method of chemical vapor deposition.
  • WF rhenium hexafluoride ReF or a mixture thereof are brought into contact with the area of the exposed surfaces of the substrate disk 20 to be coated.
  • Gaseous hydrogen is introduced (either independently or premixed with the hexafluoride(s)), and one or both of the following reduction reactions:
  • An alternative procedure consists in vaporizing tungsten hexachloride (WCl,,) and/or rhenium pentachloride (ReCl and introducing one or both or any desired mixture into the evacuated chamber maintained at lOO0C.
  • gaseous hydrogen is introduced, and the desired coating will deposit accordingly to one or both of the following reactions:
  • Either of these two procedures may be accomplished by maintaining the exposed surfaces of the substrate disk 20 at 800' or I000C, respectively, in an evacuated chamber not maintained at that temperature.
  • the coating 22 will naturally tend to enter into the grooves 24 during deposition, as the tungsten and rhenium atoms will rather freely drift within the deposition chamber. This is desirable, as it is responsible in part for the increased structural integrity and improved heat transfer characteristics of the coating 22 (and, generally, of the anode of this invention), as hereinabove discussed. It should be noted that because of the high motility of the reactant gas molecules, grooves are more easily plated by this method than by, for example. the method of fused salt electrolysis.
  • the coating 22 may be applied to any desired thickness by adjusting the timing and the volume and pres- Nlit) l sure of the input vapors as required. For a more complete description of these procedures, see Vapor Plating by Powell, Blocher and Oxley.
  • niobium carbide tantalum carbide, titanium carbide and zirconium carbide.
  • niobium carbide andor titanium carbide are employed for this purpose. The reason for this selection will be hereinafter explained.
  • This first layer 26 is preferably applied by the chemical vapor deposition technique described above, modified in that the chamber temperature (or substrate disk 20) is maintained at between 1700 and 2000C. Otherwise the procedure is similar, and the reduction reac tions giving rise to the deposition are:
  • the second, x-ray emissive layer 22 is deposited as hereinabove described. Ordinarily the second layer 22 will be deposited onto the focal track, but it may be deposited onto the entire sloped region 16 (see FIG. or, for that matter, onto all exposed surfaces of the substrate disk 20. In any event, the first layer 26 will greatly improve (and ultimately increase the life of) the bond between the emissive layer 22 and the substrate disk 20 by impeding the diffusion of carbon between the graphite substrate disk 20 and the x-ray emissive layer 22.
  • the first layer 26 will ordinarily be deposited on all exposed surfaces of the substrate disk 20, in order to prevent sublimation and micro-particle migration from the substrate, which would, as hereinabove discussed, eventually lead to electrical breakdown and failure of the tube.
  • niobium and titanium have low atomic numbers, and are thus poor x-ray emitters. Consequently, if all exposed surfaces of the substrate disk 20 are coated with a first layer of niobium carbide or titanium carbide, off-focus x-radiation by the anode will be greatly reduced with respect to that of an exposed surface containing an element of a higher atomic number.
  • the emissive layer 22 is undercoated with a layer of refractory material preferably a first layer 26 of niobium carbide or tita' nium carbide covering all exposed surfaces of the substrate disk 20, as shown in FIG. 5.
  • the first layer 26 covers the surface of the substrate disk 20, including those portions within the groove 24. Overlaying the first layer 26 is the second, x-ray emissive layer 22.
  • FIG. 7 shows a slight modification of the coating shown in FIG. 6.
  • the opening 30 of the groove 24 is narrower than its base 32, following application of the first layer 26.
  • This effect will nor mally be achieved without special action, since the corners 29 of the groove 24, being exposed to the ambient through an angle of 270, will naturally receive a greater number of molecules of the material being deposited than would a flat surface.
  • This effect may also be promoted by increasing temperature and pressure in the plating chamber, thus causing the gas to plate out on the first available surface.
  • the result in either case will be that the emissive layer 22 will be even more securely bonded to the substrate disk 20 by the dovetail effect.
  • this effect can, of course, be achieved by machining the grooves 24 into the substrate disk 20 with a dove-tail cross-section, in the first instance.
  • the anode comprises a sintered graphite substrate disk 20, having substantially the configuration of the anode 9, shown in FIG. 1.
  • the substrate disk 20 comprises a substantially frusto-conical upper surface 14, the latter comprising a summit 19, and a sloped region 16; a lower surface 18, which is preferably recessed, as shown in FIG. 5; a band 17; and a cylindrical axial cavity 12.
  • the entire substrate disk 20 is substantially symmetric about an axis 10.
  • the sloped region 16 possesses one or more an nular grooves 24 of substantially square cross-section (when viewed parallel to the axis 10). These grooves 24 are located at or near the focal track (not shown) of the anode 9.
  • All exposed surfaces of the grooved substrate disk 8 are coated with a first layer 26 of a refractory, poorly x-ray emitting material, such as niobium carbide or titanium carbide.
  • the focal track area of the sloped region 16 is coated with a second layer 22 of an x-ray emitting material, such as tungsten. Both layers extend into the grooves 24, the second layer 22 substantially filling them.
  • the preferred embodiment of the anode may be altered by any or all of the substitutions of materials, configu rations, etc. shown in the drawings or hereinabove discussed in connection with the preferred embodiments of the method of this invention, or which may be devised by or apparent to those skilled in the art to which this invention pertains.
  • a substrate disk of carbon said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; forming, in the sloped region of said upper surface,
  • a first layer in juxtaposition with substantially all exposed surfaces of said substrate disk said first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide, and Zirconium carbide; and
  • said second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
  • a substrate disk of carbon said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; scoring at least a portion of the sloped region of said upper surface;
  • a coating comprising:
  • a first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide and zirconium carbide, said first layer being applied in juxtaposition with said scored, sloped region, at least a portion of said first layer caused to extend into said scoring;
  • said second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
  • Method as in claim 2 wherein said step of scoring comprises forming at least one substantially annular groove.
  • a substrate disk of a first refractory mate rial said disk having an axis, a substantially frustoconical upper surface and a lower surface; said upper and lower surface, each being substantially symmetric about said axis;
  • a coating comprising a second material differ' ing from said first material, said second material having the ability to emit x-rays in response to electron bombardment, at least a portion of said coating caused to extend into said scoring.
  • step of scoring comprises forming at least one groove in substantially spiral fashion with respect to said axis.
  • said coating comprises a material selected from the group consisting of tungsten and alloys of tungsten and rhenium.
  • said first layer being applied in juxtaposition with said grooved, sloped surface and the surfaces of the groove therein;
  • said second layer being applied in juxtaposition with said first layer.
  • said second layer comprises tungsten
  • said step of applying comprises chemical vapor deposition.
  • said groove is provided so as to be substantially quadrilateral in a cross-section taken parallel to said axis;
  • said coating is applied so as to substantially fill said groove.
  • said quadrilateral comprises a rectangle.
  • said first layer being selectively applied within the groove in juxtaposition with the surfaces thereof, so that upon application thereof, the opening of said groove is narrower than the base thereof;
  • said second layer being applied so that at least a portion thereof is within said groove in juxtaposition with said first layer.

