US3879512A - Anti-anxiety combination and method of use - Google Patents

Anti-anxiety combination and method of use Download PDF

Info

Publication number
US3879512A
US3879512A US404477A US40447773A US3879512A US 3879512 A US3879512 A US 3879512A US 404477 A US404477 A US 404477A US 40447773 A US40447773 A US 40447773A US 3879512 A US3879512 A US 3879512A
Authority
US
United States
Prior art keywords
ethyl
pyrazolopyridine
carboxylic acid
pyridine
pyrazolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US404477A
Inventor
Bernard Beer
Donald E Clody
Zola P Horovitz
John R Vogel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ER Squibb and Sons LLC
Original Assignee
ER Squibb and Sons LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ER Squibb and Sons LLC filed Critical ER Squibb and Sons LLC
Priority to US404477A priority Critical patent/US3879512A/en
Application granted granted Critical
Publication of US3879512A publication Critical patent/US3879512A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole

Definitions

  • the present invention relates to an anti-anxiety combination having substantially no sedative or drowsiness side effects and which includes a chlordiaZepoxidc-type compound or a pyrazolopyridine carboxylic acid or ester in combination with a xanthine-type compound. such as theophylline or caffeine.
  • benzodiazepines such as chlordiazepoxide or diazepam as tranquilizers and anti-anxiety agents is well-known in the art. These compounds have been found to have remarkable anti-anxiety properties. However, they also have been found to produce significant side effects. namely drowsiness and sedation.
  • the use of chlordiazepoxide. for example. is therefore limited to applications where its sedative side effects will be of little or no concern. Thus. chlordiazepoxide would not be indicated for a patient in an anxious state if the patient must drive an automobile or function in any manner where he must be alert. In such cases. other anti-anxiety drugs. possibly less effective than the above mentioned benzodiazepines. would be indicated.
  • chlordiazepoxide-type compounds can be inhibited and in many cases substantially eliminated without adversely affecting their anti-anxiety properties by employing in combination with the chlordiazepoxide-type compounds. xanthinetype compounds.
  • the combination of the chlordiazepoxide-type compound with the xanthine-type compound has been found to possess greater anti-anxiety properties than the chlordiazepoxide-type compound alone. without having the sedative side effects of the chlordiazepoxide-type compound.
  • chlordiazepoxide-type anti-anxiety effects can be ob tained employing relatively inexpensive xanthine-type drugs in combination with relatively small amounts of the more expensive chlordiazepoxide-type compounds. without the adverse sedative side effects inherent in the use of the chlordiazepoxide compound alone.
  • anti-anxiety combinations comprising pyrazolopyridine carboxylic acids or esters and a xanthine-type .compound.
  • the pyrazolopyridine compounds which can be employed in the anti-anxiety combinations of the invention can be represented by the structures Z l NH wherein R is hydrogen. alkyl or phenyl-lower alkyl, R is lower alkyl. phenyl. phenyl-lower alkyl. R... R phenyl-lower alkyl or cycloalkyl-lower alkyl. R is hydrogen. lower alkyl. phenyl or R R -phenyl. Z is or R. R. is hydrogen. lower alkyl. lower alkanoyl or phenyl. R is hydrogen. lower alkyl or lower alkanoyl. R and R each is halogen. lower alkyl or lower alkoxy.
  • X is hydrogen. lower alkyl. hydroxy-lower alkyl. phenyl. R... R -phenyl. phenyl-lowcr alkyl or R... R -phenyllower alkyl.
