US3878003A - Composite double base propellant with HMX oxidizer - Google Patents

Composite double base propellant with HMX oxidizer Download PDF

Info

Publication number
US3878003A
US3878003A US050045A US5004560A US3878003A US 3878003 A US3878003 A US 3878003A US 050045 A US050045 A US 050045A US 5004560 A US5004560 A US 5004560A US 3878003 A US3878003 A US 3878003A
Authority
US
United States
Prior art keywords
percent
propellant
propellants
hmx
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US050045A
Inventor
Presti Arthur Lo
Robert P Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US050045A priority Critical patent/US3878003A/en
Application granted granted Critical
Publication of US3878003A publication Critical patent/US3878003A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/02Compositions characterised by non-explosive or non-thermic constituents for neutralising poisonous gases from explosives produced during blasting
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • C06B25/24Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition with nitroglycerine
    • C06B25/26Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition with nitroglycerine with an organic non-explosive or an organic non-thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Definitions

  • the maximum energy delivered by a propellant charge of fixed dimensions is determined by the specific impulse and density of the propellant; hence, it is desirable for propellants to have both high energy and high density i.e. high volumetric energy.
  • smokeless, non-corrosive, non-toxic combustion products are desirable.
  • smoke reveals the position of the firing crew or individual.
  • this smoke ob scures the target making it difficult to appraise damage or to fire follow-up rounds to prevent counter-fire.
  • engulfment by smoke makes continued operation difficult or impossible while the smoke persists.
  • Corrosive combustion products damage equipment thereby increasing maintenance requirements or frequency of equipment breakdown or failure.
  • Corrosive products are especially harmful in many special propellant devices requiring repeated re-use of the combustion chamber and auxillary equipment; for example, propellant gas pressurizing devices and propellant gas-driven turbines.
  • Toxic combusiton products are harmful when personnel are subjected to significant concentrations for prolonged periods of time.
  • propellants having the next lower level of volumetric energy contain no metal in the fuels or oxidizers but consist essentially of polymers oxidized with ammonium perchlorate. Because of the high density of the ammonium perchlorate these propellants have relatively high volumetric energy; however, the chlorine in the ammonium perchlorate produces hydrogen chloride gas when the propellant is burned. At low humidities this gas is irritating and toxic. At high humidities it forms droplets of hydrochloric acid which are highly corrosive. In addition the combustion products form a persistent, white, smoke-like fog at these high humidities.
  • propellants whose combustion products are free of metallic compounds or chlorides, but these propellants have lower volumetric energy.
  • One such type consists essentially of polymers oxidized with ammonium nitrate instead of ammonium perchlorate; however, because of the lower density and energy of ammonium nitrate the volumetric energy of these propellants is low.
  • the highest volumetric energy smokeless propellants in use today are the double base type which consist essentially of nitrocellulose and nitroplasticizers. Even though the energies of many double base propellants equal the energies of the nonmetallic fuel-ammonium perchlorate type propellants their densities are lower and consequently so are their volumetric energies.
  • the propellants covered by this invention provide volumetric energies higher than any of the existing nitrate or nitrocellulose-nitroplasticizer propellants yet do so without the undesirable combustion products characteristic of the extising high volumetric energy propellants discussed earlier.
  • this new class of propellants produces carbon monoxide among its combustion products (as do the existing lower volumetric energy smokeless propellants discussed above) the overall toxicity of its combustion gases is less than that of existing high volumetric energy propellants all of which include perchlorates in their composition.
  • the hydrogen chloride produced by the latter propellants is toxic in much lower concentrations than carbon monoxide. Also, because the molecular weight of hydrogen chloride is higher than that of air it is less readily dispersed than carbon monoxide whose density is approximately the same as that of air. In addition, much higher concentrations of carbon monoxide than hydrogen chloride can be tolerated by humans without harmful effects. Yet, even non-dangerous concentrations of hydrogen chloride will cause discomfort to personnel due to irritation of the mucous membranes of the eyes and respiratory tracts, whereas non-dangerous concentrations of carbon monoxide will not interfere with personnel efficiency. Hence, when propellants are used in applications where the combustion gases may come into contact with personnel for extended periods, the propellants covered by this invention will have the added advantage over existing high volumetric energy propellants of reduced toxicity, discomfort and efficiency impairment of personnel.