Abstract

Disclosed is an improved composite anode for rotating-anode xray tubes and an improved method of fabrication thereof. The anode comprises a substrate disk, a portion of whose focal track is scored, for example by scratching or engraving of one or more annular grooves of rectangular cross-section. A coating of x-ray emissive material covers the scored region. In certain embodiments of the invention, the emissive coating is undercoated with an interlayer of a material which is a poor emitter of xrays. The emissive coating and/or the undercoating may cover other portions of the disk and, in particular, may cover all exposed surfaces thereof. The method comprises providing such a disk, scoring it in the focal track region and applying an x-ray emissive coating to the scored region. The last step may be preceded by the application of an undercoating of a material which is a poor x-ray emitter. Either or both coatings may be applied to other surfaces of the disk.

Description

United States Patent Kaplan et a1. June 3, 1975 [54] METHOD OF FABRICATION OF 3,649,355 3/1972 Hermig 117/227 COMPOSITE ANODE FOR 3,697,798 10/1972 Machenschalk ct a|..,. 313/330 ROTATING ANODE X RAY TUBES 3,751,702 8/1973 Dietz .1 313/330 1 Inventors: Richard Kaplan, 4151 Dundee Primary ExaminerCameron K. Weiffenbach Dr., Los Angeles, Calif. 90027; Sebastian Gonnella, 13688 Chase 51., Pacoima, Calif. 91331; Walter [57] ABSTRACT M, Abr m 17333 Vi t Bl d Disclosed is an improved composite anode for rotat- V Nuys, C lif. 91406 ing-anode x-ray tubes and an improved method of fab- 221 Filed: Mar. 22, 1972 canon thereof The anode compnses a substrate d1sk, a port1or1 of 1 1 pp 236,898 whose focal track is scored, for example by scratching or engraving of one or more annular grooves of [52] CL n 427/58; 427/124; 427/160 rectangular cross-section. A coating of x-ray emissive [51] Int. Cl. 844d 1/18 material the Scored region- In Certain [58] Field of Search 117/47 R 491 66, 217, embodiments of the invention, the emissive coating is 1 227 22 2 3 C, undercoated With an interlayer Of a material which is a poor emitter of x-rays. The emissive coating and/or [56] Reierences Cited the;1 undercoa tinlg may cover otherlportions 3f thefdisk an 1n part1cu ar, may cover a expose sur aces UNITED STATES PATENTS thereof. 1:233:33? 311353 iiiiia r'zmf11131113111111", 11/43; Tho mooooo oomooooo ooovioioo oooh o ook, ooooog 2,863,083 12/1958 Schram 1. 313/330 it in the focal track region and pp y an y 1024522 3 19 2 Cacciotth 7 217 emissive coating to the scored region. The last step 3,033,008 5/1962 Davis 1 117/49 may be preceded by the application of an 3,136,907 6/1964 i ff r t a1 t w 313/330 undercoating of a material which is a poor x-ray 3,3 ,338 63 51835 313/330 emitter. Either or both coatings may be applied to 3,539,859 11/1970 Bougle 313/330 Dther Surfaces of the disk 3,610,984 10/1971 Seki et al. 313/330 3,642,522 2/1972 Gass et a1 117/106 C 18 Claims, 7 Drawing Figures PATENTED 3 SHEET METHOD OF FABRICATION OF COMPOSITE ANODE FOR ROTATING-ANODE X-RAY TUBES BACKGROUND OF INVENTION A. Field of Invention This invention relates to the field of composite anodes for rotating-anode x-ray tubes and the methods of fabrication thereof.
B. Description of Prior Art In essence, a rotating-anode x-ray tube comprises a cathode and a disk-shaped anode, housed in an evacuated glass chamber. Electrons emitted by the cathode are caused to impinge upon the anode. The interaction of these electrons with the atomic nuclei of the anode surface material causes this material to emit x radiation. The stream of emitted x'ray exits from the tube at a designated spot ordinarily a hole in a lead shielding surrounding the tube. Focusing means is generally provided for the electron beam, causing it to im pinge on the anode at a fixed distance from its axis (the focal track). The angle of the focal track area of the anode's upper surface, with respect to the axis of the anode, determines the angle of the resultant x-ray beam.
During the course of operation, a great deal of heat is generated as a result of the x-ray generation process. Accordingly, the anode, which is axially bearing mounted, is rotated at high angular velocity to continuously change the site of x-ray emission. Heat is transferred from the focal track through the anode and its supporting structure to a heat sink.
Many rotating anodes presently in use comprise a solid metal disk which is either composed entirely of an x ray emissive metal (typically tungsten) or of another metal to which an x-ray emissive coating is applied. Due to their great weight and consequent high moment of inertia, these anodes require considerable time to reach full angular velocity. Furthermore, this weight imposes a great burden on the support bearings, about which they rotate at several thousand rpm. Consequently, x-ray tubes with such anodes have a rather short service life.
In order to solve such problems, composite anodes have recently come into increasingly common use. A composite anode comprises a substrate disk usually of graphite or molybdenum on whose focal track is applied a coating of x-ray emissive material. Such anodes, particularly those whose substrate disk is composed of graphite, are lightweight and, consequently, are not subject to the aforementioned limitations of solid anodes.
However, composite anodes fabricated according to methods heretofore applied suffer a notoriously high failure rate. Typically, the emissive coating (ordinarily a thin, frusto-conical shell) warps, cracks or spalls away when subjected to the thermal stresses resulting from the x-ray generation process. Rotation of the anode at its high operating speed further contributes to separation of the emissive coating.
Furthermore, also owing to the poor bond between the emissive coating and the substrate resulting from coating directly onto the smooth substrate surface, these anodes exhibit poor heat transfer characteristics. This results in serious overheating and further contributes to the sort of coating separation mentioned above.
Finally, particularly in the case of graphite-substrate anodes, sublimation of the substrate material occurs from exposed surfaces of the anode, decreasing the vacuum strength within the tube and eventually render ing the tube useless. Further electrical breakdown occurs due to migration of micro-particulate matter from the exposed substrate surfaces into the region of high electrical field between the electrodes. These problems may be solved by applying the emissive coating to all exposed surfaces of the anode, but this will tend to cause off-focus x-radiation.
SUMMARY OF INVENTION Accordingly, it is an object of this invention to provide a composite anode for rotating-anode x-ray tubes having improved structual integrity.
It is a further object of this invention to provide a composite anode having improved heat transfer characteristics.
It is a yet further object of this invention to provide a composite anode having a diminished tendency toward substrate material sublimation and particle migration.
It is another object of this invention to provide a composite anode having a diminished tendency toward off-focus x-radiation.
It is an even further object of this invention to provide a method for fabricating composite anodes having such improved characteristics.
Briefly, the method of the present invention involves scoring the region of the substrate disk surface to which the x-ray emissive coating is applied (i.e., the focal track). Scoring may comprise abrading, scratching, grooving or any other suitable method. In certain embodiments of the invention, the emissive material is applied to substantially all exposed surfaces of the disk. In other embodiments, it comprises two layers one, a non-emissive layer which may be applied to substan tially all exposed surface of the disk, and a second, emissive layer, overlaying the first, applied to the focal track region.
The improved anode of this invention comprises a scored substrate disk overlaid with an x-ray emissive coating on its focal track. In certain embodiments, this emissive coating is underlaid with a non-x-ray-emissive layer covering substantially all exposed surfaces of the disk.