  • Y is lower alkyl. hydroxy-lower alkyl. phenyl. R... R -phenyl. phenyl-lower alkyl or R... R;-phenyllower alkyl. and together X and Y are cyclo-lower alkyl or S-nitrofuryl. and acid addition salts thereof.
  • Examples of specific pyrazolopyridine compounds which can be employed herein include. but are not limited to. l-ethyl-4-( isopropylidenehydrazino l H- pyrazolo[3.4-b]pyridine-5-carboxylic acid. its ethyl ester and its ethyl ester hydrochloride salt. and 4- (butylamino)- l -ethyl-l H-pyrazolo-[ 3.4-b1-pyridine-5- carboxylic acid. ethyl ester.
  • Other pyrazolopyridine compounds suitable for use herein are disclosed in the above-identified copending applications.
  • the chlordiazepoxide-type compounds which can be utilized in the combination of the invention have the generic formula wherein R represents a member of the group consisting of hydrogen, lower alkyl. lower alkenyl. hydroxylower alkyl and lower alkoxy-lower alkyl.
  • R represents a member of the group consisting of hydrogen and lower alkyl.
  • R represents a member of the group consisting of phenyl. halophenyl, nitrophenyl and lower alkoxyphenyl.
  • R and R each represents a member of the group consisting of hydrogen, halogen and lower alkyl. and acid addition salts thereof.
  • R and R are lower alkyl having from I to about 8 carbons such as methyl, ethyl, propyl, isopropyl. tbutyl, pentyl. hexyl, Z-methylheptyl, heptyl. octyl and the like.
  • suitable xanthines include 1.3- dimethylxanthine. 3,7-dimethylxanthine and 1.3.7-trimethylxanthine.
  • the combinations of the invention should be formulated to contain a weight ratio of xanthine compound (A) and chlordiazepoxide type compound (B) or pyrazolopyridine compound (C) of within the range of from about 2:1 (A:B or C) to about l:l (A:B or C) and preferably from about 5:l to about 1011.
  • Preferred combinations of the present invention include theophylline or caffeine (A) and chlordiazepoxide (B) in a weight ratio (A:B) to each other ranging from 5:] to lOzl, and theophylline or caffeine (A) and l-ethyl-4-(isopropylidenehydrazino)-1H- pyrazolo[3.4-bI-pyridine-S-carboxylic acid, ethyl ester hydrochloride (C) in a weight ratio (AzC) to each other ranging from 5:1 to :1.
  • the combinations of the invention are useful in the alleviation of anxious states without imparting sedation or drowsiness in mammalian species.
  • mammalian species such as rats, dogs or cats.
  • They can be formulated in various forms, such as tablet, solutions for intraperitoneal injection, or elixir, and may be administered 1 to 3 times daily to provide a dosage of active ingredients within the range of from about 0.3 mg/kg of body weight to 10.0 mg/kg of body weight with the preferred range being from 1.5 mg/kg of body weight to about 5.0 mg/kg of body weight, upon each administration.
  • Suitable carrier materials include. for example. water, gelatin, gum arabic, lactose, starches, magnesium stearate. talc, vegetable oils, polyalkylene glycols, petroleum jelly, etc.
  • the pharmaceutical preparations can be in solid form (e.g., as tablets. dragees, suppositories, capsules); in semi-solid form (e.g., as salves) or in liquid form (e.g., as solutions, suspensions or emulsions). They may be sterilized and/or contain additives such as preserving, stabilizing, wetting or emulsifying agents, salts for varying the osmotic pressure or buffers. The aforesaid preparations may further be compounded with other therapeutically valuable substances such as with compounds having antibacterial activity.
