US3877510A - Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern - Google Patents

Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern Download PDF

Info

Publication number
US3877510A
US3877510A US324541A US32454173A US3877510A US 3877510 A US3877510 A US 3877510A US 324541 A US324541 A US 324541A US 32454173 A US32454173 A US 32454173A US 3877510 A US3877510 A US 3877510A
Authority
US
United States
Prior art keywords
spray
liquid coolant
nozzle body
nozzle
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US324541A
Inventor
Richard J Tegtmeier
Jimmy L Helms
Karl L Backhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Concast Inc
Original Assignee
Concast Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concast Inc filed Critical Concast Inc
Priority to US324541A priority Critical patent/US3877510A/en
Priority to AR19902074D priority patent/AR199020A1/en
Priority to JP744974A priority patent/JPS535847B2/ja
Priority to AT26574A priority patent/AT342798B/en
Priority to JP745274A priority patent/JPS534805B2/ja
Priority to CH43574A priority patent/CH564991A5/xx
Priority to JP745174A priority patent/JPS535849B2/ja
Priority to SU7401985255A priority patent/SU579868A3/en
Priority to JP745074A priority patent/JPS535848B2/ja
Priority to CA190,223A priority patent/CA1028822A/en
Priority to FI97/74A priority patent/FI55304C/en
Priority to ZA00740279A priority patent/ZA74279B/en
Priority to TR18001A priority patent/TR18001A/en
Priority to IT19447/74A priority patent/IT1003408B/en
Priority to SE7400477A priority patent/SE400914B/en
Priority to DE19742401649 priority patent/DE2401649B2/en
Priority to NL7400511A priority patent/NL7400511A/xx
Priority to BR74249A priority patent/BR7400249D0/en
Priority to FR7401481A priority patent/FR2213824B1/fr
Priority to ES422533A priority patent/ES422533A1/en
Priority to GB211374A priority patent/GB1462642A/en
Priority to ES422534A priority patent/ES422534A1/en
Priority to AU64582/74A priority patent/AU473697B2/en
Priority to BE139859A priority patent/BE809804A/en
Priority to GB211474A priority patent/GB1462643A/en
Priority to US05/447,006 priority patent/US3935896A/en
Application granted granted Critical
Publication of US3877510A publication Critical patent/US3877510A/en
Assigned to SMS CONCAST INC. reassignment SMS CONCAST INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE ON 08/08/1984 Assignors: CONCAST INCORPORATED
Assigned to SMS CONCAST INC. reassignment SMS CONCAST INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CONCAST INCORPORATED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/046Outlets formed, e.g. cut, in the circumference of tubular or spherical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • ABSTRACT A method of, and apparatus for, cooling a continuously cast strand, particularly a steel strand, in a secondary cooling zone of a continuous casting plant wherein a spray nozzle disposed at the region of at least two consecutively spaced guiding means produces a spray pattern of liquid coolant, typically water, which impinges the surface of the cast strand with a substantially uniform distribution of the coolant and a substantially uniform impingement force at least over the major portion of the transverse width dimension of such cast strand.
  • the invention further contemplates feeding the liquid coolant into the nozzle so as to flow initially essentially in the axial extent thereof and then to depart therefrom in a direction extending transversely with respect thereto to form such spray pattern of liquid coolant.
  • PATENTEDAPR 1 5197s APPARATUS FOR COOLING A CONTINUOUSLY CAST STRAND INCORPORATING COOLANT SPRAY NOZZLES PROVIDING CONTROLLED SPRAY PATTERN BACKGROUND OF THE INVENTION
  • the present invention relates to a new and improved method of, and apparatus for, cooling a continuously cast strand, particularly castings having a substantially rectangular cross-sectional configuration, and especially in a steel strand.
  • Continuous casting operations employ the technique of casting liquid metal into a cooled open-end mold, also known in the art as a continuous casting mold, and the cast strand formed therein is continuously withdrawn therefrom. After the casting has been withdrawn from the continuous casting mold, it has not as yet completely solidified, therefore additional heat must be removed at a secondary cooling zone.
  • a secondary cooling zone During the casting of strands of rectangular cross-section, for example blooms or slabs, it is conventional practice to spray water, functioning as a liquid coolant, in the form of flat spray patterns or fans onto the surface of the continuously cast strand.
  • a common practice in the art is to arrange a plurality of adjacently situated spray nozzles having a flat spraying characteristic in such a manner that the spray patterns or fans emanating from neighboring spray nozzles slightly overlap one another in order to strive to attain uniform cooling across the width of the continuously cast strand.
  • This prior art arrangement of spray nozzles which aims at providing a relatively uniform water distribution across the width of the continuously cast strand, can only operate over small transverse widths of the strand. As a result, only discrete surface portions across the width of the strand can be impinged by a single spray pattern or fan. Consequently, it is a requirement of this type of cooling system that a plurality of nozzles be arranged in respective rows across the width of the strand.
  • Another cooling arrangement of the state-of-the-art contemplates the use of only a single spray nozzle which is intended to spray the liquid coolant over the complete width of a slab.
  • a decisive drawback of this arrangement resides in the fact that owing to the characteristics of the conventionally employed nozzles, the density of the spray water and thus the cooling effect at the central region of the slab is much greater than at the outer regions or portions. Additionally, the impingement forces are not uniform and the actual area of impingement by the spray pattern follows the course of a curved line or are extending across the width of the slab. Moreover, the spray pattern or fan is not sharply defined, in fact, is unstable as the pressure varies.
  • Modern steel casting plants must be extremely versatile in operation and capable of producing a wide range of slab sections and qualities which, in turn, requires variations of the casting speed.
  • Metallurgical considerations make it incumbent to adapt the quantity of sprayed cooling water to the amount of heat intended to be removed within the secondary cooling zone, that is to say, as a function ofthe casting speed.
  • the amount of cooling water is controlled by the water pressure prior to entering the relevant spray nozzle. It is also desirable to maintain the distribution of the spray water as constant as possible.
  • the nozzles of conventional design heretofore emmployed in the cooling systems of the prior art continuous casting plants possess the drawback that as the pressure of the coolant varies, the spray water distribution also changes considerably and to a certain extent also the spray angle. Consequently, this again causes uncontrollable cooling of the continuously cast strand.
  • Another object of the present invention aims at simplifying the construction of a continuous casting plant by replacing the conventional design of plural spray nozzles arranged in respective rows across the strand transversely with respect to its longitudinal axis, by a single spray nozzle in each row.
  • a further object of the present invention is directed to the provision of a novel cooling nozzle for a continuous casting plant, which is simple in construction and design, extremely effective in providing substantially uniform cooling of the cast strand, affording a relatively large spray angle, and providing substantially uniform distribution of the coolant and an essentially constant impingement force over at least the major part of the transverse width dimension of the strand.
  • Another object of this invention is related to the provision of a new and improved construction of nozzle used in the cooling system of a continuous casting plant and providing a sharply defined spray pattern and an impingement area therefor defined by substantially straight parallel lines and which impingement area extends extensively perpendicular to the lengthwise axis of the strand across the width thereof.
  • a further object of this invention contemplates the provision of a new and improved construction of spray nozzle for the cooling system of a continuous casting plank which produces substantially uniform distribution and a substantially constant spray angle of the spray water over a wide range of coolant pressures and produces an essentially stable spray pattern over a wide range of spray angles.
  • Yet a further object of the present invention relates to an improved construction of spray nozzle for use in the cooling system of a continuous casting plant wherein the liquid coolant enters the nozzle in one direction and departs therefrom as a spray pattern in another direction with respect to the incoming flow direction of the coolant, which spray pattern has a large width in the direction of the strand width, but a small and substantially uniform thickness in the direction of the longitudinal axis of the strand.
  • the method of cooling a continu ously cast strand entails arranging one spray nozzle for liquid coolant at the region of two consecutive guiding means for the cast strand moving along a predetermined path of travel, and moving the cast strand along the predetermined path of travel defined by the spaced guiding means.