DESCRIPTION OF THE DRAWING FIG. I is a perspective view of an anode made in accordance with this invention.
FIG. 2 is a plan view of a grooved substrate disk according to one embodiment of this invention.
FIG. 3 is a plan view of a grooved substrate disk according to another embodiment of this invention.
FIG. 4 is a sectional view of the anode shown in FIG. 1 taken along line AA.
FIG. 5 is a sectional view of the anode shown in FIG. 1 taken along line AA, illustrating a different embodiment of the invention from that shown in FIG. 4.
FIG. 6 is a detail sectional view of the anode shown in FIG. 5.
FIG. 7 is a detail sectional view, as in FIG. 6, but illustrating a different embodiment of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The improved composite anode of this invention is best described and understood by reference to the method which is employed in its manufacture. Consequently the major emphasis of the present detailed description will be laid on the preferred embodiments of the method. The preferred embodiments of the anode itself will be independently described, but in more sum mary fashion.
In order to fabricate the composite anode of this invention, a substrate disk 20 must first be provided. This is the base to which the x-ray emissive coating is to be applied. The substrate disk 20 is not illustrated in per spective in the drawing. (See FIGS. 4 and 5 for a sectional view). However, its preferred configuration is substantially similar to that of the anode 9, shown in FIG. 1.
Accordingly, in the preferred embodiment of this in vention, the substrate disk has a lower surface 18 and a frusto-conical upper surface 14, both symmetric about an axis 10. The lower surface 18 may be planar, as shown in FIG. 4 or of any desired shape, for example that shown in PK]. 5. The upper surface 14 and the lower surface 18 may be separated by a band 17 of any desired width or may directly abut at their peripheries.
ln the embodiments illustrated, a cylindrical axial cavity 12 is provided for axial mounting of the anode 9 to the shaft of the x-ray tube (not shown). However in other embodiments, the anode 9 might be prepared with an integral axial cylindrical shaft which is mounted at either end, remote from the anode 9, itself. The total surface of the anode 9 exposed to the environment within the x-ray tube would, therefore, vary according to the particular mounting structure employed. Accordingly, the exposed surfaces of the substrate disk 20 would normally constitute annular portions of the lower surface 18 and summit 19, the sloped region 16 of the upper surface 14 and the band 17.
The site of x-ray generation is located in the sloped region 16 of the upper surface 14. Here the electron beam from the cathode (not shown) impinges upon the anode 9, causing the generation of x-rays. Accordingly, the angle of inclination of the sloped region 16 with re spect to the summit 19 (or the lower surface 18) depends on the desired angle of the resulting x-ray beam and, ultimately, on the dimensional and other require ments of the particular x-ray tube itself. For some ap plications, this inclination angle might even be negative, i.e., the upper surface 14 might be recessed; or zero, i.e., the upper surface 14 might be flat.
The substrate disk 20 must be composed of refractory material, since extreme heat is created during the ofa generation process. It is desirable, that the material selected also possess high heat capacity, light weight and a low atomic number, the latter reducing the tendency toward x-radiation by the substrate. Examples of materials possessing all these characteristics are molybdenum, silicon carbide and sintered graphite, the latter being employed in the preferred embodiment of this invention.
The substrate disk 20 may be prepared by any method, such as sintering, casting, forging, machining, etc., which is appropriate to the particular material selected and the form in which it is obtained. Those skilled in the art of basic structural fabrication will doubtless be able both to select a satisfactory material for the substrate disk 20, and to devise and implement suitable procedures for fabricating a substrate disk 20 from this material.
The second step in fabricating the composite anode is that of scoring the substrate disk 20. The term scoring" is here used in the broadest generic sense and should be understood to mean any method of creating an impression of any size, shape or depth in a surface. By way of illustration, and not of limitation, scoring may comprise scratching, indenting, abrading, etching, drilling or grooving. The preferred method, however, is the last named.
Accordingly, in the preferred embodiment, one or more grooves (ordinarily 20 or so) are produced in at least a portion of the sloped region 16 of the upper sur face 14 of the substrate disk 20, forming a grooved disk 8. The portion of the sloped region 16 in which the grooves 24 are produced is that portion at or in proximity to the focal track, where the x-ray emissive coating is to be applied. Any desired number of grooves 24 may be fashioned in this region, and grooves 24 may, of course, be produced in any other portion of any or all surfaces of the substrate disk 20.
The grooves 24 may be produced by any desired method. For example, the substrate disk 20 may, itself, be molded, cast, etc., already grooved. in the preferred embodiment, however, they are produced by machin' ing the already-fabricated sintered graphite substrate disk 20.
They may be machined concentrically, producing one or more annular grooves 24, as shown in FIG. 2. Likewise, they may be machined in a spiral fashion, for example by revolving the substrate disk 20 on its axis 10 and impressing a stylus, in the manner in which master phonograph discs are made. producing a spiral groove 25 as shown in FIG. 3. Indeed, any desired method may be employed to machine any desired number of grooves of any desired configuration.
The cross-section of the grooves may likewise have any desired shape or, indeed, no uniform shape at all. In the preferred embodiment, grooves 24 of rectangular or square cross'section, as illustrated in FIGS. 4-7, are machined into the sintered graphite substrate disk 20.
The function of the scoring, regardless of its precise nature or method of application, is essentially the same.
First, it increases the surface area of the region of the substrate disk 20 to which the emissive coating 22 is ap plied. This has two major effects. One of these is to increase the effective area of the bond interface between the surface of the substrate disk 20 and the emissive coating 22, providing a generally more secure band. The other is to promote the flow of heat from the coating 22 into the substrate disk 20 for ultimate transmission into the heat sink or the ambient. Thus the anode of this invention exhibits greater structural integrity and improved heat transfer characteristics over those fabricated by methods previously known in the art.
In addition, it increases the amount of force necessary to separate the coating 22 from the substrate disk 20 and accordingly, provides the anode 9 with still greater structural integrity. Considering the anode 9 shown in FIG. 4, it can be seen that highspeed rotation (as would occur in operation in an x-ray tube) would impress a large centrifugal force on the portion of the coating 22 on the sloped region 16. This would tend to lift the coating 22 away from the sloped region 16 in a radial direction. Such action would, without the scoring of the sloped surface, be hampered only by rather weak tensile forces, in a direction perpendicular to the interface between the coating 22 and the sloped region 16, and by shear forces, in a radial direction, parallel to the interface. Likewise, the warping and buckling of the emissive coatings observed to occur in unscored anodes subjected to the thermal stresses resulting from ordinary use (similar to the effect of heat in a dry lake bed) are restrained only by these weak tensile forces. It is the weakness of these inhibiting forces which is the primary cause of the high failure rate of unscored" composite anodes made by heretofore applied methods.