  • the novelty of the propellant composition covered by this invention and their unique combination of properties is achieved by employing in the composition in the proper proportions ingredients which yield predominantly colorless, non-corrosive gases upon decomposition.
  • the exclusive use of organic ingredients, with essentially or substantially no inorganic halogen or metal containing constituents eliminates or minimizes the evolution of combustion products which are toxic, solid, or chemically corrosive at low humidity or which form opaque, highly corrosive and persistent condensation products at high humidities.
  • the property of high volumetric energy is obtained by employing a high density, granular, high energy organic compound.
  • composition constituting the invention may be comprised of the following proportions of ingredients:
  • the high density, high energy, non-metallic, nonhalogen granular organic compounds may consist of any organic solids having said properties. Particularly useful for these compositions are the aliphatic nitramines wherein the nitro group is attached to an amino nitrogen atom. Some representative members of the group are cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ethylenedinitramine (EDNA).
  • HMX cyclotetramethylene tetranitramine
  • RDX cyclotrimethylene trinitramine
  • EDNA ethylenedinitramine
  • PETN pentaerythritol tetranitrate
  • TNETB 2, 2, 2, trinitroethyl 4, 4, 4 trinitrobutyrate
  • HMX is preferred where the highest volumetric energy is desired because its density is somewhat higher than that of RDX. Since the cost of RDX is lower than that of HMX there may be propellant applications where the lower cost will favor RDX in spite of the slightly lower volumetric energy. Similarly, mixtures of RDX and HMX in any proportions may be used as required to achieve the best compromise of cost and volumetric energy.
  • the beta polymorph of HMX is preferred because of its lower sensitivity to shock and friction.
  • the propellant matrix comprises any propellant which is free of halogens and metals such as mixtures of polymers, nitropolymers, and non-metal, nonhalogen containing oxidizers.
  • Propellants that have been found to be particularly suitable for use in the matrix are double base propellants. Double base propellants are compositions containing nitrocellulose and a liquid organic nitrate having the property of gelatinizing nitrocellulose. Propellants that are also solid oxidizers such as ammonium nitrate have been found to be very satisfactory.
  • the sole important consideration in selecting the specific propellant for the propellant matrix, whether it be a double base propellant or a solid oxidizer type, is that it be free of halogens and metals. Accordingly, other propellants that can be utilized in the matrix are immediately evident to one skilled in the explosive art.
  • suitable polymeric binders are used in the binder composition.
  • These polymeric binders may be any of the well known components used in solid propellants for this purpose. To mention a few they are the synthetic rubbers, resins, polymers and nitropolymers such as polysulfide rubber, polybutadiene acrylic acid copolymer, polyurethane, nitropolyurethane and petrinacrylate. These compounds may be used for the butadiene methyl pyridine copolymer in combination with an oxidizer as shown in Example III.
  • the remaining plasticizers, stabilizers, and ballistic modifiers normally used with the particular propellant constitute the remainder of the binder system and they are immediately evident once the propellant is selected.
  • the propellant matrix as a unit must be essentially free of halogens and metals.
  • the exact proportions of solid organic filler and propellant matrix are determined by the propellant matrix used, the physical properties and volumetric energy required, and by the method of manufacture desired, whether cast, extruded or compression molded.
  • the highest volumetric energy will be obtained with compositions in which the proportion of organic filler is highest, simultaneously this will give the most brittle physical properties and will require manufacture by compression molding or extrusion.
  • the approximate limit of such composition is represented by 10 percent propellant matrix and 90 percent organic filler except when the matrix selected is one consisting of a binder plus solid oxidizers. In such cases the composition limit will be approximately 10 percent binder and 90 percent total solids (solid oxidizer required in the propellant matrix plus the high density high energy organic filler).
  • the propellant composition must contain between 10 and percent of the high density non-metallic, nonhalogen organic compound.
  • the propellant matrix which is essentially free of halogens and metals, is present within the range of from 10 to 90 percent of the total composition.