  • Liquid coolant is delivered to the spray nozzle and there is produced therefrom one substantially flat spray pattern which is directed towards the surface of the moving cast strand.
  • the flat spray pattern of liquid coolant impinges the strand at an impingement area which extends transversely across the surface of the cast strand, and with essentially uniform distribution of the coolant across at least the major portion or extent of the width of the cast strand, in order to substantially uniformly cool the strand across its transverse width dimension or extent.
  • a further aspect of the invention infeeds the liquid coolant into the spray nozzle in a first direction and has it depart therefrom in a second direction which differs from said first direction, typically to infeed the coolant in the lengthwise or axial flow direction of the nozzle and to have the liquid coolant depart therefrom in a direction transversely with regard to such lengthwise direction.
  • a still further aspect of the invention contemplates controlling the spray angle of the spray pattern or fan of coolant emerging from a single nozzle which acts across the transverse width of the strand.
  • cooling system for cooling a continuously cast strand in a secondary cooling zone of a continuous casting plant, which comprises, in combination, a series of consecutively arranged spaced guiding means for guiding the continuously cast strand along a predetermined path of travel.
  • a single nozzle is arranged at the region of at least two consecutively arranged guiding means for producing a substantially flat spray pattern or fan of liquid coolant across essentially the entire width of the cast strand with substantially uniform distribution ofliquid coolant across at least the major portion of the transverse width of the cast strand, and preferably with substantially uniform impingement force of the coolant also over at least the major part of its transverse width, in order to substantially uniformly cool the strand across its transverse width dimension.
  • Each such nozzle comprises a nozzle body member having an inflow means for the liquid coolant and an outflow means including a preferably slotted outlet opening for the discharge thereof.
  • the length of the slotted outlet opening for a given inner diameter of the nozzle body member controls the spray angle of the spray pattern or fan in a plane which extends substantially transversely across the width of the strand.
  • the inflow means and outflow means of the nozzle body member are arranged in relation to one another such that the inflow of liquid coolant through the nozzle body member towards the slotted outlet opening is in a direction which differs from the discharge of the liquid coolant out of the slotted outlet opening.
  • the inflow direction of the liquid coolant through the nozzle body member is essentially in the lengthwise or axial direction thereof whereas the outflow of the liquid coolant from the slotted outlet opening is in a transverse direction with respect to the lengthwise or axial direction of the nozzle body member, and essentially extends in radial direction with regard thereto.
  • the new cooling system of this development allows for a much simpler design of the continuous casting plant with respect to the secondary cooling zone through the beneficial substitution of the heretofore employed plurality of nozzles in a given row for cooling the casting by just a single nozzle capable of spraying over the entire or essentially the entire width of the cast strand.
  • an essentially uniform spray water density producing an essentially uniform distribution of the liquid coolant and a substantially constant impingement force at least over the major extent of the transverse width dimension thereof.
  • the cooling equipment of this invention allows maintaining the distance between two consecutive guiding means, typically guide rollers, at an absolute minimum inasmuch as the emanating spray pattern of coolant has a narrow sharply defined configuration and provides an impingement area bounded by substantially straight parallel lines extending transversely across the strand surface.
  • FIG. I is a fragmentary top plan view of a cooling system or apparatus designed in accordance with the teachings of the present invention for substantially uniformly cooling the surface of a continuously cast strand;
  • FIG. 2 is a cross-sectional view of the embodiment depicted in FIG. 1, taken substantially along the line II-II thereof;
  • FIG. 3 is an end view of the arrangement of FIG. 1, looking from the left side thereof, and depicting the spray pattern or fan emanating from each spray nozzle;
  • FIG. 4 is a partial longitudinal sectional view ofa first embodiment of nozzle construction for use for instance in the cooling system of FIGS. 1-3 inclusive;
  • FIG. 5 is a cross-sectional view of the nozzle depicted in FIG. 4, taken substantially along the line VV thereof;
  • FIG. 6 is-a bottom view of the nozzle of FIG. 4, the showing of FIG. 6 being turned 90 in vertical direction to facilitate the illustration thereof;
  • FIG. 7 is a fragmentary longitudinal sectional view of another embodiment of nozzle equipped with a modified construction of its end wall or terminal portion for use for instance in the cooling system of FIGS. 1-3;
  • FIG. 8 is a fragmentary longitudinal sectional view of a variant construction of nozzle for use for instance in the cooling system of FIGS. 1-3;
  • FIG. 9 illustrates a still further design of nozzle for use for instance in the cooling system of FIGS. 1-3.
  • FIGS. 10 and 11 illustrate a still further embodiment of nozzle for use for instance in the cooling system of FIGS. 1 to 3.
  • FIGS. 1 and 2 there is shown a portion of the secondary cooling zone of a continuous casting plant which incorporates longitudinally spaced guiding means, here in the form of'guide rollers 1 which define a path of travel for a continuously cast strand 2 within such secondary cooling zone.
  • the rollers 1 are typically located at opposite surfaces of the throughpassing continuously cast strand 2.
  • each spray nozzle 5 there is arranged at the region of each two consecutive neighboring guide rollers l a single spray nozzle 5 from which emanates a spray fan or pattern 3 of liquid coolant, usually water, which is directed between the associated neighboring guide rollers l, as best seen by referring to FIG. 3.
  • a spray fan or pattern 3 of liquid coolant usually water
  • Each such spray pattern impinges the confronting surface of the cast strand 2 at an impingement area 37 which is defined by substantially straight parallel lines and which impingement area extends essentially transversely across the strand and preferably covers the entire width thereof.
  • each spray fan or pattern 3 extensively moves into the associated roller gap between consecutive guide rollers 1.
  • the spray nozzles 5 which constitute an important part of the cooling system, and which will be disclosed in greater detail hereinafter in conjunction with FIGS. 4-11 inclusive, are connected in any convenient fashion, for instance through the use of coolant infeed conduits 8, with a common coolant feeder or distributor pipe 9, which, in turn, receives liquid coolant from a convenient supply source.
  • the common feeder or distributor pipe 9 constitutes a convenient means for supplying and distributing the liquid coolant to the individual spray nozzles 5 through the agency of their associated conduits 8.
  • the spray nozzles 5 are mounted at a certain distance, generally indicated by reference character 12 in FIG. 2, from the confronting surface of the cast strand 2, and this distance is selected as a function of the spray angle 13 so as to provide impingement of liquid coolant across the width of the strand.
  • the coolant spray pattern which emanates from the spray nozzle 5 in each case possesses a beneficial flat characteristic, for instance as indicated by phantom line 14 for the slab width 7, in other words, the density of the spray water and the distribution thereof at the impingement area of the cast strand is substantially uniform or constant at least over the major extent of the transverse width dimension thereof, and the strand is advantageously cooled in a uniform manner across its transverse width dimension.
  • the spray nozzles tend to generally produce an impingement force which is also substantially constant over at least the major transverse width dimension of the cast strand.
  • the spray pattern or fan 3 which impinges the surface of the cast strand 2 emerges from a slotted outlet opening of the associated spray nozzle 5 which will be described in greater detail hereinafter.
  • this slotted outlet opening is located in a plane which extends across the width of the cast strand and perpendicular to the lengthwise axis of such cast strand.
  • cooling water can be increased by appropriately adjusting the coolant or water pressure as is well known in this art. Purely by way of example it is here mentioned that the pressure of the coolant water has been adjusted over a range of approximately 10 psig to psig.
  • the spray characteristics do not essentially change throughout a relatively wide range of inlet water pressures, that is to say, the curve of the spray characteristics remains substantially rectangular over the width of the strand, wherefore it is possible to cool slabs of various cross-sections or chemical compositions with one and the same nozzle while producing substantially constant or uniform water distribution and substantially constant impingement force over at least the major extent of the transverse width of such slab.
  • the distributor infeed or supply pipe 9 together with the spray nozzles 5 can be selectively shifted towards or away from the surface of the continuously cast strand.