However, in the anode of the present invention, the scoring adds additional constraints to the movement of the coating 22. From a study of FIG. 4 it can be under stood that the abutment of the portion of the coating 22 within the grooves 24 with the outer edges 27 thereof restrains radial movement of the coating 22. The shear forces generated within the grooves 24 would also tend to restrain action of the coating 22 in a direction perpendicular to the sloped region 16, whether caused by centrifugal force or thermal stresses.
The final effect of scoring further increases the structural integrity of the anode of this invention. Since the coating 22 will, as hereinafter more thoroughly discussed, tend to enter the grooves 24 upon application, the coating 22 on the sloped region 16 will have a more complex geometry than the simple, thin frusto-conical shell of the prior art anodes. In particular, the preferred embodiment of the method of this invention in which grooves 24 are machined into the substrate disk 20, will yield a coating 22 with integral ribs. These ribs, or the other structures integral to the coating 22 provided by the other types of scoring which may be applied to the substrate disk, enable the coating 22 to further resist the tendency to warp and crack under thermal stress and other severe conditions of the operating environment.
Thus the step of scoring ultimately yields an anode 9 having increased structural integrity as well as improved heat transfer characteristics. By a careful selection of the precise scoring procedure employed and a precise arrangement of the resulting scoring on the exposed surfaces of the substrate disk these being well within the skill of typical mechanical or structural engineers such qualities may be optimized.
The final step in fabricating composite anodes by the method of this invention is that of applying a coating 22 of a second, x-ray emissive material to the sloped region 16 of the scored substrate disk 8.
The material itself may be any of those which have the ability to emit x-rays in response to electron bombardment. As is well-known to those in the art of roentgenology, these are elements having a relatively high atomic number ordinarily over 70. Typical of such materials are tantalum, tungsten, rhenium and alloys of tungsten and rhenium. In the preferred embodiment of this invention, tungsten and alloys of tungsten and rhenium are employed for this purpose.
The coating 22 is applied to at least that area of the sloped region l6 of the substrate disk 20 comprising the focal track of the anode. Of course the coating may be applied to other areas of the disk 20 and, in particular, may be applied to all exposed surfaces thereof. This latter is desirable for reasons hereinafter explained.
In any event, the coating 22 is applied, at least in part, to areas of the exposed surfaces of the disk 20 which have been previously scored as hereinabove described. The coating 22 may be applied by any suitable method, many of which will be known to those skilled in the plating art. For example, the method of fused salt electrolysis may be applied. Here a fused mixture of po tassium fluoride (and/or sodium fluoride) and a salt of the emissive material is brought in contact with the surface to which the coating is applied, and a dc current is passed through the mixture, causing the emissive material to be electroplated onto the substrate surface.
However, in the preferred embodiment of this invention, the coating 22 is applied by the method of chemical vapor deposition.
Although the operator will perhaps be required to conduct a nominal amount of experimentation to determine the precise conditions necessary to coat the selected emissive material onto the selected substrate material, the following method has proved satisfactory for use in the preferred embodiment of this invention wherein a coating 22 of tungsten or rhenium or alloys thereof is applied to a substrate disk 20 of sintered graphite.
ln an evacuated chamber maintained at a temperature of 800C, tungsten hexafluoride (WF rhenium hexafluoride (ReF or a mixture thereof are brought into contact with the area of the exposed surfaces of the substrate disk 20 to be coated. Gaseous hydrogen is introduced (either independently or premixed with the hexafluoride(s)), and one or both of the following reduction reactions:
causes the desired emissive coating 22 to deposit onto the substrate surface. Which of these reactions occurs will, of course, depend on which hexafluoride is introduced into the chamber. In particular, if both are introduced, an alloy of tungsten and rhenium will be deposited, the proportion being adjustable as desired by adjusting the proportion of the hexafluorides in the introduced vapor.
An alternative procedure consists in vaporizing tungsten hexachloride (WCl,,) and/or rhenium pentachloride (ReCl and introducing one or both or any desired mixture into the evacuated chamber maintained at lOO0C. As before, gaseous hydrogen is introduced, and the desired coating will deposit accordingly to one or both of the following reactions:
Either of these two procedures may be accomplished by maintaining the exposed surfaces of the substrate disk 20 at 800' or I000C, respectively, in an evacuated chamber not maintained at that temperature.
The coating 22 will naturally tend to enter into the grooves 24 during deposition, as the tungsten and rhenium atoms will rather freely drift within the deposition chamber. This is desirable, as it is responsible in part for the increased structural integrity and improved heat transfer characteristics of the coating 22 (and, generally, of the anode of this invention), as hereinabove discussed. It should be noted that because of the high motility of the reactant gas molecules, grooves are more easily plated by this method than by, for example. the method of fused salt electrolysis.
The coating 22 may be applied to any desired thickness by adjusting the timing and the volume and pres- Nlit) l sure of the input vapors as required. For a more complete description of these procedures, see Vapor Plating by Powell, Blocher and Oxley.
In order to provide an improved bond between the coating 22 and the substrate disk 20, and for other reasons hereinafter explained, it is desirable to precede the emissive coating application with the application of a first layer of refractory material. Examples of such materials are niobium carbide, tantalum carbide, titanium carbide and zirconium carbide. In the preferred embodiment of this invention, in which a substrate disk 20 of sintered graphite is provided, niobium carbide andor titanium carbide are employed for this purpose. The reason for this selection will be hereinafter explained.
This first layer 26 is preferably applied by the chemical vapor deposition technique described above, modified in that the chamber temperature (or substrate disk 20) is maintained at between 1700 and 2000C. Otherwise the procedure is similar, and the reduction reac tions giving rise to the deposition are:
2NbCl 5H 2Nb lOHCH 2TaCl 5H 2Ta IOHCH TiCl, 2H Ti 4l-ICH ZrCl 2H Zr 4HCH TiCl, H CH TiC reaction products Following deposition of this first layer 26, the second, x-ray emissive layer 22 is deposited as hereinabove described. Ordinarily the second layer 22 will be deposited onto the focal track, but it may be deposited onto the entire sloped region 16 (see FIG. or, for that matter, onto all exposed surfaces of the substrate disk 20. In any event, the first layer 26 will greatly improve (and ultimately increase the life of) the bond between the emissive layer 22 and the substrate disk 20 by impeding the diffusion of carbon between the graphite substrate disk 20 and the x-ray emissive layer 22.
The first layer 26 will ordinarily be deposited on all exposed surfaces of the substrate disk 20, in order to prevent sublimation and micro-particle migration from the substrate, which would, as hereinabove discussed, eventually lead to electrical breakdown and failure of the tube.