  • the components that constitute the matrix can be varied within certain proportions.
  • the matrix may consist of 90 to 10 percent by weight of the propellant, i.e., nitrocellulose, 5 to 40 percent by weight of nitroplasticizers or polymeric binders, 0.7 and 9 percent by weight of inert plasticizers, 0.1 to 1 percent by weight of stabilizers and 0.2 to 4 percent by weight of ballistic modifiers.
  • compositions containing -Continued EXAMPLEI Cast Composition Basic lead beta resorcylate, percent 2.0 Basic cupric salicylate, percent 2.0 Z-Nitrodiphenylamine, percent 0.5 Carbon Black, percent added (0.02)
  • the nitrocellulose preferred for use in the above example is that containing an average nitrogen content of approximately 12.6 percent.
  • the nitrocellulose is used in the form of colloided granules of substantially spherical form produced by a nitrocellulose lacquer dispersion process such as that described in US. Pat. No. 2,160,626.
  • the preferred average particle size of the colloided nitrocellulose used is microns or less.
  • the preferred particle size of the HMX is 100 percent through a 20 mesh sieve and 70 to 90 percent retained on a 50 mesh sieve.
  • a castable explosive composition can be formed from these ingredients when all said ingredients are mixed together. Thereupon the temperature is maintained within a range of from 100 to 140F until a bulk viscosity of approximately 60,000 to 70,000 centipoises is reached. The mixture is then poured into a mold or firing chamber of the desired size and shape. Vacuum is applied during mixing, pouring or both in order to eliminate voids in the castable material. The poured propellant is cured at 120 to 180F until the charge solidifies.
  • EXAMPLE ll Extruded Composition HMX, percent 56.0 Nitrocellulose (13.15%N), percent 20.0 Nitroglycerin, percent 15.0 Triacetin, percent 4.0 2-Nitrodiphenylamine. percent 1.0 Basic lead beta resorcylate, percent 2.0 Basic cupric salicylate, percent 2.0 Carbon Black, percent added (0.03)
  • propellant grains which can be produced are limited by the web thickness through which complete solvent removal can be affected generally about one-half inch. Larger propellant grains are prepared by charging small granules prepared as above into a heated press wherein the grains are consolidated and extruded into the desired size and shape.
  • the criterion for selecting the high density, high energy organic explosive is that, the density and energy of these materials, either singly or collectively, if more than one is used, must be such that the volumetric impulse of the resulting final propellant mixture shall be higher than that of the original smokeless propellant matrix, consisting of binder system plus oxidizer, prior to incorporation of the high energy, high density organic material.
  • compositions are not restricted to the ingredients shown nor to the exact percentages shown.
  • Alternates may be used for or in various combinations with the above ingredients, for example: nitroplasticizers such as butanetriol trinitrate, triethylene-glycol dinitrate, diethyleneglycol dinitrate, etc., may be used for or with nitroglycerin; polymeric binders such as polyurethanes, petrinacrylates and others may be used for butadiene; plasticizers such as dimethylsebacate, adiponitrile, dimethylphthalate etc.
  • nitroplasticizers such as butanetriol trinitrate, triethylene-glycol dinitrate, diethyleneglycol dinitrate, etc.
  • polymeric binders such as polyurethanes, petrinacrylates and others may be used for butadiene
  • plasticizers such as dimethylsebacate, adiponitrile, dimethylphthalate etc.
  • any high energy, high density, non-metal, non-halogen organic compounds such as RDX etc; may be used for or with HMX; stabilizers such as ethyl ce'ntralite, nmethyl paranitroaniline etc., may be used for or with 2-nitrodiphenylamine; nitrocellulose of any nitrogen content from 12.2 to 13.15 percent may be used; suitable ballistic modifiers such as lead stannate, lead beta resorcylate, cupric salicylate, lead salicylate etc. may be used for or with the basic lead beta resorcylate or basic cupric salicylate.
  • compositions given in the examples I and 11 discussed above have been found to produce a volumetric impulse of 14.0 lbs-sec. per cubic inch when burned at a pressure of 1000 psi in a vessel vented with a Venturi nozzle having an expansion ratio of 4 to 1. This is approximately 37 percent higher than the highest volumetric energy existing smokeless propellants of the ammonium nitrate type, and approximately 1 1 percent 5.2 percent triacetin, 0.5 percent diethylphthalate, 2.0 percent basic lead beta resorcylate, 2.0 percent basic cupric salicylate, 0.5 percent 2-nitrodiphenylamine, and 0.02 percent carbon black.
  • a solid propellant composition comprising, by weight, 56 percent cyclotetramethylene tetranitramine wherein percent of the particles pass a 50 mesh sieve but are retained on a 200 mesh sieve and 25 percent of the particles have an average size of 15 microns, 20 percent nitrocellulose, 15 percent nitroglycerin, 4 percent triacetin, 1 percent 2-nitrodiphenylamine, 2 percent basic lead beta resorcylate, 2 percent basic cupric salicylate, and 0.03 percent carbon black.