  • the distributor pipe 9 can be moved in both directions, as schematically indicated by the double-headed arrow 15 so as to assume a selectable spacing from the strand surface.
  • Each spray pattern or fan is sharply defined and passes between the guide rollers 1 without impinging or essentially impinging upon the guide rollers or producing uneven cooling due to a disturbed spray pattern.
  • the spray nozzle 5 incorporates a nozzle body member 20, for instance in the form of a tubular portion or nipple 21 closed at one end by a fixed end wall 22 and provided at the other end with a threaded portion 23 adapted to be connected with an associated conduit, such as the conduit 8 for the liquid coolant, water for instance, which is supplied by the distributor pipe 9.
  • the end wall 22 is shown formed integral with the tubular portion 21 of the nozzle body member 20.
  • inflow means incorporating an inlet opening 24 which communicates with an axially directed flow passageway or passage 26 which extends to the region of the end wall 22.
  • the axially directed flow passage 26 is bounded by the smooth inner wall 38 of the nozzle body member 20. Pressurized coolant is introduced through the inlet opening 24 and moves axially through the passage 26.
  • the nozzle 5 is also provided with outflow means incorporating a slotted outlet opening 29.
  • the tubular portion 21 is thus shown provided with a slotted outlet opening 29 which forms a discharge for the water emanating from the nozzle 5 in the form of a spray fan or pattern 3 having a large width in the direction of the strand width, but a small and uniform thickness in the direction of the longitudinal axis of the strand.
  • the fiow direction of the emerging water, as indicated by the arrow 30, will be recognized to be different from the flow direction 25 of the incoming water and its axial flow through the nozzle passage 26.
  • the flow directions will be seen to be essentially mutually perpendicular to one another, the incoming water flowing axially through the tubular portion 21 and the outflowing water extending transversely with regard thereto, and specifically substantially radially with respect to the axial flow direction through the tubular portion 21.
  • the outlet opening 29 has a substantially rectangular slot-like configuration and incorporates the wide boundary faces 31 and the narrow faces 32.
  • the smallest mutual distance 33 between the narrow faces 32, as indicated in FIG. 5, determines the spray angle 13 of the spray pattern in a direction transversely with respect to the strand withdrawal direction.
  • the nozzle is mounted in the cooling system in such a manner that the wide faces 31 of the slotted outlet opening 29 are located essentially perpendicular to the lengthwise axis of the cast strand and similarly essentially perpendicular to the lengthwise axis 34 of the tubular portion 21.
  • the spacing or distance 35 between the wide faces 31 defines the width or thickness 36 of the impingement area 37 of the spray pattern extending in the axial direction of the cast strand for a given spacing between the relevant nozzle and strand surface.
  • the cross-section of the slotted outlet opening 29 is smaller than the cross-section of the inlet opening 24.
  • tubular portion 21 of the nozzle body member 20 is closed at one end by a closure means, shown for instance in the form of the stationary or fixed end wall 22.
  • the inner surface 42 of this end wall 22 which comes into contact with the incoming water is spaced a certain distance, as indicated by reference character 43, from the slotted outlet opening 29 in order to form a cavity or chamber where there can occur a certain stowing or build-up and atten dant deceleration of the water.
  • FIG. 7 there is shown a somewhat modified construction of nozzle 5 from that depicted in FIGS. 46, wherein in this case the tubular portion 21 is closed by a movable end cap 44 threaded thereon.
  • this end cap 44 it is possible to vary the spacing 43 between the inner surface 42 of the closure means defined by such displaceable end cap and the slotted outlet opening 29. By varying such spacing, it is possible to appropriately incline the spray fan or pattern 3 with respect to the strand surface to a certain extent, if such is necessary.
  • FIG. 7 essentially corresponds to that of FIGS. 4-6, it differs to the extent that the closure means is in the form of an axially shiftable end cap 44.
  • FIG. 7 An actual arrangement for cooling a slab of thickness 9 inches and width 36 inches employed a spray nozzle of the type depicted in FIG. 7, mounted at a distance 12 from the surface of the slab which amounted to 18 inches.
  • This spray nozzle 5 was provided with a sub stantially rectangular slot or slotted outlet opening 29 which was milled or otherwise suitably formed at the nozzle body member consisting of a one-half inch nipple with an internal diameter of 0.625 inches.
  • the slot width in other words the spacing 35 between the wide faces 31 of the slotted outlet opening 29 amounted to 0.067 inches.
  • This nozzle operated with a spray angle of about 90.
  • the distance 43 of the surface 42 of the end closure wall 22 to the slot 29 was 1 inch.
  • the thickness 36 of the impingement area amounted to three-fourths inch. It was found that, in comparison to results which can be obtained with prior art constructions of nozzles, the water distribution and the impingement force were substantially quite uniform or constant at least over the major part of the transverse width dimension of the slab.
  • the spray nozzles of this development can be considered to provide substantially uniform water distribution and impingement force at the surface of the slab or casting.
  • FIG. 8 there is illustrated a further embodiment of spray nozzle 5 which to a large extent is similar to the construction of FIG. 7.
  • the movable end cap 44 of the embodiment of FIG. 7 is replaced by an axially shiftable piston-like plug 44 inserted into opening 40 of the tubular portion 21.
  • the plug 44 can be retained in desired position by any suitable fixing means, such as a screw 45.
  • the impingement or inner surface 42 of the plug 44 is curved, as shown.
  • FIG. 9 illustrates a variant construction of spray nozzle 5 which can be utilized in conjunction with the exemplary illustrated casting cooling system.
  • the nozzle 5 will be seen to again comprise a nozzle body member 20 in the form of a tubular portion or nipple 21 which is provided with a plug-like closure insert member 46.
  • the plug-like closure insert member 46 is provided with a machined bore 47 defining an axially extending throughflow passage 48 between the inlet opening 24 and the inner surface 42 of the end wall .22.
  • This plug-like closure insert member 46 is also provided with an outlet opening 52 for the efflux of the liquid coolant.
  • the tubular portion 21 of the nozzle surrounds the plug-like closure insert member 46 and such tubular portion 21 is provided with the slotted outlet opening 29 as above discussed.
  • the width 53 of the outlet opening 52 of the plug-like closure insert member 46 is greater in the axial extent thereof than the width 35 of the slotted outlet opening. 29 of the tubular portion or nipple 21, for reasons to be explained more fully hereinafter.
  • the angular extent or length .of such outlet opening 52 also may be advantageously greater in the circumferential direction of the insert member 46 than the angular extent or length of the slotted outlet opening 29 in the circumferential direction of the tubular portion 21, again for reasons to be explained more fully hereinafter.
  • nozzle 5 of FIG. 9 offers a number of notable advantages. Firstly, owing to the aforementioned different widths 53 and 35 of the openings 52 and 29 respectively, and by selectively axially shifting the tubular portion 21 in the direction of the lengthwise axis of the plug-like closure insert member 46, and relative to the outlet opening 52 thereof, it is possible to shift the pattern of the coolant spray so as to assume a desired position between the guide rollers l of the casting cooling system. In this way the coolant spray is directed at least for the most part into the intermediate space between each two neighboring guide rollers.
  • FIGS. and 11 there is depicted a still further constructional embodiment of spray nozzle 5 which to a large extent is similar to the nozzle construction of FIG. 8.
  • the axially shiftable piston-like plug 44" is provided with a flat inner surface 42 as opposed to the curved inner surface of the plug 44 of the embodiment of FIG. 8.
  • this embodiment of nozzle 5 is substantially identical to that discussed above with respect to FIG. 8, wherein however the fixing screw means 45 has been conveniently omitted from the showing of FIGS. 10 and 11 to simplify the illustration.