The particular advantage of a first layer of niobium carbide or titanium carbide is that niobium and titanium have low atomic numbers, and are thus poor x-ray emitters. Consequently, if all exposed surfaces of the substrate disk 20 are coated with a first layer of niobium carbide or titanium carbide, off-focus x-radiation by the anode will be greatly reduced with respect to that of an exposed surface containing an element of a higher atomic number.
Accordingly, in this embodiment the emissive layer 22 is undercoated with a layer of refractory material preferably a first layer 26 of niobium carbide or tita' nium carbide covering all exposed surfaces of the substrate disk 20, as shown in FIG. 5.
The detailed geometry of this double layer is seen in FIGS. 6 and 7. Referring to FIG. 6, the first layer 26 covers the surface of the substrate disk 20, including those portions within the groove 24. Overlaying the first layer 26 is the second, x-ray emissive layer 22.
FIG. 7 shows a slight modification of the coating shown in FIG. 6. Here it is noted that the opening 30 of the groove 24 is narrower than its base 32, following application of the first layer 26. This effect will nor mally be achieved without special action, since the corners 29 of the groove 24, being exposed to the ambient through an angle of 270, will naturally receive a greater number of molecules of the material being deposited than would a flat surface. This effect may also be promoted by increasing temperature and pressure in the plating chamber, thus causing the gas to plate out on the first available surface. The result in either case will be that the emissive layer 22 will be even more securely bonded to the substrate disk 20 by the dovetail effect. It should be noted that this effect can, of course, be achieved by machining the grooves 24 into the substrate disk 20 with a dove-tail cross-section, in the first instance.
Having now described in detail the preferred embodiments of the method of this invention, the preferred embodiment of the anode of this invention will be described in summary fashion.
Briefly, in its preferred embodiment, the anode comprises a sintered graphite substrate disk 20, having substantially the configuration of the anode 9, shown in FIG. 1. The substrate disk 20 comprises a substantially frusto-conical upper surface 14, the latter comprising a summit 19, and a sloped region 16; a lower surface 18, which is preferably recessed, as shown in FIG. 5; a band 17; and a cylindrical axial cavity 12. The entire substrate disk 20 is substantially symmetric about an axis 10. The sloped region 16 possesses one or more an nular grooves 24 of substantially square cross-section (when viewed parallel to the axis 10). These grooves 24 are located at or near the focal track (not shown) of the anode 9. All exposed surfaces of the grooved substrate disk 8 are coated with a first layer 26 of a refractory, poorly x-ray emitting material, such as niobium carbide or titanium carbide. The focal track area of the sloped region 16 is coated with a second layer 22 of an x-ray emitting material, such as tungsten. Both layers extend into the grooves 24, the second layer 22 substantially filling them.
Without departing from the spirit of the invention, the preferred embodiment of the anode may be altered by any or all of the substitutions of materials, configu rations, etc. shown in the drawings or hereinabove discussed in connection with the preferred embodiments of the method of this invention, or which may be devised by or apparent to those skilled in the art to which this invention pertains.
We claim:
1. The method of fabricating a composite anode for a rotating anode x-ray tube, comprising the steps of:
providing a substrate disk of carbon, said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; forming, in the sloped region of said upper surface,
at least one substantially annular groove; and applying to said grooved substrate disk a coating comprising:
a first layer in juxtaposition with substantially all exposed surfaces of said substrate disk, said first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide, and Zirconium carbide; and
a second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
2. The method of fabricating a composite anode for a rotating-anode x-ray tube, comprising the steps of:
providing a substrate disk of carbon, said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; scoring at least a portion of the sloped region of said upper surface;
applying to at least a part of said scored, sloped region, a coating, said coating comprising:
a first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide and zirconium carbide, said first layer being applied in juxtaposition with said scored, sloped region, at least a portion of said first layer caused to extend into said scoring; and
a second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
3. Method as in claim 2 wherein said step of scoring comprises forming at least one substantially annular groove.
4. The method of fabricating a composite anode for a rotating-anode x-ray tube, comprising the steps of:
providing a substrate disk of a first refractory mate rial, said disk having an axis, a substantially frustoconical upper surface and a lower surface; said upper and lower surface, each being substantially symmetric about said axis;
scoring at least a portion of the sloped region of said upper surface; and
applying to at least a part of said scored, sloped region, a coating comprising a second material differ' ing from said first material, said second material having the ability to emit x-rays in response to electron bombardment, at least a portion of said coating caused to extend into said scoring.
5. Method as in claim 4 wherein said first refractory material is non-metallic.
6. Method as in claim 4, wherein said step of scoring comprises forming at least one groove in substantially spiral fashion with respect to said axis.
7. Method as in claim 4, wherein said coating is applied to substantially all exposed surfaces of said substrate disk.
8. Method as in claim 7, wherein said coating comprises a material selected from the group consisting of tungsten and alloys of tungsten and rhenium.
9. Method as in claim 8, wherein said coating comprises tungsten', said step of applying comprises chemical vapor deposition.
10. Method as in claim 4, wherein said step of scoring comprises forming at least one substantially annular groove.
11. Method as in claim 10, wherein a plurality of annular grooves is formed.
12. Method as in claim 10, wherein said coating is applied in a first, substantially nonx-ray-emissive layer and a second, x-ray emissive layer:
said first layer being applied in juxtaposition with said grooved, sloped surface and the surfaces of the groove therein; and
said second layer being applied in juxtaposition with said first layer.
13. Method as in claim 12, wherein said first layer is applied to substantially all exposed surfaces of said substrate disk.
14. Method as in claim 12, wherein:
said second layer comprises tungsten; and
said step of applying comprises chemical vapor deposition.
15. Method as in claim 10, wherein:
said groove is provided so as to be substantially quadrilateral in a cross-section taken parallel to said axis; and
said coating is applied so as to substantially fill said groove. 16. Method as in claim 15, wherein said quadrilateral comprises a rectangle.
17. Method as in claim 15, wherein said coating is applied in a first, substantially non-x-ray-emissive layer and a second, x-ray emissive layer:
said first layer being selectively applied within the groove in juxtaposition with the surfaces thereof, so that upon application thereof, the opening of said groove is narrower than the base thereof; and
said second layer being applied so that at least a portion thereof is within said groove in juxtaposition with said first layer.
18. Method as in claim 17, wherein said first layer is applied to substantially all surfaces of said substrate disk.

