US3881977A - Treatment of graphite fibers - Google Patents

Treatment of graphite fibers Download PDF

Info

Publication number
US3881977A
US3881977A US306648A US30664872A US3881977A US 3881977 A US3881977 A US 3881977A US 306648 A US306648 A US 306648A US 30664872 A US30664872 A US 30664872A US 3881977 A US3881977 A US 3881977A
Authority
US
United States
Prior art keywords
yarn
thermoplastic polymer
coated
range
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US306648A
Inventor
Richard J Dauksys
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Priority to US306648A priority Critical patent/US3881977A/en
Application granted granted Critical
Publication of US3881977A publication Critical patent/US3881977A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S273/00Amusement devices: games
    • Y10S273/23High modulus filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • This invention relates to the treatment of high modulus graphite fibers. In one aspect it relates to composites which include the treated fibers. In another aspect it relates to a method for fabricating composites.
  • Graphite fibers and yarns derived from a variety of precursors are described in the literature.
  • precursors that have been used include fibers from cellulosic materials, such as cotton, flax, sisal, and viscose rayon, acrylonitrile polymers, polybenzimidazoles, polyamides, polyimides and the like.
  • the graphite fibers are often prepared by initially heating the precursory fibers in an oxidizing atmosphere at a temperature of about 450 to 575F followed by carbonization and graphitization steps carried out in an inert atmosphere at elevated temperature. While the properties of the graphite fibers depend to a substantial degree upon the particular precursory fiber employed, they generally have a high tensile strength and high modulus of elasticity.
  • Another object of the invention is to provide a method for treating graphite fibers so as to improve their adherence to thermosetting resins.
  • a further object of the invention is to provide composites having an improved interlaminar shear strength.
  • Still another object of the invention is to provide a method for fabricating composites having an improved interlaminar shear strength.
  • the present invention resides in a method for treating graphite fibers so as to improve their adherence to thermosetting resins.
  • the method for improving the fiber bonding characteristics com prises the steps of heating the graphite fibers, generally in the form of a yarn, under oxidizing conditions; coating the heated fibers with a solution of a thermoplastic polymer; and heating the coated fibers so as to evaporate solvent therefrom.
  • the fibers, treated as described above, are immersed in a solution of a thrmosetting resin so as to form prepreged fibers which are then placed in a form or shape appropriate for their intended use.
  • the fibers can be cut to a desired length or they can be wound on a mandrel preparatory to forming a sheet or tape.
  • the resulting B- staged material is arranged in a mold or press wherein it is heated under pressure to affect a cure. Thereafter, a cured product having a desired configuration and structure, e.g., a laminate, is recovered.
  • a graphite fiber or yarn 10 is pulled from take-off reel 11. Any graphite fiber or yarn, such as those mentioned hereinbefore, can be employed. From reel 11 the graphite yarn passes under roller 12 and over roller 13 which are so positioned that the yarn moves substantially in a horizontal plane. While moving from roller 12 to roller 13, the yarn passes through an oxidation zone which, as illustrated, is an oxidizing flame (nonluminous) 14 emanating from flared nozzle 16 of gas burner 17. Any hydrocarbon gas mixed with air can be used to produce the oxidizing flame, but it is generally preferred to use propane or butane or mixtures thereof.
  • the graphite yarn In passing through the oxidation zone, the graphite yarn is subjected to a temperature ranging from about l000 to 4500F.
  • the speed at which the yarn moves is controlled so that it is present in the oxidation zone and thereby exposed to the high temperature for a period ranging from about 0.10 to 12 seconds. It is to be understood that the higher the temperature the shorter the time period and vice versa.
  • an oxidizing flame it is within the scope of the invention to pass the yarn through an induction furnace susceptor in an oxygen-containing atmosphere such as air.
  • the length of the susceptor and its temperature are such that the yarn is maintained at a temperature in the above-mentioned range for the indicated period of time.
  • Another type of heating means that can be employed, particularly at lower temperatures, is a tube furnace.
  • thermoplastic polymers in general can be employed, it is usually preferred to use a polyhydroxy ether, polyphenylene oxide, polysulfone, polyarylsulfone, polycarbonate or polyamide.
  • Suitable solvents for such polymers are well known in the art and include acetone, methyl ethyl ketone, Carbitol (diethylene glycol ethyl ether), butyl Carbitol (diethylene glycol butyl ether), Cellosolve (glycol ethyl ether), Cellosolve acetate (hydroxyethyl acetate), butyl Cellosolve (glycol butyl ether), dimethylformamide, dimethylsulfoxide, dimethylacetamide, dioxane, ethoxy triglycol, mesityl oxide, tetrahydrofuran, benzene, toluene, xylenes, butanol, tetrachloroethane, methylene chloride, ethylene chloride, and the like.
  • the solution in tank 21 contains about 0.5 to 25, preferably 0.75 to 12, weight percent of the thermoplastic polymer, based on the total weight of the solution.
  • the amount of polymer coated on the graphite yarn depends upon the polymer concentration of the bath and the period of time during which the yarn is immersed in the bath.
  • the yarn-solution contact time in turn depends upon the speed at which the yarn moves through the bath and the length of the path that the yarn travels in the bath. Since the speed at which the yarn moves is determined by the time during which it is in contact with oxidizing flame 14, in the final analysis the amount of polymer coating is controlled by varying the polymer concentration and the length of the path of travel in the bath. In general, these variables are so controlled that the amount of thermoplastic polymer coating on the graphite yarn is in the range of about 5 to 30 percent by weight of the yarn.
  • the yarn After leaving tank 21, the yarn is passed through a heating zone wherein the solvent is evaporated.
  • an infrared lamp 22 positioned a short distance above the coated fiber, provides a source of heat for the heating zone.
  • other heating means e.g., a hot air gun
  • the temperature of the heating zone is sufficient to cause evaporation of solvent contained in the thermoplastic polymer coating, and will necessarily vary with the particular solvent used in preparing the polymeric coating bath in tank 21. However, the temperature is usually no greater than about 180F.
  • the heating zone may be omitted, the solvent being permitted to evaporate under ambient conditions.
  • thermosetting resin which will subsequently function as the matrix in fabricating composites. Any suitable thermosetting resin, of which there are many described in the literature, can be utilized.
  • suitable resins or polymers include polyepoxides, such as the condensation products of bisphenol A (4,4-isopropylidenephenol) and epiehlorohydrin; phenolic resins prepared by reaction of phenol and formaldehyde; polyimide resins formed by the condensation of an aromatic tetrabasic acid anhydride and an aromatic diamine; polybenzimidazole resins formed by the reaction of an aromatic tetraamine with an aromatic diacid; pyrrone resins formed by the condensation of an aromatic dianhydride and an aromatic tetraamine; and the like.