  • the spray pattern 3 While maintaining the same operating conditions but enlarging the spacing 43 to the order of one-eighth inch, it was found that the spray pattern 3 now is substantially linear i.e., bounded by substantially straight parallel lines but still appreciably laterally deviates or angles-off to one side of the plane 55 and the thickness 56 of the spray pattern in the lengthwise direction of the strand was exceedingly small. As this spacing 43 was increased to one-fourth inch, the aforementioned linear spray pattern 3 still predominantly deviated to one side of the central plane although a light coolant spray also appeared at the opposite side of such central plane 55. In this case the thickness 56 of the spray pattern 3 increased but the predominant amount of coolant was heavy at one side of the plane 55 and light at the opposite side thereof.
  • the spacing 43 plays a significant role not only upon the configuration of the spray pattern itself but also upon its spatial orientation and by maintaining such spacing so as to amount to at least one-half inch it is possible to produce a spray pattern which is substantially symmetrical with respect to the plane containing the central axis of the slotted outlet opening 29 and having a desired small and uniform thickness in the direction of the lengthwise or longitudinal axis of the casting.
  • the nozzle constructions depicted in FIGS. 7-11 afford the advantage that cleaning of such nozzles to free same, for instance, from mill scale, asbestos particles, or other foreign matter which might tend to collect, can be easily carried out since the closure member in each instance can be readily removed.
  • the nozzle body member may possess an internal diameter in the range of about 0.6 to 1.6 inches, a spacing 43 between the outlet opening 29 and the end closure wall or inner surface 42 of at least one-half inch, and typically in the range of about V2 to 4 inches, and a width 35 of the outlet opening 29 in the range of about 0.05 to 0.07 inches.
  • the spray angle 13 may be, for instance, in a range of 60 to
  • the cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a displaceable plug which can be positionally adjusted in the direction of the lengthwise axis of the nozzle body member, and means for fixing the plug in desired adjusted position.
  • nozzle body member possesses an internal diameter in the range of about 0.6 inches to 1.60 inches, and a width of the slotted outlet opening in the range of 0.05 to 0.07 inches.
  • a cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant
  • a cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant
  • said outflow means incorporating means defining a substantially slotted outlet opening at-said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface ofthe cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening ofthe
  • the cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a displaceable plug which can be positionally adjusted in the direction of the lengthwise axis of the nozzle body member, and means for. fixing the plug in desired adjusted position.
  • a cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand.
  • said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for.
  • said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface
  • a cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant andoutflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle Page 3 l 6 body member with a supply iltfeed for the liquid coolant, said inflow means'and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Nozzles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

A method of, and apparatus for, cooling a continuously cast strand, particularly a steel strand, in a secondary cooling zone of a continuous casting plant wherein a spray nozzle disposed at the region of at least two consecutively spaced guiding means produces a spray pattern of liquid coolant, typically water, which impinges the surface of the cast strand with a substantially uniform distribution of the coolant and a substantially uniform impingement force at least over the major portion of the transverse width dimension of such cast strand. The invention further contemplates feeding the liquid coolant into the nozzle so as to flow initially essentially in the axial extent thereof and then to depart therefrom in a direction extending transversely with respect thereto to form such spray pattern of liquid coolant.

Description

United States Patent [1 1 Tegtmeier et al.
[ Apr. 15, 1975 APPARATUS FOR COOLING A CONTINUOUSLY CAST STRAND INCORPORATING COOLANT SPRAY NOZZLES PROVIDING CONTROLLED SPRAY PATTERN [75] Inventors: Richard J. Tegtmeier, Newtown,
Pa.; Jimmy L. Helms, Ridgewood; Karl L. Backhaus, West New York,
both of NJ.
[73] Assignee: Concast Incorporated, New York,
[22] Filed: Jan. 16, 1973 [21] Appl. No.: 324,541
[52] US. Cl. 164/283 5; 164/89; 239/550; 239/598 [51] Int. Cl. B22d 11/12 [58] Field of Search 164/89, 283 R, 283 S; 239/568, 597, 598
.[56] References Cited UNITED STATES PATENTS 1,542,583 6/1925 Roberts 239/597 X 2,284,503 5/1942 Williams 164/283 R X 2,997,244 8/1961 Demaison 239/598 3,341,133 9/1967 Hruby et a1 239/598 3,412,936 11/1968 Boucher et a1. 239/597 X 3,468,362 9/1969 Burkhardt et a1 164/89 1, l l I/ l Primary Examiner-R. Spencer Annear Attorney, Agent, or Firm-Werner W. Kleeman [57] ABSTRACT A method of, and apparatus for, cooling a continuously cast strand, particularly a steel strand, in a secondary cooling zone of a continuous casting plant wherein a spray nozzle disposed at the region of at least two consecutively spaced guiding means produces a spray pattern of liquid coolant, typically water, which impinges the surface of the cast strand with a substantially uniform distribution of the coolant and a substantially uniform impingement force at least over the major portion of the transverse width dimension of such cast strand. The invention further contemplates feeding the liquid coolant into the nozzle so as to flow initially essentially in the axial extent thereof and then to depart therefrom in a direction extending transversely with respect thereto to form such spray pattern of liquid coolant.
18 Claims, 11 Drawing Figures -"''f-"""" IT- I 13 ,2
PATENTEDAPR 1 5197s APPARATUS FOR COOLING A CONTINUOUSLY CAST STRAND INCORPORATING COOLANT SPRAY NOZZLES PROVIDING CONTROLLED SPRAY PATTERN BACKGROUND OF THE INVENTION The present invention relates to a new and improved method of, and apparatus for, cooling a continuously cast strand, particularly castings having a substantially rectangular cross-sectional configuration, and especially in a steel strand.
Continuous casting operations employ the technique of casting liquid metal into a cooled open-end mold, also known in the art as a continuous casting mold, and the cast strand formed therein is continuously withdrawn therefrom. After the casting has been withdrawn from the continuous casting mold, it has not as yet completely solidified, therefore additional heat must be removed at a secondary cooling zone. During the casting of strands of rectangular cross-section, for example blooms or slabs, it is conventional practice to spray water, functioning as a liquid coolant, in the form of flat spray patterns or fans onto the surface of the continuously cast strand. A common practice in the art is to arrange a plurality of adjacently situated spray nozzles having a flat spraying characteristic in such a manner that the spray patterns or fans emanating from neighboring spray nozzles slightly overlap one another in order to strive to attain uniform cooling across the width of the continuously cast strand. This prior art arrangement of spray nozzles, which aims at providing a relatively uniform water distribution across the width of the continuously cast strand, can only operate over small transverse widths of the strand. As a result, only discrete surface portions across the width of the strand can be impinged by a single spray pattern or fan. Consequently, it is a requirement of this type of cooling system that a plurality of nozzles be arranged in respective rows across the width of the strand.
Another cooling arrangement of the state-of-the-art contemplates the use of only a single spray nozzle which is intended to spray the liquid coolant over the complete width of a slab. A decisive drawback of this arrangement resides in the fact that owing to the characteristics of the conventionally employed nozzles, the density of the spray water and thus the cooling effect at the central region of the slab is much greater than at the outer regions or portions. Additionally, the impingement forces are not uniform and the actual area of impingement by the spray pattern follows the course of a curved line or are extending across the width of the slab. Moreover, the spray pattern or fan is not sharply defined, in fact, is unstable as the pressure varies. For these reasons, the succesion of rollers which serve to guide and support the slab during its movement through the secondary cooling zone are detrimentally impinged by the spray patterns, causing uncontrollable cooling since a disturbing or'interfering action is exerted upon the spray patterns. In an attempt to overcome these notable drawbacks, it has been proposed to provide a greater spacing between the successive guide rollers. As a practical matter, this is not readily possible because, due to the increased roller spacing and with casting conditions where high casting speeds are required, it has been found that the continuously cast strand, which has a relatively thin solidified outer layer around a liquid crater, tends to undesirably bulge.
A further drawback found to exist in the cooling systems heretofore proposed, resides in the tendency of the nozzles which were heretofore employed to become clogged due to the accumulation of particles which are present in the liquid coolant, typically cooling water. This again produces a non-uniform cooling effect upon the strand and also demands periodic cleaning of the nozzles, with the resultant undesirable downtime of the casting equipment and loss of production.