  • the apparatus is clear Plexiglas box (38 X 38 cm) with a black Plexiglas compartment 10 X 10.5 cm) attached to one wall. An opening (5 X 7.5 cm) leads from the large box to the small compartment.
  • the entire apparatus has a stainless-steel grid floor.
  • a water bottle with a metal drinking tube is fitted to the outside of the small compartment, so that the tube extended 2 cm (through a 1 cm hole) into the box at a height of 3 cm above the grid.
  • a drinkometer circuit is connected between the drinking tube and the grid floor of the apparatus. so that the subject completed the circuit whenever it licked the tube.
  • the apparatus was placed in a quiet area of the laboratory.
  • Shock is administered to each subject by switching the connections to the drinking tube and grids from the drinkometer to a Grason-Stadler Shocker (Model E1064GS) set at 0.5 ma.
  • Grason-Stadler Shocker Model E1064GS
  • each subject is placed in the apparatus. Subject is allowed to find the drinking tube and complete 20 licks before shock (available at the tube for 2 seconds) is administered. The subject controlled shock duration by withdrawing from the tube. A 3-minute times is automatically started at the termination of the first shock. During the 3-minute period, shocks are delivered following each twentieth lick. The number of shocks delivered during the 3-minute session is recorded for each subject and is a direct indication of anti-anxiety effects of the drugs administered. Because the primary interest in the effects of drugs on behavior that is suppressed by punishment, and since motivation under the deprivation conditions imposed in this procedure are maximum, non-shocked animals are not included in these experiments.
  • Drugs are prepared as solutions in distilled water or suspensions in agar so that each cubic centimeter contained l kg of body weight dosage. All statistical comparisons were made using Mann-Whitney U test (twotailed).
  • EXAMPLE 2 The effect of theophylline (25 mg/kg) alone, etheyl-4-( isopropylidenehydrazino )-l H-pyrazolo-[ 3.4- b]-pyridine-5-carboxylic acid. ethyl ester. hydrochloride (hereinafter referred to as pyrazolopyridine) (1 mg/kg) alone and a combination of these two drugs in accordance with the invention were tested in the rat conflict procedure described above. Saline solution was employed as a control. Test results obtained are set out in Table ll below.
  • a method for treating anxiety in an anxious host which comprises administering to the anxious host a composition comprising (a) a pyrazolopyridine selected from the group consisting of l-ethyl-4- (isopropylidenehydrazino )-l H-pyrazolo[ 3.4- b]pyridinc-S-carboxylic acid. ethyl ester. and 4- (butylamino l -ethyll H-pyrazolo[ 3.4-b]-pyridine-5- carboxylic acid. ethyl ester. or an acid-addition salt thereof and b.
  • an xanthine compound having the structure R O f N l CH3 wherein R and R are the same or different and are lower alltyl having from 1 to about 8 carbons wherein the weight ratio of the xanthine to the pyrazolopyridine is from about 2:1 to 15:1.
  • pyrazolopyridine is l-ethyl-4- (isopropylidenehydrazino l H-pyrazolol 3 .4- blpyridine-S-carboxylic acid. ethyl ester.
  • pyrazolopyridine is 4-( butylamino l -ethyl-l H- pyrazolol3,4-blpyridine-S-carboxylic acid, ethyl ester.
  • pyrazolopyridine is l-ethyl-4- (isopropylidenehydrazino l H-pyrazolo[ 3 ,4- b]pyridine-5-carboxylic acid, ethyl ester hydrochloride and the xanthine compound is theophylline.
  • pyrazolopyridine is l-ethyl-4- (isopropylidinehydrazino l H-pyrazolo 3 ,4- blpyridine-S-carboxylic acid, ethyl ester hydrochloride.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