  • polyepoxides such as the condensation products of bisphenol A (4,4-isopropylidenephenol) and epiehlorohydrin
  • phenolic resins prepared by reaction of phenol and formaldehyde polyimide resins formed by the condensation of an aromatic tetrabasic acid anhydride and an aromatic diamine
  • polybenzimidazole resins formed by the reaction of an aromatic tetraamine
  • Solvents for a particular thermosetting resin include alcohols such as propanol and butanol, ketones such as acetone and methyl ethyl ketone, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, dimethylaeetamide, and the like.
  • the solution in tank 24 contains in the range of about 30 to 80 percent by weight of the thermosetting resin.
  • the coated yarn is guided through tank 24 containing the thermosetting resin solution by means of rollers 26 and 27. In its passage through the solution, the coated yarn picks up in the range of about 25 to 60 weight percent of the resin, based upon the weight of the coated yarn.
  • the amount of thermosetting resin pick up is controlled by varying the resin concentration and the length of the path of travel in the resin solution. Thus, these variables are so adjusted that the amount of resin deposited on the coated yarn is in the aforementioned range.
  • the graphite yarn, coated with successive layers of a thermoplastic polymer and a thermosetting resin, is wound onto take-up" mandrel or drum 28.
  • the yarn is wound on the mandrel under tension with filaments parallel to each other and in a single layer.
  • the mandrel is rotated at a speed such that the yarn will move through flame 14 at a desired rate.
  • solvent is allowed to evaporate from the prepreg yarn. This can be accomplished by exposing the yarn to the atmosphere at room temperature for an extended period of time, e.g., for about 8 to 24 hours, or until the yarn is slightly tacky to non-tacky.
  • the prepreg yarn is usually heated at a temperature ranging from about to F for a period of about l5 minutes to 1 hour.
  • the prepreg yarn is slit from the mandrel as a sheet.
  • the sheet can then, if desired, be cut to form a plurality of plies of tape, or it can be separated into multiple strands.
  • the prepreg yarn in the form of tape or strands is then cured under pressure to form a composite of a desired shape.
  • a plurality of plies of tape are stacked in a press or mold and heated to a temperature in the range of about to 450F under a pressure of about 100 to I000 psi for a period of about 1 to 8 hours. During the curing operation any residual solvent that may be present is released from the press or mold.
  • the laminate After cooling, generally while under pressure, the laminate is removed from the press or mold. The edges of the laminate are then trimmed so as to provide a smooth uniform product. Subsequent to the curing operation, it is often desirable to postcure the laminate by heating it in the absence of oxygen to an elevated temperature over an extended period of time, e.g., to a temperature ranging from 300 to 750F over a period of from about 12 to 72 hours.
  • the postcuring can be conducted in a furnace in the presence of an inert gas, such as nitrogen, argon or helium. It is to be understood that the actual curing procedure to be followed will depend upon the particular thermosetting resin employed. In many instances a supplier of resins recommends curing conditions that should be used.
  • a graphite yarn derived from a cellulosic precursor was pulled through the nonluminous or oxidizing portion of a propane-generated flame.
  • the graphite yarn was a product of Union Carbide sold under the trademark Thornel 50.
  • the yarn was sized with polyvinyl alcohol and had a modulus of elasticity of 50 X l0 psi.
  • the temperature of the flame was about 4000F, and the width of the flame was about 1 inch.
  • the yarn was pulled at the rate of 4 feet per minute so that the yarn was in contact with the flame for about 1.25 seconds. Thereafter, the heated yarn was passed into and through a bath of a solution of a thermoplastic polymer.
  • thermosetting resin utilized was an epoxy resin, a product of 10 Union Carbide identified by the symbol ERL 2256, composed of a mixture of a diglycidylether of biphenol A diluted with 37.5 weight percent bis 2,3-epoxycyclopentyl ether and containing as the hardener a mixture of m-phenylene diamine and dimethylaniline.
  • volume yarn was determined by a resin dissolution technique devised by Kuhbander "Determining Fiber Content of Graphite Yarn-Epoxy Resin Composites", University of Dayton Technical Memorandum No. UDRI-TM-66-103 (Jan. 1966)
  • Flexural modulus and strength and interlaminar shear strength were determined, using the procedures of the Federal Test Specification L-P i06b as a general guide. Flexural specimens were tested with a span to depth ratio of 20 to 1 Inter-- laminar shear specimens were tested at a span to depth ratio of t to 1.
  • n has a value such that the polymer has a molecular weight of about 35,000.
  • EXAMPLE ll prepared with untreated high modulus graphite fibers. Modifications of the present invention will become apparent to those skilled in the art after considering the Another series of runs was carried out as described in Example 1 except that the graphite yarn used (Thornel 50) was water sized. The compositions of the ther F FP Z- Such t f clearly come moplastic solutions and the results of the runs are set e an Scope 0 t e mvemlon' forth below in Table II. 1 clam TABLE II Thermoplastic Flexural Flexural lnterlaminar Run Polymer Volume Modulus. Strength Shear Strength.
  • EXAMPLE Ill 1. A method for treating graphite yarn which com- Two runs were carried out as described in Example prises heating yam air at a tefnperatufe in the 1 except that the graphite yarn used (Thornel 80) had range of 1000 to 4500 F for a Penod rangmg from a modulus of elasticity of 80 X r; psi The yam was about 0.!0 t0 l2 seconds; passing the heated yarn Sized with polyvinyl acohol. The composition of the through a solution ofa thermoplastic polymer, thereby thermoplastic solution and the results of the runs are coming the yam with the polymer; and evaporating recorded below in Table In 40 vent from the coating on the graphite yarn.
  • EXAMPLE IV 2. A method according to claim 1 in which the yarn is passed through an oxidizing gas flame.
  • Th h d according to claim 5 in which the to fabricate composites having interlaminar shear thermoplastic polymer is selected from the group constrengths that are from 2 to 3 times greater than those sisting of a polyhydroxy ether, a polyphenylene oxide,
  • a polysulfone a polyarylsulfone, a polycarbonate and a polyamide.
  • a method for fabricating a composite reinforced with graphite yarn which comprises heating the yarn in l000at a temperature in the range of 100 to 4500F for a period ranging from about 0.10 to 12 seconds; passing the heated yarn through a solution of a thermoplastic polymer, thereby coating the yarn with the polymer; evaporating solvent from the coating on the graphite yarn; passing the coated yarn through a solution of a thermosetting resin; thereby coating the thermoplastic polymer coated yarn with thermosetting CH H I 1 CH OH resin; evaporating solvent from the coated yarn; and molding portions of the coated yarn under heat and pressure to form a composite.
  • n has a value such that the polymer has a molecular weight of about 35,000; the thermosetting resin is an epoxy resin; and stacked plies of the coated yarn are molded at a temperature in the range of about 175 to 450F under a pressure of about to 1000 psi for a period of about I to 8 hours.
  • thermosplastic polymer is poIy(2,6-diphenyl-l ,4- phenylene oxide);
  • thermosetting resin is an epoxy resin;
  • stacked plies of the coated yarn are molded at a temperature in the range of about to 450F under a pressure of about 100 to 1000 psi for a period of about 1 to 8 hours.