Abstract

1. A solid propellant composition comprising, by weight, 50 percent cyclotetramethylene tetranitramine, 17.7 percent nitrocellulose, 22.1 percent nitroglycerin, 5.2 percent triacetin, 0.5 percent diethylphthalate, 2.0 percent basic lead beta resorcylate, 2.0 percent basic cupric salicylate, 0.5 percent 2-nitrodiphenylamine, and 0.02 percent carbon black.

Description

United States Patent 1 L0 Presti et al.
[4 1 Apr. 15, 1975 COMPOSITE DOUBLE BASE PROPELLANT 'WITH HMX OXIDIZER [75] Inventors: Arthur Lo Presti, Hope; Robert P.
Baumann, Dover, both of NJ.
I [73] Assignee: The United States of America as represented by the Secretary of the Army, Washington, DC.
[22] Filed: Aug. 16, 1960 [21] Appl. No.: 50,045
[52] US. Cl. 149/l9.8; 149/98; 149/92 [51] Int. Cl C06d 5/06 [58] Field of Search 52/0.5 P; 149/17, 49, 50,
[56] References Cited UNITED STATES PATENTS 12/1952 Bonell et a1. 52/0.5 S
2/1957 Parsons 9/1958 Achilles 52/O.5 S
2,916,996 12/1959 Coffee 52/0.5 S X 2,967,098 1/1961 Weil 2,995,430 8/1961 Scharf 3,000,718 9/1961 Campbell et a1 149/19 FOREIGN PATENTS OR APPLICATIONS 8/1952 Canada 52/0.5 S
Primary ExaminerBenjamin R. Padgett Assistant'Examiner-E. A. Miller Attorney, Agent, or FirmRobert P. Gibson; Nathan Edelberg; Eugene E. Stevens, Ill
2 Claims, No Drawings toxic, and non-corrosive. These propellants are particularly useful in rockets, jets and gas generating devices.
The maximum energy delivered by a propellant charge of fixed dimensions is determined by the specific impulse and density of the propellant; hence, it is desirable for propellants to have both high energy and high density i.e. high volumetric energy. In addition, in most military and non-military applications of propellants, smokeless, non-corrosive, non-toxic combustion products are desirable. When weapons are fired in combat areas smoke reveals the position of the firing crew or individual. When this smoke is persistent, it ob scures the target making it difficult to appraise damage or to fire follow-up rounds to prevent counter-fire. In areas involving complex equipment, engulfment by smoke makes continued operation difficult or impossible while the smoke persists. Corrosive combustion products damage equipment thereby increasing maintenance requirements or frequency of equipment breakdown or failure. Corrosive products are especially harmful in many special propellant devices requiring repeated re-use of the combustion chamber and auxillary equipment; for example, propellant gas pressurizing devices and propellant gas-driven turbines. Toxic combusiton products are harmful when personnel are subjected to significant concentrations for prolonged periods of time.
Among the various types of solid propellants in use today, there are many which yield relatively nonsmoky, nonpersistent, non-corrosive and non-toxic combustion products but said propellants, because of the low density or low energy of their constituents, have low energy per unit volume. High volumetric energy solid propellants are also in use today, but these, because of the nature of their constituents, yield relatively toxic, smoky, persistent and corrosive combustion products the last three properties being especially pronounced in a humid exterior environment.
It is the obejct of this invention to provide propellant compositions which individually combine the advantages of high density and high energy (high volumetric energy) with favorable combustion products, i.e., those which are relatively non-toxic, non-smoky, nonpersistent and non-chemically corrosive at all humidities.
Todays highest volumetric energy solid propellants .contain metals, polymers and perchlorate oxidizers,
hence, when burned they give off very dense solid obscuring smoke comprising the metal oxidation products. Existing propellants having the next lower level of volumetric energy contain no metal in the fuels or oxidizers but consist essentially of polymers oxidized with ammonium perchlorate. Because of the high density of the ammonium perchlorate these propellants have relatively high volumetric energy; however, the chlorine in the ammonium perchlorate produces hydrogen chloride gas when the propellant is burned. At low humidities this gas is irritating and toxic. At high humidities it forms droplets of hydrochloric acid which are highly corrosive. In addition the combustion products form a persistent, white, smoke-like fog at these high humidities.
There do exist may propellants whose combustion products are free of metallic compounds or chlorides, but these propellants have lower volumetric energy. One such type consists essentially of polymers oxidized with ammonium nitrate instead of ammonium perchlorate; however, because of the lower density and energy of ammonium nitrate the volumetric energy of these propellants is low. The highest volumetric energy smokeless propellants in use today are the double base type which consist essentially of nitrocellulose and nitroplasticizers. Even though the energies of many double base propellants equal the energies of the nonmetallic fuel-ammonium perchlorate type propellants their densities are lower and consequently so are their volumetric energies.
The propellants covered by this invention provide volumetric energies higher than any of the existing nitrate or nitrocellulose-nitroplasticizer propellants yet do so without the undesirable combustion products characteristic of the extising high volumetric energy propellants discussed earlier. This results in a new class of propellants having both high volumetric energy and combustion products which are non-smoky, nonpersistent and non-corrosive at all humidities. In addition, even though this new class of propellants produces carbon monoxide among its combustion products (as do the existing lower volumetric energy smokeless propellants discussed above) the overall toxicity of its combustion gases is less than that of existing high volumetric energy propellants all of which include perchlorates in their composition. The hydrogen chloride produced by the latter propellants is toxic in much lower concentrations than carbon monoxide. Also, because the molecular weight of hydrogen chloride is higher than that of air it is less readily dispersed than carbon monoxide whose density is approximately the same as that of air. In addition, much higher concentrations of carbon monoxide than hydrogen chloride can be tolerated by humans without harmful effects. Yet, even non-dangerous concentrations of hydrogen chloride will cause discomfort to personnel due to irritation of the mucous membranes of the eyes and respiratory tracts, whereas non-dangerous concentrations of carbon monoxide will not interfere with personnel efficiency. Hence, when propellants are used in applications where the combustion gases may come into contact with personnel for extended periods, the propellants covered by this invention will have the added advantage over existing high volumetric energy propellants of reduced toxicity, discomfort and efficiency impairment of personnel.