An anti-anxiety combination is provided having substantially no sedative side effects and comprising a chlordiazepoxide-type compound or pyrazolopyridine carboxylic acid or ester and a xanthine-type compound.

Description

United States Patent 191 Beer et al.
[4 1 Apr. 22, 1975 ANTI-ANXIETY COMBINATION AND METHOD OF USE [75] Inventors: Bernard Beer, Princeton; Donald E.
Clody, Pennington; Zola P. l-lorovitz, Princeton. all of N..l.: John R. Vogel. New Hope. Pa.
[73] Assignee: E. R. Squibb & Sons, Inc...
Princeton. NJ.
22 Filed: on. 9, 1973 211 App]. No.: 404.477
Related U.S. Application Data [62] Division of Scr. No. 190,69l. Oct. 19. i971, Pat. No.
[52] U.S. Cl 424/253: 424/263 [51] Int. Cl A6lu 27/00 [58] Field of Search 260/2955 B. 424/251, 263. 424/253 [56] References Cited UNITED STATES PATENTS 3.542.793 I I/l970 Rossi et al 260/2955 B FOREIGN PATENTS OR APPLICATIONS 4.754M 6/1965 France Primary E.\-aminerStanley L Friedman Anorney. Agent. or Firm-Lawrence S. Levinson; Merle J. Smith; Donald J. Barrack 8 Claims, No Drawings ANTI-ANXIETY COMBINATION AND METHOD OF USE This application is a divisional of Ser. no. 190.691. filed Oct. 19. l97l. now U.S. Pat. No. 3.784.688. issued Jan. 8, 1974.
The present invention relates to an anti-anxiety combination having substantially no sedative or drowsiness side effects and which includes a chlordiaZepoxidc-type compound or a pyrazolopyridine carboxylic acid or ester in combination with a xanthine-type compound. such as theophylline or caffeine.
The use of benzodiazepines such as chlordiazepoxide or diazepam as tranquilizers and anti-anxiety agents is well-known in the art. These compounds have been found to have remarkable anti-anxiety properties. However, they also have been found to produce significant side effects. namely drowsiness and sedation. The use of chlordiazepoxide. for example. is therefore limited to applications where its sedative side effects will be of little or no concern. Thus. chlordiazepoxide would not be indicated for a patient in an anxious state if the patient must drive an automobile or function in any manner where he must be alert. In such cases. other anti-anxiety drugs. possibly less effective than the above mentioned benzodiazepines. would be indicated.
The use of drugs known for their stimulant properties in combinations with chlordiazepoxide-type compounds has been suggested. However. such combinations have not been acceptable inasmuch as many stimulants or counter-sedative drugs have been found to interfere with the anti-anxiety effects produced by the chlordiazepoxide-type compound.
It has now been found that drowsiness and other sedative side effects produced by chlordiazepoxide-type compounds can be inhibited and in many cases substantially eliminated without adversely affecting their anti-anxiety properties by employing in combination with the chlordiazepoxide-type compounds. xanthinetype compounds.
The combination of the chlordiazepoxide-type compound with the xanthine-type compound has been found to possess greater anti-anxiety properties than the chlordiazepoxide-type compound alone. without having the sedative side effects of the chlordiazepoxide-type compound.
Thus. in accordance with the present invention. chlordiazepoxide-type anti-anxiety effects can be ob tained employing relatively inexpensive xanthine-type drugs in combination with relatively small amounts of the more expensive chlordiazepoxide-type compounds. without the adverse sedative side effects inherent in the use of the chlordiazepoxide compound alone.
Further. in accordance with the present invention. anti-anxiety combinations are provided comprising pyrazolopyridine carboxylic acids or esters and a xanthine-type .compound.
The pyrazolopyridine compounds which can be employed in the anti-anxiety combinations of the invention can be represented by the structures Z l NH wherein R is hydrogen. alkyl or phenyl-lower alkyl, R is lower alkyl. phenyl. phenyl-lower alkyl. R... R phenyl-lower alkyl or cycloalkyl-lower alkyl. R is hydrogen. lower alkyl. phenyl or R R -phenyl. Z is or R. R. is hydrogen. lower alkyl. lower alkanoyl or phenyl. R is hydrogen. lower alkyl or lower alkanoyl. R and R each is halogen. lower alkyl or lower alkoxy. X is hydrogen. lower alkyl. hydroxy-lower alkyl. phenyl. R... R -phenyl. phenyl-lowcr alkyl or R... R -phenyllower alkyl. Y is lower alkyl. hydroxy-lower alkyl. phenyl. R... R -phenyl. phenyl-lower alkyl or R... R;-phenyllower alkyl. and together X and Y are cyclo-lower alkyl or S-nitrofuryl. and acid addition salts thereof.
The above-described pyrazolopyridine compounds of formulae (l) and (ll) and methods for their preparation are fully disclosed in copending U.S. Pat. applications Ser. No. 833,672, filed June 16. 1969 and now abandoned. Ser. No. 42.415. filed June 1. 1970 and now abandoned. and Ser. No. 41.568. filed May 28. l970 and now abandoned.