Abstract

A method of fabricating a composite reinforced with graphite yarn that comprises heating the yarn in an oxidizing atmosphere and then coating the yarn with a thermoplastic polymer. Thereafter, the treated yarn is coated with a thermosetting resin prior to fabrication of composites having greatly enhanced interlaminar shear strength.

Description

O Umted States Patent [191 [111 3,881,977 Dauksys 1 May 6, 1975 [54] TREATMENT OF GRAPHITE FIBERS 3,687,701 8/1972 Reinhart 117/72 X Inventor: a d J a Sys, Benbrook, 3,720,536 3/1973 Scola et a1. 117/228 X Ohio [73] Assignee: United States of America as Primary EXami'IerBemafd Pianalto represented by h Secretary f the Attorney, Agent, or FirmCedric H. Kuhn Air Force, Washington, DC.
{22] Filed: Nov. 15, 1972 [52] US. Cl. 156/242; 117/46; 117/47 H; 117/72; 117/228; 156/180; 264/137 [51] Int. Cl. B29g 3/00 [58] Field of Search 117/228, 47 A, 72, 46; 156/242, 180; 264/137 [56] References Cited UNITED STATES PATENTS 3,476,703 11/1969 Wadsworth et a1. 117/161 [57] ABSTRACT A method of fabricating a composite reinforced with graphite yarn that comprises heating the yarn in an oxidizing atmosphere and then coating the yarn with a thermoplastic polymer. Thereafter, the treated yarn is coated with a thermosetting resin prior to fabrication of composites having greatly enhanced interlaminar shear strength.
11 Claims, 1 Drawing Figure PATENTEBMAY' ems 3.88 1.977
TREATMENT OF GRAPHITE FIBERS FIELD OF THE INVENTION This invention relates to the treatment of high modulus graphite fibers. In one aspect it relates to composites which include the treated fibers. In another aspect it relates to a method for fabricating composites.
BACKGROUND OF THE INVENTION Graphite fibers and yarns derived from a variety of precursors are described in the literature. Examples of precursors that have been used include fibers from cellulosic materials, such as cotton, flax, sisal, and viscose rayon, acrylonitrile polymers, polybenzimidazoles, polyamides, polyimides and the like. The graphite fibers are often prepared by initially heating the precursory fibers in an oxidizing atmosphere at a temperature of about 450 to 575F followed by carbonization and graphitization steps carried out in an inert atmosphere at elevated temperature. While the properties of the graphite fibers depend to a substantial degree upon the particular precursory fiber employed, they generally have a high tensile strength and high modulus of elasticity.
The abovementioned properties of graphite fibers render them particularly suitable for use as reinforcing materials in the fabrication of composites. Composites prepared by incorporating reinforcing materials in various matrices, particularly thermosetting resins, have in recent years been utilized in many applications, especially in the construction of aerospace components, such as the leading edges of high speed aircraft, nose cones, rocket engine components, and the like. While graphite fibers possessing high tensile strength and high modulus properties are important in providing satisfactory composites, it is equally important that a good bond exists between the fibers and matrix. Otherwise, the composite will have a low interlaminar shear strength that could result in composite failure.
It is an object of this invention, therefore, to provide graphite fibers which possess improved bonding characteristics when incorporated in thermosetting resins.
Another object of the invention is to provide a method for treating graphite fibers so as to improve their adherence to thermosetting resins.
A further object of the invention is to provide composites having an improved interlaminar shear strength.
Still another object of the invention is to provide a method for fabricating composites having an improved interlaminar shear strength.
Other objects and advantages of the invention will become apparent to those skilled in the art upon consideration of the accompanying disclosure and the drawing which is a schematic illustration of apparatus that can be used in practicing the method of this invention.
SUMMARY OF THE INVENTION Broadly speaking, the present invention resides in a method for treating graphite fibers so as to improve their adherence to thermosetting resins. The method for improving the fiber bonding characteristics com prises the steps of heating the graphite fibers, generally in the form of a yarn, under oxidizing conditions; coating the heated fibers with a solution of a thermoplastic polymer; and heating the coated fibers so as to evaporate solvent therefrom.
In a more specific embodiment of the invention the fibers, treated as described above, are immersed in a solution of a thrmosetting resin so as to form prepreged fibers which are then placed in a form or shape appropriate for their intended use. For example, the fibers can be cut to a desired length or they can be wound on a mandrel preparatory to forming a sheet or tape. After precuring the thermosetting resin, the resulting B- staged material is arranged in a mold or press wherein it is heated under pressure to affect a cure. Thereafter, a cured product having a desired configuration and structure, e.g., a laminate, is recovered.