Modern steel casting plants must be extremely versatile in operation and capable of producing a wide range of slab sections and qualities which, in turn, requires variations of the casting speed. Metallurgical considerations make it incumbent to adapt the quantity of sprayed cooling water to the amount of heat intended to be removed within the secondary cooling zone, that is to say, as a function ofthe casting speed. The amount of cooling water is controlled by the water pressure prior to entering the relevant spray nozzle. It is also desirable to maintain the distribution of the spray water as constant as possible. The nozzles of conventional design heretofore emmployed in the cooling systems of the prior art continuous casting plants possess the drawback that as the pressure of the coolant varies, the spray water distribution also changes considerably and to a certain extent also the spray angle. Consequently, this again causes uncontrollable cooling of the continuously cast strand.
SUMMARY OF THE INVENTION Therefore, in consideration of the foregoing'drawbacks and limitations of the prior art proposals, it is an important object of the present invention to provide an improved method of, and apparatus for, cooling a continuously cast strand, wherein it is possible to promote essentially uniform cooling of the stand through the use of only a single spray pattern between two neighboring guide rolls and which extends across substantially the entire width of the strand, when desired, and further, wherein the density of the coolant and distribution thereof over the strand impingement area, is substantially uniform.
Another object of the present invention aims at simplifying the construction of a continuous casting plant by replacing the conventional design of plural spray nozzles arranged in respective rows across the strand transversely with respect to its longitudinal axis, by a single spray nozzle in each row.
A further object of the present invention is directed to the provision of a novel cooling nozzle for a continuous casting plant, which is simple in construction and design, extremely effective in providing substantially uniform cooling of the cast strand, affording a relatively large spray angle, and providing substantially uniform distribution of the coolant and an essentially constant impingement force over at least the major part of the transverse width dimension of the strand.
It is also an object of this invention to provide a nozzle for use in the cooling system of a continuous casting plant, which nozzle is relatively simple in construction and design while its large opening avoids to a great extent clogging thereof, to thus improve the efficiency of the plant and the economies in operation.
Another object of this invention is related to the provision of a new and improved construction of nozzle used in the cooling system of a continuous casting plant and providing a sharply defined spray pattern and an impingement area therefor defined by substantially straight parallel lines and which impingement area extends extensively perpendicular to the lengthwise axis of the strand across the width thereof.
A further object of this invention contemplates the provision of a new and improved construction of spray nozzle for the cooling system of a continuous casting plank which produces substantially uniform distribution and a substantially constant spray angle of the spray water over a wide range of coolant pressures and produces an essentially stable spray pattern over a wide range of spray angles.
Yet a further object of the present invention relates to an improved construction of spray nozzle for use in the cooling system of a continuous casting plant wherein the liquid coolant enters the nozzle in one direction and departs therefrom as a spray pattern in another direction with respect to the incoming flow direction of the coolant, which spray pattern has a large width in the direction of the strand width, but a small and substantially uniform thickness in the direction of the longitudinal axis of the strand.
Now in order to implement these and still further objects, which will become more readily apparent as the description proceeds, the method of cooling a continu ously cast strand, typically of rectangular cross-section, as contemplated by this development, entails arranging one spray nozzle for liquid coolant at the region of two consecutive guiding means for the cast strand moving along a predetermined path of travel, and moving the cast strand along the predetermined path of travel defined by the spaced guiding means. Liquid coolant is delivered to the spray nozzle and there is produced therefrom one substantially flat spray pattern which is directed towards the surface of the moving cast strand. The flat spray pattern of liquid coolant impinges the strand at an impingement area which extends transversely across the surface of the cast strand, and with essentially uniform distribution of the coolant across at least the major portion or extent of the width of the cast strand, in order to substantially uniformly cool the strand across its transverse width dimension or extent.
It is also within the contemplation of the invention to produce a substantially uniform impingement force for the liquid coolant at the surface of the strand, at least over the major transverse extent thereof. A further aspect of the invention infeeds the liquid coolant into the spray nozzle in a first direction and has it depart therefrom in a second direction which differs from said first direction, typically to infeed the coolant in the lengthwise or axial flow direction of the nozzle and to have the liquid coolant depart therefrom in a direction transversely with regard to such lengthwise direction. A still further aspect of the invention contemplates controlling the spray angle of the spray pattern or fan of coolant emerging from a single nozzle which acts across the transverse width of the strand.
As previously indicated, not only is the invention concerned with the above-discussed casting cooling technique, but also relates to a new and improved construction of cooling system for cooling a continuously cast strand in a secondary cooling zone of a continuous casting plant, which comprises, in combination, a series of consecutively arranged spaced guiding means for guiding the continuously cast strand along a predetermined path of travel. A single nozzle is arranged at the region of at least two consecutively arranged guiding means for producing a substantially flat spray pattern or fan of liquid coolant across essentially the entire width of the cast strand with substantially uniform distribution ofliquid coolant across at least the major portion of the transverse width of the cast strand, and preferably with substantially uniform impingement force of the coolant also over at least the major part of its transverse width, in order to substantially uniformly cool the strand across its transverse width dimension. Each such nozzle comprises a nozzle body member having an inflow means for the liquid coolant and an outflow means including a preferably slotted outlet opening for the discharge thereof. The length of the slotted outlet opening for a given inner diameter of the nozzle body member controls the spray angle of the spray pattern or fan in a plane which extends substantially transversely across the width of the strand. Moreover, the inflow means and outflow means of the nozzle body member are arranged in relation to one another such that the inflow of liquid coolant through the nozzle body member towards the slotted outlet opening is in a direction which differs from the discharge of the liquid coolant out of the slotted outlet opening. In particular, the inflow direction of the liquid coolant through the nozzle body member is essentially in the lengthwise or axial direction thereof whereas the outflow of the liquid coolant from the slotted outlet opening is in a transverse direction with respect to the lengthwise or axial direction of the nozzle body member, and essentially extends in radial direction with regard thereto.
The method aspects of this development have been found to afford essentially uniform cooling of the continuously cast strand, and importantly, with one and the same nozzle, it is possible to cool castings of various dimensions and qualities of metallurgical composition at different casting speeds because the distribution of the liquid coolant remains essentially uniform and the spray angle essentially constant throughout a wide range of coolant pressures.