The novelty of the propellant composition covered by this invention and their unique combination of properties is achieved by employing in the composition in the proper proportions ingredients which yield predominantly colorless, non-corrosive gases upon decomposition. The exclusive use of organic ingredients, with essentially or substantially no inorganic halogen or metal containing constituents eliminates or minimizes the evolution of combustion products which are toxic, solid, or chemically corrosive at low humidity or which form opaque, highly corrosive and persistent condensation products at high humidities. The property of high volumetric energy is obtained by employing a high density, granular, high energy organic compound. These properties together form a unique and novel solid pro pellant having both high energy per unit volume and decomposition gases which cannot be readily detected, which minimize the chemical corrosion of materials with which they come in contact and which have minimal toxicity and irritability to personnel.
The composition constituting the invention may be comprised of the following proportions of ingredients:
to 90 percent of high density, high energy, nonmetallic, non-halogen, granular organic compounds 90 to 10 percent of a propellant matrix essentially free of metals and halogens The high density, high energy, non-metallic, nonhalogen granular organic compounds may consist of any organic solids having said properties. Particularly useful for these compositions are the aliphatic nitramines wherein the nitro group is attached to an amino nitrogen atom. Some representative members of the group are cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ethylenedinitramine (EDNA). Other specific explosives that are suitable are pentaerythritol tetranitrate (PETN) and 2, 2, 2, trinitroethyl 4, 4, 4 trinitrobutyrate (TNETB). The above compounds may be used alone or in mixtures. This listing is by no means exhaustive and other compounds possessing these properties are apparent. The criterion of usefulness of any individual non-metal, non-halogen granular compound is that its density and energy should be high enough, relative to the particular matrix, that its incorporation in the matrix results in a net increase in volumetric energy upon combustion of the mixture.
While the energy contents of HMX and RDX are essentially equal, HMX is preferred where the highest volumetric energy is desired because its density is somewhat higher than that of RDX. Since the cost of RDX is lower than that of HMX there may be propellant applications where the lower cost will favor RDX in spite of the slightly lower volumetric energy. Similarly, mixtures of RDX and HMX in any proportions may be used as required to achieve the best compromise of cost and volumetric energy. The beta polymorph of HMX is preferred because of its lower sensitivity to shock and friction.
The propellant matrix comprises any propellant which is free of halogens and metals such as mixtures of polymers, nitropolymers, and non-metal, nonhalogen containing oxidizers. Propellants that have been found to be particularly suitable for use in the matrix are double base propellants. Double base propellants are compositions containing nitrocellulose and a liquid organic nitrate having the property of gelatinizing nitrocellulose. Propellants that are also solid oxidizers such as ammonium nitrate have been found to be very satisfactory. The sole important consideration in selecting the specific propellant for the propellant matrix, whether it be a double base propellant or a solid oxidizer type, is that it be free of halogens and metals. Accordingly, other propellants that can be utilized in the matrix are immediately evident to one skilled in the explosive art.
When a solid oxidizer type propellant is utilized suitable polymeric binders are used in the binder composition. These polymeric binders may be any of the well known components used in solid propellants for this purpose. To mention a few they are the synthetic rubbers, resins, polymers and nitropolymers such as polysulfide rubber, polybutadiene acrylic acid copolymer, polyurethane, nitropolyurethane and petrinacrylate. These compounds may be used for the butadiene methyl pyridine copolymer in combination with an oxidizer as shown in Example III.
The remaining plasticizers, stabilizers, and ballistic modifiers normally used with the particular propellant constitute the remainder of the binder system and they are immediately evident once the propellant is selected. The propellant matrix as a unit must be essentially free of halogens and metals.
The exact proportions of solid organic filler and propellant matrix are determined by the propellant matrix used, the physical properties and volumetric energy required, and by the method of manufacture desired, whether cast, extruded or compression molded. The highest volumetric energy will be obtained with compositions in which the proportion of organic filler is highest, simultaneously this will give the most brittle physical properties and will require manufacture by compression molding or extrusion. The approximate limit of such composition is represented by 10 percent propellant matrix and 90 percent organic filler except when the matrix selected is one consisting of a binder plus solid oxidizers. In such cases the composition limit will be approximately 10 percent binder and 90 percent total solids (solid oxidizer required in the propellant matrix plus the high density high energy organic filler). For a given propellant matrix more flexible but lower volumetric energy compositions will'be obtained as the amount of propellant matrix is increased and the amount of organic filler is decreased. As the amount of filler is decreased the casting process may be used for manufacture of the propellant. The upper limit of total solids at which casting is feasible is approximately 65 to percent, the exact limit depending upon the particular propellant matrix used. The approximate lower level of useful improvement in volumetric energy occurs at a level of approximately 10 percent of high density, high energy organic filler.