Reference is now made to the drawing which illustrates schematically apparatus suitable for carrying out the method of this invention. As shown in the drawing, a graphite fiber or yarn 10 is pulled from take-off reel 11. Any graphite fiber or yarn, such as those mentioned hereinbefore, can be employed. From reel 11 the graphite yarn passes under roller 12 and over roller 13 which are so positioned that the yarn moves substantially in a horizontal plane. While moving from roller 12 to roller 13, the yarn passes through an oxidation zone which, as illustrated, is an oxidizing flame (nonluminous) 14 emanating from flared nozzle 16 of gas burner 17. Any hydrocarbon gas mixed with air can be used to produce the oxidizing flame, but it is generally preferred to use propane or butane or mixtures thereof. In passing through the oxidation zone, the graphite yarn is subjected to a temperature ranging from about l000 to 4500F. The speed at which the yarn moves is controlled so that it is present in the oxidation zone and thereby exposed to the high temperature for a period ranging from about 0.10 to 12 seconds. It is to be understood that the higher the temperature the shorter the time period and vice versa. Although it is generally preferred to utilize an oxidizing flame, it is within the scope of the invention to pass the yarn through an induction furnace susceptor in an oxygen-containing atmosphere such as air. When utilizing such a furnace, the length of the susceptor and its temperature are such that the yarn is maintained at a temperature in the above-mentioned range for the indicated period of time. Another type of heating means that can be employed, particularly at lower temperatures, is a tube furnace.
After passing over roller 13, the thermally treated yarn is guided by rollers 18 and 19 through tank 21 containing a bath of a solution of a thermoplastic polymer. While thermoplastic polymers in general can be employed, it is usually preferred to use a polyhydroxy ether, polyphenylene oxide, polysulfone, polyarylsulfone, polycarbonate or polyamide. Suitable solvents for such polymers are well known in the art and include acetone, methyl ethyl ketone, Carbitol (diethylene glycol ethyl ether), butyl Carbitol (diethylene glycol butyl ether), Cellosolve (glycol ethyl ether), Cellosolve acetate (hydroxyethyl acetate), butyl Cellosolve (glycol butyl ether), dimethylformamide, dimethylsulfoxide, dimethylacetamide, dioxane, ethoxy triglycol, mesityl oxide, tetrahydrofuran, benzene, toluene, xylenes, butanol, tetrachloroethane, methylene chloride, ethylene chloride, and the like.
The solution in tank 21 contains about 0.5 to 25, preferably 0.75 to 12, weight percent of the thermoplastic polymer, based on the total weight of the solution. The amount of polymer coated on the graphite yarn depends upon the polymer concentration of the bath and the period of time during which the yarn is immersed in the bath. The yarn-solution contact time in turn depends upon the speed at which the yarn moves through the bath and the length of the path that the yarn travels in the bath. Since the speed at which the yarn moves is determined by the time during which it is in contact with oxidizing flame 14, in the final analysis the amount of polymer coating is controlled by varying the polymer concentration and the length of the path of travel in the bath. In general, these variables are so controlled that the amount of thermoplastic polymer coating on the graphite yarn is in the range of about 5 to 30 percent by weight of the yarn.
After leaving tank 21, the yarn is passed through a heating zone wherein the solvent is evaporated. As depicted in the drawing, an infrared lamp 22, positioned a short distance above the coated fiber, provides a source of heat for the heating zone. However, it will be apparent to those skilled in the art that other heating means, e.g., a hot air gun, can be utilized. The temperature of the heating zone is sufficient to cause evaporation of solvent contained in the thermoplastic polymer coating, and will necessarily vary with the particular solvent used in preparing the polymeric coating bath in tank 21. However, the temperature is usually no greater than about 180F. Furthermore, when using solvents having boiling points below room temperature, the heating zone may be omitted, the solvent being permitted to evaporate under ambient conditions.
After traveling through the heating zone, the graphite yarn, now coated with a dried thermoplastic polymer, passes over roller 23 into tank 24. Contained in tank 24 is a solution of a thermosetting resin which will subsequently function as the matrix in fabricating composites. Any suitable thermosetting resin, of which there are many described in the literature, can be utilized. Examples of such suitable resins or polymers include polyepoxides, such as the condensation products of bisphenol A (4,4-isopropylidenephenol) and epiehlorohydrin; phenolic resins prepared by reaction of phenol and formaldehyde; polyimide resins formed by the condensation of an aromatic tetrabasic acid anhydride and an aromatic diamine; polybenzimidazole resins formed by the reaction of an aromatic tetraamine with an aromatic diacid; pyrrone resins formed by the condensation of an aromatic dianhydride and an aromatic tetraamine; and the like. Solvents for a particular thermosetting resin are well known and include alcohols such as propanol and butanol, ketones such as acetone and methyl ethyl ketone, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, dimethylaeetamide, and the like. The solution in tank 24 contains in the range of about 30 to 80 percent by weight of the thermosetting resin.
The coated yarn is guided through tank 24 containing the thermosetting resin solution by means of rollers 26 and 27. In its passage through the solution, the coated yarn picks up in the range of about 25 to 60 weight percent of the resin, based upon the weight of the coated yarn. As in the case of the thermoplastic polymer coating operation, the amount of thermosetting resin pick up" is controlled by varying the resin concentration and the length of the path of travel in the resin solution. Thus, these variables are so adjusted that the amount of resin deposited on the coated yarn is in the aforementioned range.