Furthermore, the new cooling system of this development allows for a much simpler design of the continuous casting plant with respect to the secondary cooling zone through the beneficial substitution of the heretofore employed plurality of nozzles in a given row for cooling the casting by just a single nozzle capable of spraying over the entire or essentially the entire width of the cast strand. Moreover, there is realized an essentially uniform spray water density producing an essentially uniform distribution of the liquid coolant and a substantially constant impingement force at least over the major extent of the transverse width dimension thereof. Furthermore, the cooling equipment of this invention allows maintaining the distance between two consecutive guiding means, typically guide rollers, at an absolute minimum inasmuch as the emanating spray pattern of coolant has a narrow sharply defined configuration and provides an impingement area bounded by substantially straight parallel lines extending transversely across the strand surface.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be better understood and objects other than those set forth above, will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein essentially the same reference characters have been used throughout for the same components, and wherein:
FIG. I is a fragmentary top plan view ofa cooling system or apparatus designed in accordance with the teachings of the present invention for substantially uniformly cooling the surface of a continuously cast strand;
FIG. 2 is a cross-sectional view of the embodiment depicted in FIG. 1, taken substantially along the line II-II thereof;
FIG. 3 is an end view of the arrangement of FIG. 1, looking from the left side thereof, and depicting the spray pattern or fan emanating from each spray nozzle;
FIG. 4 is a partial longitudinal sectional view ofa first embodiment of nozzle construction for use for instance in the cooling system of FIGS. 1-3 inclusive;
FIG. 5 is a cross-sectional view of the nozzle depicted in FIG. 4, taken substantially along the line VV thereof;
FIG. 6 is-a bottom view of the nozzle of FIG. 4, the showing of FIG. 6 being turned 90 in vertical direction to facilitate the illustration thereof;
FIG. 7 is a fragmentary longitudinal sectional view of another embodiment of nozzle equipped with a modified construction of its end wall or terminal portion for use for instance in the cooling system of FIGS. 1-3;
FIG. 8 is a fragmentary longitudinal sectional view of a variant construction of nozzle for use for instance in the cooling system of FIGS. 1-3;
FIG. 9 illustrates a still further design of nozzle for use for instance in the cooling system of FIGS. 1-3; and
FIGS. 10 and 11 illustrate a still further embodiment of nozzle for use for instance in the cooling system of FIGS. 1 to 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, and considering the invention in greater detail, it is to be remarked that only enough of a continuous casting plant has been depicted to enable those versed in the art to fully understand the significant concepts of this development. Hence, in FIGS. 1 and 2, there is shown a portion of the secondary cooling zone of a continuous casting plant which incorporates longitudinally spaced guiding means, here in the form of'guide rollers 1 which define a path of travel for a continuously cast strand 2 within such secondary cooling zone. As should be apparent to those familiar with this particular field of technology, the rollers 1 are typically located at opposite surfaces of the throughpassing continuously cast strand 2. In the exemplary embodiment of the invention there is arranged at the region of each two consecutive neighboring guide rollers l a single spray nozzle 5 from which emanates a spray fan or pattern 3 of liquid coolant, usually water, which is directed between the associated neighboring guide rollers l, as best seen by referring to FIG. 3. Each such spray pattern impinges the confronting surface of the cast strand 2 at an impingement area 37 which is defined by substantially straight parallel lines and which impingement area extends essentially transversely across the strand and preferably covers the entire width thereof. Further, it should be recognized that each spray fan or pattern 3 extensively moves into the associated roller gap between consecutive guide rollers 1. The spray nozzles 5 which constitute an important part of the cooling system, and which will be disclosed in greater detail hereinafter in conjunction with FIGS. 4-11 inclusive, are connected in any convenient fashion, for instance through the use of coolant infeed conduits 8, with a common coolant feeder or distributor pipe 9, which, in turn, receives liquid coolant from a convenient supply source. Hence, the common feeder or distributor pipe 9 constitutes a convenient means for supplying and distributing the liquid coolant to the individual spray nozzles 5 through the agency of their associated conduits 8. At this point, it should be remarked that for each given transversely extending portion of the cast strand intended to be impinged by the spray pattern, there advantageously only need be provided one spray nozzle 5 capable of delivering a spray pattern over at least essentially the entire width of such cast strand.
Now the spray nozzles 5 are mounted at a certain distance, generally indicated by reference character 12 in FIG. 2, from the confronting surface of the cast strand 2, and this distance is selected as a function of the spray angle 13 so as to provide impingement of liquid coolant across the width of the strand. As also shown in FIG. 2, the coolant spray pattern which emanates from the spray nozzle 5 in each case possesses a beneficial flat characteristic, for instance as indicated by phantom line 14 for the slab width 7, in other words, the density of the spray water and the distribution thereof at the impingement area of the cast strand is substantially uniform or constant at least over the major extent of the transverse width dimension thereof, and the strand is advantageously cooled in a uniform manner across its transverse width dimension. Further, it has been found that the spray nozzles tend to generally produce an impingement force which is also substantially constant over at least the major transverse width dimension of the cast strand.
The spray pattern or fan 3 which impinges the surface of the cast strand 2 emerges from a slotted outlet opening of the associated spray nozzle 5 which will be described in greater detail hereinafter. As will be apparent from the discussion to follow, this slotted outlet opening is located in a plane which extends across the width of the cast strand and perpendicular to the lengthwise axis of such cast strand.
If it is desired to cast a different strand, for instance a slab having a different width as indicated by reference character 7' in FIG. 2, then it is advantageously possible to still utilize the same cooling system and nozzles. Usually, a slab having a smaller cross-section but of the same chemical composition can be cast with a higher casting speed. In this case the amount of cooling water can be increased by appropriately adjusting the coolant or water pressure as is well known in this art. Purely by way of example it is here mentioned that the pressure of the coolant water has been adjusted over a range of approximately 10 psig to psig. With the cooling method and cooling system of this development, it is possible to also uniformly cool a slab having a smaller width 7 across its impingement area, as indicated by the water distribution curve shown by the phantom line 14'. Once again, there is provided a substantially uniform distribution of the spray water across at least the major extent of the width of the slab and desirably also a substantially constant impingement force at least over the major extent of such slab width.
It is one of the advantages of this development that the spray characteristics do not essentially change throughout a relatively wide range of inlet water pressures, that is to say, the curve of the spray characteristics remains substantially rectangular over the width of the strand, wherefore it is possible to cool slabs of various cross-sections or chemical compositions with one and the same nozzle while producing substantially constant or uniform water distribution and substantially constant impingement force over at least the major extent of the transverse width of such slab.
Another benefit of notable distinction which can be realized with the invention, in contrast to the prior art cooling systems, is that it is possible to substitute a single nozzle for the heretofore used plural nozzles which spray coolant over the slab width. For instance, to cool a steel slab of 85 inches width approximately 10 nozzles arranged in a row across the wide faces of the slab were heretofore required with the conventional cooling equipment of the prior art casting plants. The reduction to a single nozzle for each transverse extending area of the slab brings with it obvious advantages merely in terms of the simplicity of design of the cooling system and the less expense associated therewith, but also for instance in operation, since less clogging of the nozzle occurs due to the larger size of the spray nozzle outlet opening, notwithstanding the other significant advantages, especially as concerns the essentially uniform cooling action to which the cast strand is exposed.
In order to avoid overspraying and therefore to save on the consumption of water, or other liquid coolant, it is of course possible to appropriately adjust the distance 12 between the nozzles 5 and the surface of the cast strand 2, and this can be done through the use of any suitable means, such as, for instance, of the type disclosed in US. Pat. No. 3,468,362. Hence, as shown in FIG. 3, the distributor infeed or supply pipe 9 together with the spray nozzles 5 can be selectively shifted towards or away from the surface of the continuously cast strand. In fact, in the showing of FIG. 3, the distributor pipe 9 can be moved in both directions, as schematically indicated by the double-headed arrow 15 so as to assume a selectable spacing from the strand surface. Each spray pattern or fan is sharply defined and passes between the guide rollers 1 without impinging or essentially impinging upon the guide rollers or producing uneven cooling due to a disturbed spray pattern.
With the benefit of the foregoing discussion of the cooling system of this development, there will now be considered in detail in conjunction with FIGS. 4 to 9, different constructional embodiments of spray nozzles which can be used to advantage in such a cooling system.
Turning initially therefore to the showing of FIGS. 4 to 6 inclusive, there is depicted therein a first embodiment of spray nozzle 5 which can be incorporated in the cooling system of FIGS. 1 to 3 for carrying out the novel cooling technique of this invention. It will be understood that the spray nozzle 5 incorporates a nozzle body member 20, for instance in the form of a tubular portion or nipple 21 closed at one end by a fixed end wall 22 and provided at the other end with a threaded portion 23 adapted to be connected with an associated conduit, such as the conduit 8 for the liquid coolant, water for instance, which is supplied by the distributor pipe 9. In the embodiment under consideration, the end wall 22 is shown formed integral with the tubular portion 21 of the nozzle body member 20. At the opposite end of the nozzle body member 20 remote from the blind end of the nozzle defined by end wall 22, there is provided inflow means incorporating an inlet opening 24 which communicates with an axially directed flow passageway or passage 26 which extends to the region of the end wall 22. The axially directed flow passage 26 is bounded by the smooth inner wall 38 of the nozzle body member 20. Pressurized coolant is introduced through the inlet opening 24 and moves axially through the passage 26. The nozzle 5 is also provided with outflow means incorporating a slotted outlet opening 29. The tubular portion 21 is thus shown provided with a slotted outlet opening 29 which forms a discharge for the water emanating from the nozzle 5 in the form of a spray fan or pattern 3 having a large width in the direction of the strand width, but a small and uniform thickness in the direction of the longitudinal axis of the strand. The fiow direction of the emerging water, as indicated by the arrow 30, will be recognized to be different from the flow direction 25 of the incoming water and its axial flow through the nozzle passage 26. In fact, the flow directions will be seen to be essentially mutually perpendicular to one another, the incoming water flowing axially through the tubular portion 21 and the outflowing water extending transversely with regard thereto, and specifically substantially radially with respect to the axial flow direction through the tubular portion 21.