Claims (18)

1. The method of fabricating a composite anode for a rotating anode x-ray tube, comprising the steps of: providing a substrate disk of carbon, said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; forming, in the sloped region of said upper surface, at least one substantially annular groove; and applying to said grooved substrate disk a coating comprising: a first layer in juxtaposition with substantially all exposed surfaces of said substrate disk, said first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide, and zirconium carbide; and a second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
2. The method of fabricating a composite anode for a rotating-anode x-ray tube, comprising the steps of: providing a substrate disk of carbon, said disk having an axis, a substantially frusto-conical upper surface and a lower surface, said upper and lower surface each being substantially symmetric about said axis; scoring at least a portion of the sloped region of said upper surface; applying to at least a part of said scored, sloped region, a coating, said coating comprising: a first layer comprising a material selected from the group consisting of niobium carbide, tantalum carbide, titanium carbide and zirconium carbide, said first layer being applied in juxtaposition with said scored, sloped region, at least a portion of said first layer caused to extend into said scoring; and a second layer in juxtaposition with said first layer, said second layer comprising a material having the ability to emit x-rays in response to electron bombardment.
3. Method as in claim 2 wherein said step of scoring comprises forming at least one substantially annular groove.
4. The method of fabricating a composite anode for a rotating-anode x-ray tube, comprising the steps of: providing a substrate disk of a first refractory material, said disk having an axis, a substantially frusto-conical upper surface and a lower surface; said upper and lower surface, each being substantially symmetric about said axis; scoring at least a portion of the sloped region of said upper surface; and applying to at least a part of said scored, sloped region, a coating comprising a second material differing from said first material, said second material having the ability to emit x-rays in response to electron bombardment, at least a portion of said coating caused to extend into said scoring.
4. THE METHOD OF FABRICATING A COMPOSITE ANODE FOR A ROTATING-ANODE X-RAY TUBE, COMPRISING THE STEPS OF: PROVIDING A SUBSTRATE DISK OF A FIRST REFRACTORY MATERIAL, SAID DISK HAVING AN AXIS, A SUBSTANTIALLY FRUSTO-CONICAL UPPER SURFACE AND A LOWER SURFACE; SAID UPPE AND LOWER SURFACE, EACH BEING SUBSTANTIALLY SUMMETRIC ABOUT SAID AXIS; SCORING AT LEAST A PORTION OF THE SLOPED REGION OF SAID UPPER SURFACE; AND APPLYING TO AT LEAST A PART OF SAID SCORED, SLOPED REGION, A COATING COMPRISING A SECOND MATERIAL DIFFERING FROM SAID FIRST MATERIAL, SAID SECOND MATERIAL HAVING THE ABILITY TO EMIT X-RAYS IN RESPONSE TO ELECTRON BOMBARDMENT, AT LEAST A PORTION OF SAID COATING CAUSED TO EXTEND INTO SAID SCORING.
5. Method as in claim 4 wherein said first refractory material is non-metallic.
6. Method as in claim 4, wherein said step of scoring comprises forming at least one groove in substantially spiral fashion with respect to said axis.
7. Method as in claim 4, wherein said coating is applied to substantially all exposed surfaces of said substrate disk.
8. Method as in claim 7, wherein said coating comprIses a material selected from the group consisting of tungsten and alloys of tungsten and rhenium.
9. Method as in claim 8, wherein said coating comprises tungsten; said step of applying comprises chemical vapor deposition.
10. Method as in claim 4, wherein said step of scoring comprises forming at least one substantially annular groove.
11. Method as in claim 10, wherein a plurality of annular grooves is formed.
12. Method as in claim 10, wherein said coating is applied in a first, substantially non-x-ray-emissive layer and a second, x-ray emissive layer: said first layer being applied in juxtaposition with said grooved, sloped surface and the surfaces of the groove therein; and said second layer being applied in juxtaposition with said first layer.
13. Method as in claim 12, wherein said first layer is applied to substantially all exposed surfaces of said substrate disk.
14. Method as in claim 12, wherein: said second layer comprises tungsten; and said step of applying comprises chemical vapor deposition.
15. Method as in claim 10, wherein: said groove is provided so as to be substantially quadrilateral in a cross-section taken parallel to said axis; and said coating is applied so as to substantially fill said groove.
16. Method as in claim 15, wherein said quadrilateral comprises a rectangle.
17. Method as in claim 15, wherein said coating is applied in a first, substantially non-x-ray-emissive layer and a second, x-ray emissive layer: said first layer being selectively applied within the groove in juxtaposition with the surfaces thereof, so that upon application thereof, the opening of said groove is narrower than the base thereof; and said second layer being applied so that at least a portion thereof is within said groove in juxtaposition with said first layer.
US236898A 1972-03-22 1972-03-22 Method of fabrication of composite anode for rotating-anode x-ray tubes Expired - Lifetime US3887723A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US236898A US3887723A (en) 1972-03-22 1972-03-22 Method of fabrication of composite anode for rotating-anode x-ray tubes
US00314418A US3819971A (en) 1972-03-22 1972-12-12 Improved composite anode for rotating-anode x-ray tubes thereof
DE2313674A DE2313674A1 (en) 1972-03-22 1973-03-20 COMPOSITE ANODE FOR X-RAY TUBES WITH ROTATING ANODE AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US236898A US3887723A (en) 1972-03-22 1972-03-22 Method of fabrication of composite anode for rotating-anode x-ray tubes