Examples of specific pyrazolopyridine compounds which can be employed herein include. but are not limited to. l-ethyl-4-( isopropylidenehydrazino l H- pyrazolo[3.4-b]pyridine-5-carboxylic acid. its ethyl ester and its ethyl ester hydrochloride salt. and 4- (butylamino)- l -ethyl-l H-pyrazolo-[ 3.4-b1-pyridine-5- carboxylic acid. ethyl ester. Other pyrazolopyridine compounds suitable for use herein are disclosed in the above-identified copending applications.
The chlordiazepoxide-type compounds which can be utilized in the combination of the invention have the generic formula wherein R represents a member of the group consisting of hydrogen, lower alkyl. lower alkenyl. hydroxylower alkyl and lower alkoxy-lower alkyl. R represents a member of the group consisting of hydrogen and lower alkyl. R represents a member of the group consisting of phenyl. halophenyl, nitrophenyl and lower alkoxyphenyl. R and R each represents a member of the group consisting of hydrogen, halogen and lower alkyl. and acid addition salts thereof.
where R and R are lower alkyl having from I to about 8 carbons such as methyl, ethyl, propyl, isopropyl. tbutyl, pentyl. hexyl, Z-methylheptyl, heptyl. octyl and the like. Examples of suitable xanthines include 1.3- dimethylxanthine. 3,7-dimethylxanthine and 1.3.7-trimethylxanthine.
ln order to produce the desired anti-anxiety effects with substantially no drowsiness or sedative-side effects, the combinations of the invention should be formulated to contain a weight ratio of xanthine compound (A) and chlordiazepoxide type compound (B) or pyrazolopyridine compound (C) of within the range of from about 2:1 (A:B or C) to about l:l (A:B or C) and preferably from about 5:l to about 1011.
Preferred combinations of the present invention include theophylline or caffeine (A) and chlordiazepoxide (B) in a weight ratio (A:B) to each other ranging from 5:] to lOzl, and theophylline or caffeine (A) and l-ethyl-4-(isopropylidenehydrazino)-1H- pyrazolo[3.4-bI-pyridine-S-carboxylic acid, ethyl ester hydrochloride (C) in a weight ratio (AzC) to each other ranging from 5:1 to :1.
The combinations of the invention are useful in the alleviation of anxious states without imparting sedation or drowsiness in mammalian species. such as rats, dogs or cats. They can be formulated in various forms, such as tablet, solutions for intraperitoneal injection, or elixir, and may be administered 1 to 3 times daily to provide a dosage of active ingredients within the range of from about 0.3 mg/kg of body weight to 10.0 mg/kg of body weight with the preferred range being from 1.5 mg/kg of body weight to about 5.0 mg/kg of body weight, upon each administration.
Suitable carrier materials include. for example. water, gelatin, gum arabic, lactose, starches, magnesium stearate. talc, vegetable oils, polyalkylene glycols, petroleum jelly, etc. The pharmaceutical preparations can be in solid form (e.g., as tablets. dragees, suppositories, capsules); in semi-solid form (e.g., as salves) or in liquid form (e.g., as solutions, suspensions or emulsions). They may be sterilized and/or contain additives such as preserving, stabilizing, wetting or emulsifying agents, salts for varying the osmotic pressure or buffers. The aforesaid preparations may further be compounded with other therapeutically valuable substances such as with compounds having antibacterial activity.
The test utilized in determining the activity of the combinations of this invention is described in A Simple and Reliable Conflict Procedure for Testing Anti- Anxiety Agents," .1. R. Vogel. B. Beer, and D. E. Clody; Psyc/mpharmacologia 21: 1971, and is summarized below.
Forty naive adult male Holtzman rats (approximately l g) are randomly divided into five groups and deprived of water for 48 hours prior to the test session. Food is available in the home cage at all times.
The apparatus is clear Plexiglas box (38 X 38 cm) with a black Plexiglas compartment 10 X 10.5 cm) attached to one wall. An opening (5 X 7.5 cm) leads from the large box to the small compartment. The entire apparatus has a stainless-steel grid floor. A water bottle with a metal drinking tube is fitted to the outside of the small compartment, so that the tube extended 2 cm (through a 1 cm hole) into the box at a height of 3 cm above the grid. A drinkometer circuit is connected between the drinking tube and the grid floor of the apparatus. so that the subject completed the circuit whenever it licked the tube. The apparatus was placed in a quiet area of the laboratory.