After leaving tank 24, the graphite yarn, coated with successive layers of a thermoplastic polymer and a thermosetting resin, is wound onto take-up" mandrel or drum 28. The yarn is wound on the mandrel under tension with filaments parallel to each other and in a single layer. The mandrel is rotated at a speed such that the yarn will move through flame 14 at a desired rate. After completion of the winding operation, solvent is allowed to evaporate from the prepreg yarn. This can be accomplished by exposing the yarn to the atmosphere at room temperature for an extended period of time, e.g., for about 8 to 24 hours, or until the yarn is slightly tacky to non-tacky. It is also within the scope of the invention to heat the mandrel, as with an internal heater, so as to evaporate the solvent. When the drying method is used, the prepreg yarn is usually heated at a temperature ranging from about to F for a period of about l5 minutes to 1 hour.
Upon completion of the drying step, the prepreg yarn is slit from the mandrel as a sheet. The sheet can then, if desired, be cut to form a plurality of plies of tape, or it can be separated into multiple strands. The prepreg yarn in the form of tape or strands is then cured under pressure to form a composite of a desired shape. For example, in fabricating a laminate, a plurality of plies of tape are stacked in a press or mold and heated to a temperature in the range of about to 450F under a pressure of about 100 to I000 psi for a period of about 1 to 8 hours. During the curing operation any residual solvent that may be present is released from the press or mold. After cooling, generally while under pressure, the laminate is removed from the press or mold. The edges of the laminate are then trimmed so as to provide a smooth uniform product. Subsequent to the curing operation, it is often desirable to postcure the laminate by heating it in the absence of oxygen to an elevated temperature over an extended period of time, e.g., to a temperature ranging from 300 to 750F over a period of from about 12 to 72 hours. Thus, the postcuring can be conducted in a furnace in the presence of an inert gas, such as nitrogen, argon or helium. It is to be understood that the actual curing procedure to be followed will depend upon the particular thermosetting resin employed. In many instances a supplier of resins recommends curing conditions that should be used.
A more complete understanding of the invention can be obtained by referring to the following illustrative examples which are not intended, however, to be unduly limitative of the invention.
EXAMPLE I A series of runs was conducted in which a graphite yarn was treated in accordance with the method of this invention after which the treated yarn was coated with a thermosetting resin and used in the fabrication of laminates. Apparatus similar to that shown in the drawing was utilized in carrying out the runs.
In carrying out the runs, a graphite yarn derived from a cellulosic precursor was pulled through the nonluminous or oxidizing portion of a propane-generated flame. The graphite yarn was a product of Union Carbide sold under the trademark Thornel 50. The yarn was sized with polyvinyl alcohol and had a modulus of elasticity of 50 X l0 psi. The temperature of the flame was about 4000F, and the width of the flame was about 1 inch. The yarn was pulled at the rate of 4 feet per minute so that the yarn was in contact with the flame for about 1.25 seconds. Thereafter, the heated yarn was passed into and through a bath of a solution of a thermoplastic polymer. After emerging from the bath, the yarn coated with the thermoplastic polymer, was passed under an infrared lamp, thereby causing evaporation of solvent. The coated yarn was next pulled through a bath of a solution containing 60 weight percent of a thermosetting resin. The thermosetting resin utilized was an epoxy resin, a product of 10 Union Carbide identified by the symbol ERL 2256, composed of a mixture of a diglycidylether of biphenol A diluted with 37.5 weight percent bis 2,3-epoxycyclopentyl ether and containing as the hardener a mixture of m-phenylene diamine and dimethylaniline. Upon emergence from this bath, the yarn coated with successive layers of a thermoplastic polymer and the thermosetting resin was wound on a mandrel to form a monolayer of a prepreg tape.
After exposure overnight to the atmosphere at room temperature, solvent had evaporated, leaving a slightly tacky prepreg tape. The tape was then slit and stripped from the mandrel and cut into individual pieces corresponding to mold dimensions (2% X 2% inches). In each run l0 plies of the tape were stacked in a steel mold and molded according to the recommendations of the supplier of the thermosetting resin. Thus, the mold was first heated at l80F for 2 hours followed by heating at 300F for 4 hours. The mold was cooled to room temperature between the heating periods, and was maintained at a pressure of 100 psi during the period. The laminate was removed from the mold and tested to determine its flexural properties and interlaminar shear strength. Control runs were also carried out in which the graphite yarn was merely passed through the thermosetting resin solution prior to fabrication of laminates. The composition of the solutions of thermoplastic polymers and the results of the tests are shown 20 below in Table l.