In the embodiment under consideration, the outlet opening 29 has a substantially rectangular slot-like configuration and incorporates the wide boundary faces 31 and the narrow faces 32. The smallest mutual distance 33 between the narrow faces 32, as indicated in FIG. 5, determines the spray angle 13 of the spray pattern in a direction transversely with respect to the strand withdrawal direction. The nozzle is mounted in the cooling system in such a manner that the wide faces 31 of the slotted outlet opening 29 are located essentially perpendicular to the lengthwise axis of the cast strand and similarly essentially perpendicular to the lengthwise axis 34 of the tubular portion 21. The spacing or distance 35 between the wide faces 31 defines the width or thickness 36 of the impingement area 37 of the spray pattern extending in the axial direction of the cast strand for a given spacing between the relevant nozzle and strand surface. The cross-section of the slotted outlet opening 29 is smaller than the cross-section of the inlet opening 24. In order to obtain a sharply defined spray pattern, it is desired that the intersection of the narrow or small faces 32 of the slotted outlet opening 29 with the neighboring inner surface 38 of the tubular portion 21 forms an angle 32 which is less than in order to produce the depicted confronting edges 27, as best shown in FIG. 5.
As discussed above, the tubular portion 21 of the nozzle body member 20 is closed at one end by a closure means, shown for instance in the form of the stationary or fixed end wall 22. The inner surface 42 of this end wall 22 which comes into contact with the incoming water is spaced a certain distance, as indicated by reference character 43, from the slotted outlet opening 29 in order to form a cavity or chamber where there can occur a certain stowing or build-up and atten dant deceleration of the water.
In FIG. 7 there is shown a somewhat modified construction of nozzle 5 from that depicted in FIGS. 46, wherein in this case the tubular portion 21 is closed by a movable end cap 44 threaded thereon. By means of this end cap 44 it is possible to vary the spacing 43 between the inner surface 42 of the closure means defined by such displaceable end cap and the slotted outlet opening 29. By varying such spacing, it is possible to appropriately incline the spray fan or pattern 3 with respect to the strand surface to a certain extent, if such is necessary. Hence, it will be recognized that while the embodiment of FIG. 7 essentially corresponds to that of FIGS. 4-6, it differs to the extent that the closure means is in the form of an axially shiftable end cap 44.
An actual arrangement for cooling a slab of thickness 9 inches and width 36 inches employed a spray nozzle of the type depicted in FIG. 7, mounted at a distance 12 from the surface of the slab which amounted to 18 inches. This spray nozzle 5 was provided with a sub stantially rectangular slot or slotted outlet opening 29 which was milled or otherwise suitably formed at the nozzle body member consisting of a one-half inch nipple with an internal diameter of 0.625 inches. The
I depth 39 of the slotted outlet opening 29 measured from the outer wall of the nozzle body member 20 amounted to 0.256 inches. The slot width, in other words the spacing 35 between the wide faces 31 of the slotted outlet opening 29 amounted to 0.067 inches. This nozzle operated with a spray angle of about 90. The distance 43 of the surface 42 of the end closure wall 22 to the slot 29 was 1 inch. The thickness 36 of the impingement area amounted to three-fourths inch. It was found that, in comparison to results which can be obtained with prior art constructions of nozzles, the water distribution and the impingement force were substantially quite uniform or constant at least over the major part of the transverse width dimension of the slab.
For instance, with a water pressure of 20 psig, corresponding to a water flow of about 6.7 US. gallons liquid per minute, the surface impingement force on a certain test area which was exposed to the spray and located at the center of the slab, amounted to about 0.030 lbs. and remained substantially constant at other locations across the major portion or part of the width of the slab. At a water pressure of 40 psig, corresponding to a water flow of about 8.7 US. gallons liquid per minute, the surface impingement force on the same area substantially amounted on the average to about 0.050 lbs. for locations within the major portion of the transverse extent thereof and only at the end regions did such surface impingement force drop to about 0.015 lbs. With a water pressure of 60 psig, corresponding to a water flow of about 1 1 US. gallons liquid per minute, the surface impingement force, again measured on the same area, amounted to about 0.080 lbs. and. remained substantially constant at other locations over the major part or portion of the transverse extent of the slab and then only slightly dropped to about 0.070 lbs at the outer end regions thereof. By the same token, good results were attained with respect to substantially uniform water distribution at least over the major portion of the width of the slab.
If there is considered the really pronounced fluctuations in the water distribution and impingement forces which are present over the width of strand when working with spray nozzles of the prior art cooling systems, then the above results, on a comparative basis, certainly would be considered by those skilled in the art to provide substantially uniform water distribution and substantially uniform impingement force characteristics, and particularly over at least the major portion of the transverse extent or width of the cast strand, which at least amounts to about 60 percent of such transverse width and in many instances a considerably greater proportion thereof. As a practical matter, it is not possibleto obtain absolutely constant values because there always will be present certain manufacturing tolerances and errors at the spray nozzles, apart from certain fluctuations, even if slight, in the water pressure, and also the water itself may contain certain impurities which would have an effect on its flow characteristics and thus such values. Still, in comparison to the results which can be attained with the prior art spray nozzles, the spray nozzles of this development can be considered to provide substantially uniform water distribution and impingement force at the surface of the slab or casting.
In FIG. 8 there is illustrated a further embodiment of spray nozzle 5 which to a large extent is similar to the construction of FIG. 7. However, in this case the movable end cap 44 of the embodiment of FIG. 7 is replaced by an axially shiftable piston-like plug 44 inserted into opening 40 of the tubular portion 21. The plug 44 can be retained in desired position by any suitable fixing means, such as a screw 45. The impingement or inner surface 42 of the plug 44 is curved, as shown.
FIG. 9 illustrates a variant construction of spray nozzle 5 which can be utilized in conjunction with the exemplary illustrated casting cooling system. Here the nozzle 5 will be seen to again comprise a nozzle body member 20 in the form of a tubular portion or nipple 21 which is provided with a plug-like closure insert member 46. The plug-like closure insert member 46 is provided with a machined bore 47 defining an axially extending throughflow passage 48 between the inlet opening 24 and the inner surface 42 of the end wall .22. This plug-like closure insert member 46 is also provided with an outlet opening 52 for the efflux of the liquid coolant. The tubular portion 21 of the nozzle surrounds the plug-like closure insert member 46 and such tubular portion 21 is provided with the slotted outlet opening 29 as above discussed. This tubular portion 21, which here is in the form of a nozzle sleeve, is in snug contact with the plug-like insert member 46. Further, it will be noted that the width 53 of the outlet opening 52 of the plug-like closure insert member 46 is greater in the axial extent thereof than the width 35 of the slotted outlet opening. 29 of the tubular portion or nipple 21, for reasons to be explained more fully hereinafter. Furthermore, the angular extent or length .of such outlet opening 52 also may be advantageously greater in the circumferential direction of the insert member 46 than the angular extent or length of the slotted outlet opening 29 in the circumferential direction of the tubular portion 21, again for reasons to be explained more fully hereinafter.