Various experiments have indicated that rats lick in bursts. and that lick rate within a burst is relatively constant at about seven licks per second. Because subjects frequently extend the mouth over the tube while licking (thereby locking up the drinkometer circuit), it is difficult to measure the number of licks. To provide a reliable measure of consummatory behavior. the drinkometer was connected to a circuit that produced seven pulses per second whenever the subject was in contact with the tube. Each pulse was counted as equivalent to one lick.
Shock is administered to each subject by switching the connections to the drinking tube and grids from the drinkometer to a Grason-Stadler Shocker (Model E1064GS) set at 0.5 ma. Thus, unscrambled shock was applied between the drinking tube and grid floor.
Thirty minutes after intraperitoneal injection, each subject is placed in the apparatus. Subject is allowed to find the drinking tube and complete 20 licks before shock (available at the tube for 2 seconds) is administered. The subject controlled shock duration by withdrawing from the tube. A 3-minute times is automatically started at the termination of the first shock. During the 3-minute period, shocks are delivered following each twentieth lick. The number of shocks delivered during the 3-minute session is recorded for each subject and is a direct indication of anti-anxiety effects of the drugs administered. Because the primary interest in the effects of drugs on behavior that is suppressed by punishment, and since motivation under the deprivation conditions imposed in this procedure are maximum, non-shocked animals are not included in these experiments.
Drugs are prepared as solutions in distilled water or suspensions in agar so that each cubic centimeter contained l kg of body weight dosage. All statistical comparisons were made using Mann-Whitney U test (twotailed).
The following Examples are illustrative of this invention.
EXAMPLE 1 Table l Theo- (hlordi- Theophyllinc phylline azepoxide rug/kg) and (Z5 [4.0 ChlURlTRIZLPOXTLlC Saline mg/kg) mg/kg) (-1.0 lug/kg) Mean No. of Shocks 4.0 5.75 6.87 13.25
EXAMPLE 2 The effect of theophylline (25 mg/kg) alone, etheyl-4-( isopropylidenehydrazino )-l H-pyrazolo-[ 3.4- b]-pyridine-5-carboxylic acid. ethyl ester. hydrochloride (hereinafter referred to as pyrazolopyridine) (1 mg/kg) alone and a combination of these two drugs in accordance with the invention were tested in the rat conflict procedure described above. Saline solution was employed as a control. Test results obtained are set out in Table ll below.
Table ll Theophylline Theo- Pyrazol- 25 mg/kg) phylline opyridine and [25 H) Pyrazolopyridine Saline mg/kg) mg/lsg) 1.0 mg/kg) Mean No. of Shocks 3.14 7.l4 5.3 11.2
As seen from the above results. the administration to rats of the combination of the invention results in a significantly greater number of shocks taken on conflict than when either of theophylline or pyrazolopyridine is administered alone. These data indicate that the antianxiety effect produced by the combination of the invention is significantly greater than the anti-anxiety effects produced by either alone.
What is claimed is:
l. A method for treating anxiety in an anxious host which comprises administering to the anxious host a composition comprising (a) a pyrazolopyridine selected from the group consisting of l-ethyl-4- (isopropylidenehydrazino )-l H-pyrazolo[ 3.4- b]pyridinc-S-carboxylic acid. ethyl ester. and 4- (butylamino l -ethyll H-pyrazolo[ 3.4-b]-pyridine-5- carboxylic acid. ethyl ester. or an acid-addition salt thereof and b. an xanthine compound having the structure R O f N l CH3 wherein R and R are the same or different and are lower alltyl having from 1 to about 8 carbons wherein the weight ratio of the xanthine to the pyrazolopyridine is from about 2:1 to 15:1.
2. A method in accordance with claim 1 wherein the pyrazolopyridine is l-ethyl-4- (isopropylidenehydrazino l H-pyrazolol 3 .4- blpyridine-S-carboxylic acid. ethyl ester.
3. A method in accordance with claim 1 wherein the pyrazolopyridine is 4-( butylamino l -ethyl-l H- pyrazolol3,4-blpyridine-S-carboxylic acid, ethyl ester.
4. A method in accordance with claim 1 wherein the xanthine compound is theophylline.
5. A method in accordance with claim 1 wherein the xanthine compound is caffeine.
6. A method in accordance with claim 1 wherein the weight ratio of the xanthine to the pyrazolopyridine is from about 5:1 to lOzl.
7. A method in accordance with claim 1 wherein the pyrazolopyridine is l-ethyl-4- (isopropylidenehydrazino l H-pyrazolo[ 3 ,4- b]pyridine-5-carboxylic acid, ethyl ester hydrochloride and the xanthine compound is theophylline.
8. A method in accordance with claim 1 wherein the pyrazolopyridine is l-ethyl-4- (isopropylidinehydrazino l H-pyrazolo 3 ,4- blpyridine-S-carboxylic acid, ethyl ester hydrochloride.