} TABLE I Thermoplastic F1exural F1exural Interlarninar Run Polymer u) Modulus, Strgngth, ShearSStrengthy No. Solution 76 Yarn x10 ,psi x10 ,psi x10 psi 1 Control 66.1 19.8 110.7 3.8
2 Control 6 L? 20.6 110.2 3.8
polyhydrox ether (PI-[E in Cellosolve 6 1.5 19.3 127.1 7.1
t 0.80 wt PHE in Cellosolve acetate 64. 19.5 110.6 6.9
5 3. 5 wt 96 PHE in Cellosolve 6%.3 19.2 104.7 6.2
6 3.3 wt PHE in Cellosolve acetate 62.2 19.0 101 .6 6A
7 11. wt polyphe lene oxide (PPO t) in benzene 61.7 19.6 99.3 6.8
8 2.3 wt PPO in benzene 62.0 20.0 111.2 7.5
(1) Volume yarn was determined by a resin dissolution technique devised by Kuhbander "Determining Fiber Content of Graphite Yarn-Epoxy Resin Composites", University of Dayton Technical Memorandum No. UDRI-TM-66-103 (Jan. 1966) (2) Flexural modulus and strength and interlaminar shear strength were determined, using the procedures of the Federal Test Specification L-P i06b as a general guide. Flexural specimens were tested with a span to depth ratio of 20 to 1 Inter-- laminar shear specimens were tested at a span to depth ratio of t to 1.
(3) A product of Union Carbide having the following structure formula:
Table l Continued in which n has a value such that the polymer has a molecular weight of about 35,000.
(H) A product of General Electric designated as poly(2,6-dipheny1- 1,4-pheny1ene oxide).
EXAMPLE ll prepared with untreated high modulus graphite fibers. Modifications of the present invention will become apparent to those skilled in the art after considering the Another series of runs was carried out as described in Example 1 except that the graphite yarn used (Thornel 50) was water sized. The compositions of the ther F FP Z- Such t f clearly come moplastic solutions and the results of the runs are set e an Scope 0 t e mvemlon' forth below in Table II. 1 clam TABLE II Thermoplastic Flexural Flexural lnterlaminar Run Polymer Volume Modulus. Strength Shear Strength.
No. Solution Yarn X l 0*.psi X l DKpsi X l psi 9 Control 64.6 18.2 109.6 3.8 10 0.91 wt% PHE in Cellosolve 65.2 l9.6 100.1 5.0 l 2.3 wt PPO in benzene 57.0 18.5 90.7 7.7
EXAMPLE Ill 1. A method for treating graphite yarn which com- Two runs were carried out as described in Example prises heating yam air at a tefnperatufe in the 1 except that the graphite yarn used (Thornel 80) had range of 1000 to 4500 F for a Penod rangmg from a modulus of elasticity of 80 X r; psi The yam was about 0.!0 t0 l2 seconds; passing the heated yarn Sized with polyvinyl acohol. The composition of the through a solution ofa thermoplastic polymer, thereby thermoplastic solution and the results of the runs are coming the yam with the polymer; and evaporating recorded below in Table In 40 vent from the coating on the graphite yarn.
TABLE ll] Thermoplastic Flexural Flexural lnterlaminar Run Polymer Volume Modulus Strength Shear Strength.
No. Solution Yarn X l 0',psi X l 0,psi 0",psi
12 Control 60 28.0 125.0 2.8 l3 2 wt PHE In 37.5% Cellosolve acetate and 62.5% methyl ethyl ketone 59.3 28.7 [21.0 6.3
EXAMPLE IV 2. A method according to claim 1 in which the yarn is passed through an oxidizing gas flame.
3. The method according to claim 2 in which the gas flame is a propane-generated flame.
4. The method according to claim 1 in which the solution contains in the range of about 0.5 to 25 weight percent of thermoplastic polymer.
Other runs were carried out according to the procedure of this invention as described in Example 1 except that in certain runs the heating step was omitted and in other runs the step of applying the thermoplastic poly mer coating was omitted. The results obtained demonstrated that no beneficial effects resulted from the use of only one of the steps. In other words it was found The method according to claim 4 in which th that both of the steps are required in order to improve f tllermoplasnc p y coated on the g p the interlaminar shear strength of the composites. "F the range of about 5 to 30 Percent y From the data shown in the foregoing examples, it is weight of the seen that the method of this invention makes it possible 6, Th h d according to claim 5 in which the to fabricate composites having interlaminar shear thermoplastic polymer is selected from the group constrengths that are from 2 to 3 times greater than those sisting of a polyhydroxy ether, a polyphenylene oxide,
a polysulfone, a polyarylsulfone, a polycarbonate and a polyamide.
7. A method for fabricating a composite reinforced with graphite yarn which comprises heating the yarn in l000at a temperature in the range of 100 to 4500F for a period ranging from about 0.10 to 12 seconds; passing the heated yarn through a solution of a thermoplastic polymer, thereby coating the yarn with the polymer; evaporating solvent from the coating on the graphite yarn; passing the coated yarn through a solution of a thermosetting resin; thereby coating the thermoplastic polymer coated yarn with thermosetting CH H I 1 CH OH resin; evaporating solvent from the coated yarn; and molding portions of the coated yarn under heat and pressure to form a composite.
wherein n has a value such that the polymer has a molecular weight of about 35,000; the thermosetting resin is an epoxy resin; and stacked plies of the coated yarn are molded at a temperature in the range of about 175 to 450F under a pressure of about to 1000 psi for a period of about I to 8 hours.
11. The method according to claim 9 in which the thermosplastic polymer is poIy(2,6-diphenyl-l ,4- phenylene oxide); the thermosetting resin is an epoxy resin; stacked plies of the coated yarn are molded at a temperature in the range of about to 450F under a pressure of about 100 to 1000 psi for a period of about 1 to 8 hours.