The propellant composition must contain between 10 and percent of the high density non-metallic, nonhalogen organic compound. The propellant matrix, which is essentially free of halogens and metals, is present within the range of from 10 to 90 percent of the total composition. The components that constitute the matrix can be varied within certain proportions. The matrix may consist of 90 to 10 percent by weight of the propellant, i.e., nitrocellulose, 5 to 40 percent by weight of nitroplasticizers or polymeric binders, 0.7 and 9 percent by weight of inert plasticizers, 0.1 to 1 percent by weight of stabilizers and 0.2 to 4 percent by weight of ballistic modifiers.
As examples of preferred compositions containing -Continued EXAMPLEI Cast Composition Basic lead beta resorcylate, percent 2.0 Basic cupric salicylate, percent 2.0 Z-Nitrodiphenylamine, percent 0.5 Carbon Black, percent added (0.02)
The nitrocellulose preferred for use in the above example is that containing an average nitrogen content of approximately 12.6 percent. The nitrocellulose is used in the form of colloided granules of substantially spherical form produced by a nitrocellulose lacquer dispersion process such as that described in US. Pat. No. 2,160,626. The preferred average particle size of the colloided nitrocellulose used is microns or less. The preferred particle size of the HMX is 100 percent through a 20 mesh sieve and 70 to 90 percent retained on a 50 mesh sieve.
A castable explosive composition can be formed from these ingredients when all said ingredients are mixed together. Thereupon the temperature is maintained within a range of from 100 to 140F until a bulk viscosity of approximately 60,000 to 70,000 centipoises is reached. The mixture is then poured into a mold or firing chamber of the desired size and shape. Vacuum is applied during mixing, pouring or both in order to eliminate voids in the castable material. The poured propellant is cured at 120 to 180F until the charge solidifies.
EXAMPLE ll Extruded Composition HMX, percent 56.0 Nitrocellulose (13.15%N), percent 20.0 Nitroglycerin, percent 15.0 Triacetin, percent 4.0 2-Nitrodiphenylamine. percent 1.0 Basic lead beta resorcylate, percent 2.0 Basic cupric salicylate, percent 2.0 Carbon Black, percent added (0.03)
is extruded into the desired shape and the temperature is gradually raised to approximately 140F to drive off the volatile solvent. The sizes of propellant grains which can be produced are limited by the web thickness through which complete solvent removal can be affected generally about one-half inch. Larger propellant grains are prepared by charging small granules prepared as above into a heated press wherein the grains are consolidated and extruded into the desired size and shape.
EXAMPLE lll HMX percent 21.5 Ammonium nitrate percent 60.0 Butadiene/Z methyl 5 pyridine copolymer (/10) percent 1 1.0 Carbon black percent 2.5 Butyl carbitol formal percent 2.2 *Flexamine percent 0.33 Magnesium oxide percent 0.5 Prussian blue percent 2.0
*Brown powder consisting of 6571 of a complex diarylamine ketone reaction product and 3571 of N.N'diphenyl-p-phenylencdiamine The above example illustrates a typical composition consisting of a propellant matrix, which is composed of a solid oxidizer (ammonium nitrate) and a binder system. The high density, high energy, granular, organic explosive is HMX. It has been calculated that there is an increase of 12.5 percent in the volumetric impluse when HMX is present in the composition in place of part of the ammonium nitrate.
Unlimited other possibilities are immediately evident to those skilled in the art of formulating and manufacturing solid propellants by using various types of essentially non metal, non halogen binder systems, such as rubber, resins, polymers and nitropolymers, oxidized with non metal, non halogen oxidizers that are propellants; and to which is added one or a combination of high energy, high density granular organic explosive. The criterion for selecting the high density, high energy organic explosive is that, the density and energy of these materials, either singly or collectively, if more than one is used, must be such that the volumetric impulse of the resulting final propellant mixture shall be higher than that of the original smokeless propellant matrix, consisting of binder system plus oxidizer, prior to incorporation of the high energy, high density organic material.
In the above examples the compositions are not restricted to the ingredients shown nor to the exact percentages shown. Alternates may be used for or in various combinations with the above ingredients, for example: nitroplasticizers such as butanetriol trinitrate, triethylene-glycol dinitrate, diethyleneglycol dinitrate, etc., may be used for or with nitroglycerin; polymeric binders such as polyurethanes, petrinacrylates and others may be used for butadiene; plasticizers such as dimethylsebacate, adiponitrile, dimethylphthalate etc.
may be used for or with triacetin or diethylphthalate;
any high energy, high density, non-metal, non-halogen organic compounds such as RDX etc; may be used for or with HMX; stabilizers such as ethyl ce'ntralite, nmethyl paranitroaniline etc., may be used for or with 2-nitrodiphenylamine; nitrocellulose of any nitrogen content from 12.2 to 13.15 percent may be used; suitable ballistic modifiers such as lead stannate, lead beta resorcylate, cupric salicylate, lead salicylate etc. may be used for or with the basic lead beta resorcylate or basic cupric salicylate.
The compositions given in the examples I and 11 discussed above have been found to produce a volumetric impulse of 14.0 lbs-sec. per cubic inch when burned at a pressure of 1000 psi in a vessel vented with a Venturi nozzle having an expansion ratio of 4 to 1. This is approximately 37 percent higher than the highest volumetric energy existing smokeless propellants of the ammonium nitrate type, and approximately 1 1 percent 5.2 percent triacetin, 0.5 percent diethylphthalate, 2.0 percent basic lead beta resorcylate, 2.0 percent basic cupric salicylate, 0.5 percent 2-nitrodiphenylamine, and 0.02 percent carbon black.
2, A solid propellant composition comprising, by weight, 56 percent cyclotetramethylene tetranitramine wherein percent of the particles pass a 50 mesh sieve but are retained on a 200 mesh sieve and 25 percent of the particles have an average size of 15 microns, 20 percent nitrocellulose, 15 percent nitroglycerin, 4 percent triacetin, 1 percent 2-nitrodiphenylamine, 2 percent basic lead beta resorcylate, 2 percent basic cupric salicylate, and 0.03 percent carbon black.