Claims (8)

1. A method for treating anxiety in an anxious host which comprises administering to the anxious host a composition comprising (a) a pyrazolopyridine selected from the group consisting of 1-ethyl-4-(isopropylidenehydrazino)-1H-pyrazolo(3, 4-b)pyridine-5-carboxylic acid, 1-ethyl-4-(isopropylidenehydrazino)-1H-pyrazolo(3,4-b)pyridine-5-carboxylic acid, ethyl ester, and 4-(butylamino)-1-ethyl-1H-pyrazolo(3,4-b)-pyridine-5-carboxylic acid, ethyl ester, or an acid-addition salt thereof and b. an xanthine compound having the structure
1. A METHOD FOR TREATING ANXIETY IN AN ANXIOUS HOST WHICH COMPRISES ADMINISTERING TO THE ANXIOUS HOST A COMPOSITION COMPRISING (A) A PYRAZOLOPYRIDINE SELCTED FROM THE GROUP CONSISTING OF 1-EHTYL-4-(ISOPROPYLIDENEHYDRAZINO)- 1HPYRAZOLO(3,4-B)PYRIDINE-5-CARBOXYLIC ACID, ETHYL ESTER, AND 4-(BUTYLAMINO)-1-ETHYL-1H-PYRAZOLO(3,4-B)-PYRIDINE-5-CARBOXYLIC ACID, ETHYL ESTER, OR AN ACID-SOLUTION SALT THEREOF AND B. AN XANTHINE COMPOUND HAVING THE STRUCTURE
2. A method in accordance with claim 1 wherein the pyrazolopyridine is 1-ethyl-4-(isopropylidenehydrazino)-1H-pyrazolo(3,4-b)pyridine-5-carboxylic acid, ethyl ester.
3. A method in accordance with claim 1 wherein the pyrazolopyridine is 4-(butylamino)-1-ethyl-1H-pyrazolo(3,4-b)pyridine-5-carboxylic acid, ethyl ester.
4. A method in accordance with claim 1 wherein the xanthine compound is theophylline.
5. A method in accordance with claim 1 wherein the xanthine compound is caffeine.
6. A method in accordance with claim 1 wherein the weight ratio of the xanthine to the pyrazolopyridine is from about 5:1 to 10: 1.
7. A method in accordance with claim 1 wherein the pyrazolopyridine is 1-ethyl-4-(isopropylidenehydrazino)-1H-pyrazolo(3,4-b)pyridine-5-carboxylic acid, ethyl ester hydrochloride and the xanthine compound is theophylline.
US404477A 1971-10-19 1973-10-09 Anti-anxiety combination and method of use Expired - Lifetime US3879512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US404477A US3879512A (en) 1971-10-19 1973-10-09 Anti-anxiety combination and method of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19069171A 1971-10-19 1971-10-19
US404477A US3879512A (en) 1971-10-19 1973-10-09 Anti-anxiety combination and method of use