Claims (11)

1. A method for treating graphite yarn which comprises heating the yarn in air at a temperature in the range of 1000* to 4500*F for a period ranging from about 0.10 to 12 seconds; passing the heated yarn through a sOlution of a thermoplastic polymer, thereby coating the yarn with the polymer; and evaporating solvent from the coating on the graphite yarn.
2. A method according to claim 1 in which the yarn is passed through an oxidizing gas flame.
3. The method according to claim 2 in which the gas flame is a propane-generated flame.
4. The method according to claim 1 in which the solution contains in the range of about 0.5 to 25 weight percent of thermoplastic polymer.
5. The method according to claim 4 in which the amount of thermoplastic polymer coated on the graphite yarn is in the range of about 5 to 30 percent by weight of the yarn.
6. The method according to claim 5 in which the thermoplastic polymer is selected from the group consisting of a polyhydroxy ether, a polyphenylene oxide, a polysulfone, a polyarylsulfone, a polycarbonate and a polyamide.
7. A METHOD FOR FABRICATING A COMPOSITE REINFORCED WITH GRAPHITE YARN WHICH COMPRISES HEATING THE YARN IN 1000* AT A TEMPERATURE IN THE RANGE OF 100* TO 4500*F FOR A PERIOD RANGING FROM ABOUT 0.10 TO 12 SECONDS; PASSING THE HEATED YARN THROUGH A SOLUTION OF A THERMOPLASTIC POLYMER, THEREBY COATING THE YARN WITH THE POLYMER; EVAPORATING SOLVENT FROM THE COATING ON THE GRAPHITE YARN; PASSING THE COATED YARN THROUGH A SOLUTION OF A THERMOSETTING RESIN; THEREBY COATING THE THERMOPLASTIC POLYMER COATED YARN WITH THERMOSETTING RESIN; EVAPORATING SOLVENT FROM THE COATED YARN; AND MOLDING PORTIONS OF THE COATED YARN UNDER HEAT AND PRESSURE TO FORM A COMPOSITE.
8. A method according to claim 7 in which the first mentioned solution contains in the range of about 0.5 to 25 weight percent of thermoplastic polymer; the amount of thermoplastic polymer coated on the graphite yarn is in the range of about 5 to 30 percent by weight of the yarn; the second mentioned solution contains in the range of about 30 to 80 weight percent of thermosetting resin; and the amount of thermosetting resin coated on the thermoplastic polymer coated yarn is in the range of about 25 to 60 weight percent, based upon the weight of the thermoplastic polymer coated yarn.
9. The method according to claim 8 in which the thermoplastic polymer is selected from the group consisting of a polyhydroxy ether, a polyphenylene oxide, a polysulfone, a polyarylsulfone, a polycarbonate and a polyamide and the thermosetting resin is selected from the group consisting of an epoxy resin, a phenolic resin, a polyimide resin, a polybenzimidazole resin, and a pyrrone resin.
10. THE METHOD ACCORDING TO CLAIM 9 IN WHICH THE THERMOPLASTIC POLYMER IS A POLYHYDROXY ETHER HAVING THE FOLLOWING STRUCTURAL FORMULA:
11. The method according to claim 9 in which the thermosplastic polymer is poly(2,6-diphenyl-1,4-phenylene oxide); the thermosetting resin is an epoxy resin; stacked plies of the coated yarn are molded at a temperature in the range of about 175* to 450*F under a pressure of about 100 to 1000 psi for a period of about 1 to 8 hours.
US306648A 1972-11-15 1972-11-15 Treatment of graphite fibers Expired - Lifetime US3881977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US306648A US3881977A (en) 1972-11-15 1972-11-15 Treatment of graphite fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US306648A US3881977A (en) 1972-11-15 1972-11-15 Treatment of graphite fibers

Publications (1)

Publication Number Publication Date
US3881977A true US3881977A (en) 1975-05-06

Family

ID=23186231

Family Applications (1)

Application Number Title Priority Date Filing Date
US306648A Expired - Lifetime US3881977A (en) 1972-11-15 1972-11-15 Treatment of graphite fibers

Country Status (1)

Country Link
US (1) US3881977A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929956A (en) * 1972-11-01 1975-12-30 United Technologies Corp Process for wet winding filaments
US4159618A (en) * 1978-03-13 1979-07-03 Albany International Corp. Composite yarn
US4244765A (en) * 1978-06-27 1981-01-13 Tomotoshi Tokuno Method for manufacturing a resin-reinforced carbon fiber product
US4305903A (en) * 1980-02-25 1981-12-15 Norris Industries, Inc. Composite fiber reinforced member and method
EP0216518A2 (en) * 1985-08-22 1987-04-01 Teijin Limited Fiber having thermoplastic resin coating
US4941398A (en) * 1981-06-03 1990-07-17 Bowles Fluidics Corporation Oscillating reed and method
EP0384712A2 (en) * 1989-02-21 1990-08-29 MITSUI TOATSU CHEMICALS, Inc. Carbon-fiber-reinforced polyimide resin compositions
US4957661A (en) * 1988-09-30 1990-09-18 The United States Of America As Represented By The United States National Aeronautics And Space Administration Graphite fluoride fiber polymer composite material
US5002823A (en) * 1987-06-12 1991-03-26 E. I. Du Pont De Nemours And Company Reinforced composites having improved flex fatigue life
EP0501625A1 (en) * 1991-02-26 1992-09-02 The Dow Chemical Company Reinforcing agents for thermoplastic resins
US5324563A (en) * 1990-08-08 1994-06-28 Bell Helicopter Textron Inc. Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength
WO1994019398A1 (en) * 1993-02-19 1994-09-01 Ici Composites Inc. Curable composite materials
US5462618A (en) * 1993-03-23 1995-10-31 Bell Helicopter Textron Inc. Continuous process of making unidirectional graphite fiber reinforced pultruded rods having minimal fiber waviness
US20070141335A1 (en) * 2005-12-21 2007-06-21 Perera Willorage R Expansible yarns and threads, and products made using them
WO2014138967A1 (en) * 2013-03-11 2014-09-18 Aonix Advanced Materials Compositions and methods for making thermoplastic composite materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476703A (en) * 1967-02-21 1969-11-04 Nat Res Dev Treatment of carbon fibres and composite materials including such fibres
US3687701A (en) * 1970-11-23 1972-08-29 Us Air Force Thermoplastic release coating
US3720536A (en) * 1970-06-18 1973-03-13 United Aircraft Corp Treatment of carbon fibers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476703A (en) * 1967-02-21 1969-11-04 Nat Res Dev Treatment of carbon fibres and composite materials including such fibres
US3720536A (en) * 1970-06-18 1973-03-13 United Aircraft Corp Treatment of carbon fibers
US3687701A (en) * 1970-11-23 1972-08-29 Us Air Force Thermoplastic release coating