Claims (2)

1. A SOLID PROPELLANT COMPOSITION COMPRISING, BY WEIGHT, 50 PERCENT CYCLOTETRAMETHYLENE TETRANITRAMINE, 17.7 PERCENT NITROCELLULOSE, 22.1 PERCENT NITROGLYCERINM 5.2 PERCENT TRIACETIN, 0.5 PERCNT DIETHYLPHTHALATE, 2.0 PERCENT BASIC LEAD BETA RESORCYLATE, 2.0 PERCENT BASIC CUPIC SALICYLATE, 0.5 PERCENT 2-NITRODIPHENYLAMINE, AND 0.02 PERCENT CARBON BLACK.
2. A solid propellant composition comprising, by weight, 56 percent cyclotetramethylene tetranitramine wherein 75 percent of the particles pass a 50 mesh sieve but are retained on a 200 mesh sieve and 25 percent of the particles have an average size of 15 microns, 20 percent nitrocellulose, 15 percent nitroglycerin, 4 percent triacetin, 1 percent 2-nitrodiphenylamine, 2 percent basic lead beta resorcylate, 2 percent basic cupric salicylate, and 0.03 percent carbon black.
US050045A 1960-08-16 1960-08-16 Composite double base propellant with HMX oxidizer Expired - Lifetime US3878003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US050045A US3878003A (en) 1960-08-16 1960-08-16 Composite double base propellant with HMX oxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US050045A US3878003A (en) 1960-08-16 1960-08-16 Composite double base propellant with HMX oxidizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US39848464A Division 1964-09-21 1964-09-21

Publications (1)

Publication Number Publication Date
US3878003A true US3878003A (en) 1975-04-15

Family

ID=21963093

Family Applications (1)

Application Number Title Priority Date Filing Date
US050045A Expired - Lifetime US3878003A (en) 1960-08-16 1960-08-16 Composite double base propellant with HMX oxidizer

Country Status (1)