Publications (1)

Publication Number Publication Date
US3879512A true US3879512A (en) 1975-04-22

Family

ID=26886345

Family Applications (1)

Application Number Title Priority Date Filing Date
US404477A Expired - Lifetime US3879512A (en) 1971-10-19 1973-10-09 Anti-anxiety combination and method of use

Country Status (1)

Country Link
US (1) US3879512A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542793A (en) * 1966-01-12 1970-11-24 Ciba Geigy Corp 4-unsubstituted-5-amino- or 5-acylamino-pyrazolo(3,4-b)pyridines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542793A (en) * 1966-01-12 1970-11-24 Ciba Geigy Corp 4-unsubstituted-5-amino- or 5-acylamino-pyrazolo(3,4-b)pyridines

Similar Documents

Publication Publication Date Title
Vogel et al. A simple and reliable conflict procedure for testing anti-anxiety agents
EP1177797A1 (en) Novel use
US20040152659A1 (en) Method for the treatment of parkinson's disease comprising administering an A1A2a receptor dual antagonist
EP0278161B1 (en) Ketone derivatives as medicaments for the treatment or prevention of the withdrawal syndrome
CN102046164B (en) Combination of a nicotinic receptor partial agonist and of an acetylcholinesterase inhibitor, pharmaceutical composition containing same and use thereof in the treatment of cognitive disorders
IL89031A (en) Medicaments containing a benzamide for the treatment or prevention of cognitive disorders and their preparation
JP2006527264A (en) How to treat anxiety disorders
US3879512A (en) Anti-anxiety combination and method of use
IE54277B1 (en) Blood platelet aggregation inhibitors containing anagrelide
Siegel et al. The prolonged effects of naloxone on play behavior and feeding in the rat
US3740433A (en) Anti-anxiety composition and method of use
US3784688A (en) Anti-anxiety combination
CA1154679A (en) Use of dihydro-1h-pyrrolizine-3,5(2h,6h)-dione as a cognition activator
Vogel et al. Effects of chlordiazepoxide on depressed performance after reward reduction
US4337254A (en) Pharmaceutical compositions
US3755588A (en) Penicillanic acid in dosage unit form
EP0667349B1 (en) Depression remedy
CA2084962A1 (en) Pharmaceutical composition for the improvement of dysuria
US6110915A (en) Antiemetic use of triazolo-pyridazine derivatives
Doust et al. Comparison of cerebral toxicity of monomeric and trimeric forms of sodium iothalamate
US6063783A (en) Analgesic use of triazolo-pyridazine derivatives
JPH07500340A (en) Treatment of hyperlipidemia using azaspirans
US4189478A (en) Medicinal composition and its use as antidepressive agent
SE443716B (en) SETTING TO PREPARE A PHARMACEUTICAL PREPARATION FOR INHIBITING BLOOD SPOT SEGREGATION CONTAINING PROSTACYCLINE OR DIHYDROPROSTACYCLINE AND A PHOSPHODIESTERATION INHIBITOR
US4874762A (en) 2-amino-4-nicotinoylamino-6-aryl-s-triazines as nootropic agents