Publications (1)

Publication Number Publication Date
US3887723A true US3887723A (en) 1975-06-03

Family

ID=22891453

Family Applications (1)

Application Number Title Priority Date Filing Date
US236898A Expired - Lifetime US3887723A (en) 1972-03-22 1972-03-22 Method of fabrication of composite anode for rotating-anode x-ray tubes

Country Status (2)

Country Link
US (1) US3887723A (en)
DE (1) DE2313674A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394953A (en) * 1981-03-12 1983-07-26 Schwarzkopf Development Corporation Method of joining individual parts of an X-ray anode, in particular of a rotating anode
DE4132118C1 (en) * 1991-09-26 1992-10-22 Siemens Ag, 8000 Muenchen, De Anode for X=ray tube - comprises graphite body brazed to molybdenum@-tungsten@ alloy target having iron@-tungsten@ alloy coating
US5693363A (en) * 1994-10-28 1997-12-02 Shimadzu Corporation Method for producing an anode for an X-ray tube using chemical vapor deposition
DE19626094C2 (en) * 1996-05-02 2000-10-19 Siemens Ag Anode body for an X-ray tube
US6451157B1 (en) * 1999-09-23 2002-09-17 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US20050226387A1 (en) * 2004-04-08 2005-10-13 General Electric Company Apparatus and method for light weight high performance target
US20070207338A1 (en) * 2006-03-01 2007-09-06 Plasma Processes, Inc. X-ray target and method for manufacturing same
AT506128A3 (en) * 2007-11-27 2011-12-15 Gen Electric ASSEMBLY OF AN X-RAY ARGET AND METHOD FOR THE PRODUCTION THEREOF
US20130308754A1 (en) * 2012-05-15 2013-11-21 Canon Kabushiki Kaisha Radiation generating target, radiation generating tube, radiation generating apparatus, and radiation imaging system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618235C3 (en) * 1976-04-26 1983-01-13 Siemens AG, 1000 Berlin und 8000 München X-ray tube rotating anode