Country Link
US (1) US3878003A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014720A (en) * 1975-10-28 1977-03-29 The United States Of America As Represented By The Secretary Of The Army Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN
US4014719A (en) * 1975-10-23 1977-03-29 The United States Of America As Represented By The Secretary Of The Army Flexible explosive composition comprising particulate RDX, HMX or PETN and a nitrostarch binder plasticized with TEGDN or TMETN
US4029529A (en) * 1967-07-12 1977-06-14 The United States Of America As Represented By The Secretary Of The Navy Crosslinked carboxyl containing polymer and nitrocellulose as solid propellant binder
US4339288A (en) * 1978-05-16 1982-07-13 Peter Stang Gas generating composition
US5009728A (en) * 1990-01-12 1991-04-23 The United States Of America As Represented By The Secretary Of The Navy Castable, insensitive energetic compositions
FR2680782A1 (en) * 1981-07-16 1993-03-05 Poudres & Explosifs Ste Nale Moulding process for the manufacture of a block of dual-base rocket fuel with a high nitramine content and block of rocket fuel obtained by this process
FR2681065A2 (en) * 1981-07-16 1993-03-12 Poudres Explosifs Ste Nale Moulding process for the manufacture of a block of dual-base rocket fuel with a high nitramine content and block of rocket fuel obtained by this process
US20040201446A1 (en) * 2003-04-11 2004-10-14 Akira Matsuda Conductive substrate with resistance layer, resistance board, and resistance circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622277A (en) * 1947-09-29 1952-12-23 Bonell Frans Tore Baltzar Method for producing rocket powder
US2783138A (en) * 1944-04-11 1957-02-26 Aerojet General Co Propellant compositions
US2852359A (en) * 1958-09-16 Method of manufacturing sheaper
US2916996A (en) * 1956-02-29 1959-12-15 Olin Mathieson Propellent powder
US2967098A (en) * 1954-10-26 1961-01-03 Atlantic Res Corp Nitrocellulose compositions and method for making same
US2995430A (en) * 1961-08-08 Composite propellant reinforced with
US3000718A (en) * 1948-12-20 1961-09-19 Aerojet General Co Propellant compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852359A (en) * 1958-09-16 Method of manufacturing sheaper
US2995430A (en) * 1961-08-08 Composite propellant reinforced with
US2783138A (en) * 1944-04-11 1957-02-26 Aerojet General Co Propellant compositions
US2622277A (en) * 1947-09-29 1952-12-23 Bonell Frans Tore Baltzar Method for producing rocket powder
US3000718A (en) * 1948-12-20 1961-09-19 Aerojet General Co Propellant compositions
US2967098A (en) * 1954-10-26 1961-01-03 Atlantic Res Corp Nitrocellulose compositions and method for making same
US2916996A (en) * 1956-02-29 1959-12-15 Olin Mathieson Propellent powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029529A (en) * 1967-07-12 1977-06-14 The United States Of America As Represented By The Secretary Of The Navy Crosslinked carboxyl containing polymer and nitrocellulose as solid propellant binder
US4014719A (en) * 1975-10-23 1977-03-29 The United States Of America As Represented By The Secretary Of The Army Flexible explosive composition comprising particulate RDX, HMX or PETN and a nitrostarch binder plasticized with TEGDN or TMETN
US4014720A (en) * 1975-10-28 1977-03-29 The United States Of America As Represented By The Secretary Of The Army Flexible explosive composition comprising particulate RDX, HMX, or PETN and a high viscosity introcellulose binder plasticized with TEGDN
US4339288A (en) * 1978-05-16 1982-07-13 Peter Stang Gas generating composition
FR2680782A1 (en) * 1981-07-16 1993-03-05 Poudres & Explosifs Ste Nale Moulding process for the manufacture of a block of dual-base rocket fuel with a high nitramine content and block of rocket fuel obtained by this process
FR2681065A2 (en) * 1981-07-16 1993-03-12 Poudres Explosifs Ste Nale Moulding process for the manufacture of a block of dual-base rocket fuel with a high nitramine content and block of rocket fuel obtained by this process
US5009728A (en) * 1990-01-12 1991-04-23 The United States Of America As Represented By The Secretary Of The Navy Castable, insensitive energetic compositions
US20040201446A1 (en) * 2003-04-11 2004-10-14 Akira Matsuda Conductive substrate with resistance layer, resistance board, and resistance circuit board
US7215235B2 (en) 2003-04-11 2007-05-08 Furukawa Circuit Foil Co., Ltd Conductive substrate with resistance layer, resistance board, and resistance circuit board

Similar Documents

Publication Publication Date Title
US4938813A (en) Solid rocket fuels
US6059906A (en) Methods for preparing age-stabilized propellant compositions
US4002514A (en) Nitrocellulose propellant composition
US5325782A (en) Insensitive gun propellant
US3878003A (en) Composite double base propellant with HMX oxidizer
EP0520104A1 (en) Non-self-deflagrating fuel compositions for high regression rate hybrid rocket motor application
KR101649517B1 (en) Propellant Compositions Comprising Nitramine Oxidants
US6364975B1 (en) Ammonium nitrate propellants
US3764420A (en) Suppression of combustion instability by means of pbi fibers
US6024810A (en) Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer
US3943209A (en) High volumetric energy smokeless solid rocket propellant
US3953259A (en) Pressure exponent suppressants
US4570540A (en) LOVA Type black powder propellant surrogate
JP2002511829A (en) Ammonium nitrate propellant containing molecular sieve
US3732130A (en) Gun propellant containing nonenergetic plasticizer,nitrocellulose and triaminoguanidine nitrate
US3732131A (en) Gun propellant containing nitroplasticized nitrocellulose and triaminoguanidine nitrate
US5798481A (en) High energy TNAZ, nitrocellulose gun propellant
US3473982A (en) Nitrocellulose explosive containing a charcoal binder-oxidizer mixture
US4707199A (en) Non nitroglycerin-containing composite-modified double-base propellant
US3971681A (en) Composite double base propellant with triaminoguanidinium azide
US2995430A (en) Composite propellant reinforced with
US4239073A (en) Propellants in caseless ammunition
US3865659A (en) Nitrocellulose propellant composition containing metal and triaminoguanidinium hydrazinium diazide
Szala Development trends in artillery ammunition propellants
AU756188B2 (en) Dinitrotoluene (DNT)-free single base propellant