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929956A (en) * 1972-11-01 1975-12-30 United Technologies Corp Process for wet winding filaments
US4159618A (en) * 1978-03-13 1979-07-03 Albany International Corp. Composite yarn
US4244765A (en) * 1978-06-27 1981-01-13 Tomotoshi Tokuno Method for manufacturing a resin-reinforced carbon fiber product
US4305903A (en) * 1980-02-25 1981-12-15 Norris Industries, Inc. Composite fiber reinforced member and method
US4941398A (en) * 1981-06-03 1990-07-17 Bowles Fluidics Corporation Oscillating reed and method
EP0216518A2 (en) * 1985-08-22 1987-04-01 Teijin Limited Fiber having thermoplastic resin coating
EP0216518A3 (en) * 1985-08-22 1988-12-07 Teijin Limited Fiber having thermoplastic resin coating
US5002823A (en) * 1987-06-12 1991-03-26 E. I. Du Pont De Nemours And Company Reinforced composites having improved flex fatigue life
US4957661A (en) * 1988-09-30 1990-09-18 The United States Of America As Represented By The United States National Aeronautics And Space Administration Graphite fluoride fiber polymer composite material
EP0384712A3 (en) * 1989-02-21 1991-04-17 MITSUI TOATSU CHEMICALS, Inc. Carbon-fiber-reinforced polyimide resin compositions
EP0384712A2 (en) * 1989-02-21 1990-08-29 MITSUI TOATSU CHEMICALS, Inc. Carbon-fiber-reinforced polyimide resin compositions
US5324563A (en) * 1990-08-08 1994-06-28 Bell Helicopter Textron Inc. Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength
EP0501625A1 (en) * 1991-02-26 1992-09-02 The Dow Chemical Company Reinforcing agents for thermoplastic resins
WO1994019398A1 (en) * 1993-02-19 1994-09-01 Ici Composites Inc. Curable composite materials
US5840424A (en) * 1993-02-19 1998-11-24 Fiberite, Inc. Curable composite materials
US5462618A (en) * 1993-03-23 1995-10-31 Bell Helicopter Textron Inc. Continuous process of making unidirectional graphite fiber reinforced pultruded rods having minimal fiber waviness
US20070141335A1 (en) * 2005-12-21 2007-06-21 Perera Willorage R Expansible yarns and threads, and products made using them
US7785509B2 (en) * 2005-12-21 2010-08-31 Pascale Industries, Inc. Expansible yarns and threads, and products made using them
WO2014138967A1 (en) * 2013-03-11 2014-09-18 Aonix Advanced Materials Compositions and methods for making thermoplastic composite materials
CN105392843A (en) * 2013-03-11 2016-03-09 艾欧尼克斯先进材料股份有限公司 Compositions and methods for making thermoplastic composite materials
EP2970665A4 (en) * 2013-03-11 2017-01-11 Aonix Advanced Materials Corp. Compositions and methods for making thermoplastic composite materials

Similar Documents

Publication Publication Date Title
US3881977A (en) Treatment of graphite fibers
US4056651A (en) Moisture and heat resistant coating for glass fibers
US4649080A (en) Fiber-reinforced materials
US3556922A (en) Fiber-resin composite of polyamide and inorganic fibers
US3844822A (en) Production of uniformly resin impregnated carbon fiber ribbon
US4764427A (en) Fiber having thermoplastic resin coating
US3691000A (en) Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
US4428992A (en) Method of splicing reinforcement fiber
US3785916A (en) Thermoplastic compositions
RU2071486C1 (en) Method for manufacturing article of polyimide carbon plastics
US3914494A (en) Pervious low density carbon fiber reinforced composite articles
US4735828A (en) Reinforced fibre products and process of making
JPS6175880A (en) Size agent
US3859158A (en) Production of pervious low density carbon fiber reinforced composite articles
JPS61163942A (en) Fiber reinforced composite material and production of moldedbody therefrom
US5389441A (en) Phthalonitrile prepolymer as high temperature sizing material for composite fibers
EP0151722B1 (en) Process for the preparation of thermoplastic composites
US5116668A (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
US4563232A (en) Process for the preparation of reinforced thermoplastic composites
CN111892728B (en) Preparation method of benzoxazine resin hot-melt prepreg for autoclave molding process
DE2941785A1 (en) COMPOSITES AND METHOD FOR THEIR PRODUCTION
US3772429A (en) Treatment of carbon fibers
US3993829A (en) Production of pervious low density carbon fiber reinforced composite articles
US3779789A (en) Production of pervious low density carbon fiber reinforced composite articles
JPS6049213B2 (en) Carbon fiber reinforced polyphenylene sulfide composite material and its manufacturing method