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1463979A (en) * 1922-10-07 1923-08-07 Robert C Stubbs Paving and process of paving streets and the like
US2822301A (en) * 1952-06-03 1958-02-04 Continental Can Co Vacuum metallizing and apparatus therefor
US2863083A (en) * 1956-03-30 1958-12-02 Radiologie Cie Gle X-ray genenrator tubes
US3024522A (en) * 1959-07-24 1962-03-13 Gen Electric Rhenium bonded composite material and method
US3033008A (en) * 1960-08-16 1962-05-08 Gen Motors Corp Patterned and coated ice tray
US3136907A (en) * 1961-01-05 1964-06-09 Plansee Metallwerk Anticathodes for X-ray tubes
US3397338A (en) * 1964-02-26 1968-08-13 Siemens Ag Rotary anode plate for X-ray tubes
US3539859A (en) * 1956-03-30 1970-11-10 Radiologie Cie Gle X-ray generator tube with graphite rotating anode
US3610984A (en) * 1967-12-28 1971-10-05 Tokyo Shibaura Electric Co Rotating-anode x-ray tube with multiple focal areas
US3642522A (en) * 1969-07-15 1972-02-15 Suisse Horlogerie Rech Lab Method for producing hard coatings on a surface
US3649355A (en) * 1968-08-12 1972-03-14 Schwarzopf Dev Corp Process for production of rotary anodes for roentgen tubes
US3697798A (en) * 1970-03-25 1972-10-10 Schwarzkopf Dev Co Rotating x-ray target
US3751702A (en) * 1969-07-23 1973-08-07 Siemens Ag Rotating anode x-ray tube

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1463979A (en) * 1922-10-07 1923-08-07 Robert C Stubbs Paving and process of paving streets and the like
US2822301A (en) * 1952-06-03 1958-02-04 Continental Can Co Vacuum metallizing and apparatus therefor
US3539859A (en) * 1956-03-30 1970-11-10 Radiologie Cie Gle X-ray generator tube with graphite rotating anode
US2863083A (en) * 1956-03-30 1958-12-02 Radiologie Cie Gle X-ray genenrator tubes
US3024522A (en) * 1959-07-24 1962-03-13 Gen Electric Rhenium bonded composite material and method
US3033008A (en) * 1960-08-16 1962-05-08 Gen Motors Corp Patterned and coated ice tray
US3136907A (en) * 1961-01-05 1964-06-09 Plansee Metallwerk Anticathodes for X-ray tubes
US3397338A (en) * 1964-02-26 1968-08-13 Siemens Ag Rotary anode plate for X-ray tubes
US3610984A (en) * 1967-12-28 1971-10-05 Tokyo Shibaura Electric Co Rotating-anode x-ray tube with multiple focal areas
US3649355A (en) * 1968-08-12 1972-03-14 Schwarzopf Dev Corp Process for production of rotary anodes for roentgen tubes
US3642522A (en) * 1969-07-15 1972-02-15 Suisse Horlogerie Rech Lab Method for producing hard coatings on a surface
US3751702A (en) * 1969-07-23 1973-08-07 Siemens Ag Rotating anode x-ray tube
US3697798A (en) * 1970-03-25 1972-10-10 Schwarzkopf Dev Co Rotating x-ray target

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394953A (en) * 1981-03-12 1983-07-26 Schwarzkopf Development Corporation Method of joining individual parts of an X-ray anode, in particular of a rotating anode
DE4132118C1 (en) * 1991-09-26 1992-10-22 Siemens Ag, 8000 Muenchen, De Anode for X=ray tube - comprises graphite body brazed to molybdenum@-tungsten@ alloy target having iron@-tungsten@ alloy coating
US5693363A (en) * 1994-10-28 1997-12-02 Shimadzu Corporation Method for producing an anode for an X-ray tube using chemical vapor deposition
DE19626094C2 (en) * 1996-05-02 2000-10-19 Siemens Ag Anode body for an X-ray tube
US6451157B1 (en) * 1999-09-23 2002-09-17 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US20050226387A1 (en) * 2004-04-08 2005-10-13 General Electric Company Apparatus and method for light weight high performance target
US7194066B2 (en) * 2004-04-08 2007-03-20 General Electric Company Apparatus and method for light weight high performance target
US20070207338A1 (en) * 2006-03-01 2007-09-06 Plasma Processes, Inc. X-ray target and method for manufacturing same
AT506128A3 (en) * 2007-11-27 2011-12-15 Gen Electric ASSEMBLY OF AN X-RAY ARGET AND METHOD FOR THE PRODUCTION THEREOF
AT12794U1 (en) * 2007-11-27 2012-11-15 Gen Electric Assembly of an X-ray tube target and method for its production
US20130308754A1 (en) * 2012-05-15 2013-11-21 Canon Kabushiki Kaisha Radiation generating target, radiation generating tube, radiation generating apparatus, and radiation imaging system

Also Published As

Publication number Publication date
DE2313674A1 (en) 1973-09-27

Similar Documents

Publication Publication Date Title
US3819971A (en) Improved composite anode for rotating-anode x-ray tubes thereof
CN102257591B (en) Attachment of a high-z focal track layer to a carbon-carbon composite substrate serving as a rotary anode target
JP3181604B2 (en) X-ray target with high Z particles embedded in matrix
US3887723A (en) Method of fabrication of composite anode for rotating-anode x-ray tubes
JP2599836B2 (en) X-ray tube target
US2863083A (en) X-ray genenrator tubes
US8509386B2 (en) X-ray target and method of making same
US6707883B1 (en) X-ray tube targets made with high-strength oxide-dispersion strengthened molybdenum alloy
US3710170A (en) X-ray tube with rotary anodes
US4991194A (en) Rotating anode for X-ray tube
US5148463A (en) Adherent focal track structures for X-ray target anodes having diffusion barrier film therein and method of preparation thereof
US4958364A (en) Rotating anode of composite material for X-ray tubes
US5122422A (en) Composite body made of graphite and high-melting metal
US5875228A (en) Lightweight rotating anode for X-ray tube
US5204891A (en) Focal track structures for X-ray anodes and method of preparation thereof
US6430264B1 (en) Rotary anode for an x-ray tube and method of manufacture thereof
US11469071B2 (en) Rotary anode for an X-ray source
US5943389A (en) X-ray tube rotating anode
US4574388A (en) Core for molybdenum alloy x-ray anode substrate
US4573185A (en) X-Ray tube with low off-focal spot radiation
US4799250A (en) Rotating anode with graphite for X-ray tube
US6301333B1 (en) Process for coating amorphous carbon coating on to an x-ray target
US4394953A (en) Method of joining individual parts of an X-ray anode, in particular of a rotating anode
US5138645A (en) Anode for x-ray tubes
US3731128A (en) X-ray tube with rotary anodes