The aforedescribed construction of nozzle 5 of FIG. 9 offers a number of notable advantages. Firstly, owing to the aforementioned different widths 53 and 35 of the openings 52 and 29 respectively, and by selectively axially shifting the tubular portion 21 in the direction of the lengthwise axis of the plug-like closure insert member 46, and relative to the outlet opening 52 thereof, it is possible to shift the pattern of the coolant spray so as to assume a desired position between the guide rollers l of the casting cooling system. In this way the coolant spray is directed at least for the most part into the intermediate space between each two neighboring guide rollers. Also with this arrangement, it is possible to rotate the sleeve-like tubular portion 21 about the lengthwise axis of the plug-like closure insert member 46 so as to positionally orient, as desired, the pattern of the coolant spray emanating from the nozzles across the width of the strand. Hence, this adjustment possibility afforded by the rotatable tubular portion 21 permits regulating the position of the pattern of the coolant spray over the transverse width of the strand. Moreover, through appropriate axial shifting or rotation of the tubular portion 21 relative to the closure insert member 46 it is also possible to close the outlet opening 29 and thus cut-off the outflow of liquid coolant. Finally, by providing a suitable sealing and mounting arrangement at the region of the inlet opening 24 where such plug-like closure insert member 46 is connected with the distributor or infeed pipe 9, and which mounting allows for rotation of such closure insert member 46, it is possible by carrying out a relative rotational movement between the insert member 46 and the sleeve-like tubular portion 21 to vary the effective size of the outlet opening 52 with respect to the slotted outlet opening 29 so as to vary the spray angle. The fixing means 45, conveniently shown in the form of a screw, can then be used to fix the adjusted position of the sleeve-like tubular portion 21 relative to the plug- Iike closure insert member 46.
Finally, in FIGS. and 11 there is depicted a still further constructional embodiment of spray nozzle 5 which to a large extent is similar to the nozzle construction of FIG. 8. Here however the axially shiftable piston-like plug 44" is provided with a flat inner surface 42 as opposed to the curved inner surface of the plug 44 of the embodiment of FIG. 8. In all other respects, this embodiment of nozzle 5 is substantially identical to that discussed above with respect to FIG. 8, wherein however the fixing screw means 45 has been conveniently omitted from the showing of FIGS. 10 and 11 to simplify the illustration.
It has been found that the spacing or distance 43 between the inner surface 42 and the slotted outlet opening 29 has a notable effect upon the spray fan or pattern 3, and this will be explained more fully in conjunction with the nozzle construction of FIGS. 10 and 11, although the remarks made with respect thereto are equallyapplicable for the other constructional embodiments of nozzles disclosed herein. It was found that with a three-quarter inch tubular portion or nipple 21, corresponding to an internal diameter of 0.822 inches, and when operating for instance with a water pressure of psig and 40 psig and with a distance 12 of the slotted outlet opening 29 to the surface of the strand which amounted to 19 /2 inches and with the spacing or distance 43 of the lower end of the inner wall 42 from the slotted outlet opening 29 reduced to null, the spray makes a bow or, in other words, is arcuate and appreciably laterally deviates to one side from the plane 55 containing the central axis of the slotted outlet opening 29. While maintaining the same operating conditions but enlarging the spacing 43 to the order of one-eighth inch, it was found that the spray pattern 3 now is substantially linear i.e., bounded by substantially straight parallel lines but still appreciably laterally deviates or angles-off to one side of the plane 55 and the thickness 56 of the spray pattern in the lengthwise direction of the strand was exceedingly small. As this spacing 43 was increased to one-fourth inch, the aforementioned linear spray pattern 3 still predominantly deviated to one side of the central plane although a light coolant spray also appeared at the opposite side of such central plane 55. In this case the thickness 56 of the spray pattern 3 increased but the predominant amount of coolant was heavy at one side of the plane 55 and light at the opposite side thereof. The same phenomenon was observed when the spacing 43 was increased to threeeighths of an inch. However, surprisingly it was found that when the spacing 43 amounted to one-half inch, the spray pattern 3 was substantially uniform to both sides of the central plane 55, in other words was substantially symmetrical to both sides thereof. It will thus be appreciated from the above comments that the spacing 43 plays a significant role not only upon the configuration of the spray pattern itself but also upon its spatial orientation and by maintaining such spacing so as to amount to at least one-half inch it is possible to produce a spray pattern which is substantially symmetrical with respect to the plane containing the central axis of the slotted outlet opening 29 and having a desired small and uniform thickness in the direction of the lengthwise or longitudinal axis of the casting.
The nozzle constructions depicted in FIGS. 7-11 afford the advantage that cleaning of such nozzles to free same, for instance, from mill scale, asbestos particles, or other foreign matter which might tend to collect, can be easily carried out since the closure member in each instance can be readily removed.
In the embodiments herein disclosed it is mentioned purely by way of illustration and not limitation, the nozzle body member may possess an internal diameter in the range of about 0.6 to 1.6 inches, a spacing 43 between the outlet opening 29 and the end closure wall or inner surface 42 of at least one-half inch, and typically in the range of about V2 to 4 inches, and a width 35 of the outlet opening 29 in the range of about 0.05 to 0.07 inches. The spray angle 13 may be, for instance, in a range of 60 to Finally, it is mentioned that it is conceivable to even provide a spray nozzle arrangement formed from a pipe or conduit having a number of slotted outlet openings which are spaced in the direction of the longitudinal axis of the pipe or conduit.
While there is shown and described present preferred embodiments of the invention, it is to be distinctly understood that the invention is not limited thereto, but may be otherwise variously embodied and practiced within the scope of the following claims. Accordingly,
What is claimed is:
l. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern,-said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface of the cast strand impinged by the spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface.
2. The cooling system as defined in claim 1, wherein the cross-section of the slotted outlet opening is smaller than the cross-section of the inflow means.
3. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a displaceable plug which can be positionally adjusted in the direction of the lengthwise axis of the nozzle body member, and means for fixing the plug in desired adjusted position.
4. The cooling system as defined in claim 1, wherein said means for closing the one end of the nozzle body member incorporates a curved surface portion for contact with the liquid coolant.
5. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a plug, said nozzle body member and plug being movable relative to one another.
6. The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to regulate the spatial orientation of the spray pattern with respect to said guide means.
7. The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to adjust the distance between the means for closing the one end of the nozzle body member and the slotted outlet opening, to thereby influence the configuration and spatial orientation of the spray pattern emanating from the spray nozzle.
8. The cooling system as defined in claim 5, wherein said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spatial orientation of the spray pattern with respect to the transverse width dimension of the cast strand.
9. The cooling system as defined in claim 1, wherein the length of the slotted outlet opening for a given inner diameter of the nozzle body portion controls the spray angle of the spray pattern in a plane extending substantially transversely across the cast strand.
10. The cooling system as defined in claim 1, wherein the slotted outlet opening produces a spray pattern which is directed substantially radially with respect to an axial flow direction of the liquid coolant through the inflow means towards said outflow means.
11. The cooling system as defined in claim 1, wherein the spray nozzle possesses a spacing between the slotted outlet opening and the surface of the means closing the one end of the nozzle body member which comes into contact with the liquid coolant which is at least about one-half inch.
12. The cooling system as defined in claim 11, wherein the nozzle body member possesses an internal diameter in the range of about 0.6 inches to 1.60 inches, and a width of the slotted outlet opening in the range of 0.05 to 0.07 inches.
13. The cooling system as defined in claim 1, wherein said closing means comprises an adjustable member seated at said nozzle body member.
14. The cooling system as defined in claim 1, wherein said spray nozzle includes a plug member inserted in said nozzle body member.
15. The cooling system as defined in claim 14, wherein said nozzle body member possesses said slotted outlet opening and is rotatable relative to said plug to influence the spray pattern.
16. The cooling system as defined in claim 1, wherein said closing means is defined by a stationary end wall.
17. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface of the cast strand impinged by the spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by substantially straight parallel lines extending transversley across the strand surface, the means closing the one end of the nozzle body member comprises a plug, said nozzle body member and plug being movable relative to one another, said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spray angle of the spray pattern.
18. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said slotted outlet opening of said spray nozzle being configured to produce a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 5 ,877,510 Dated April 15 1975 Inventor(s) Richard J g i l 61: a1
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the Grant (ONLY) insert Columns 13 14 l5 and 16 as part of Letters Patent.
Signed and Scaled this A nest:
RUTH C. MASON Anesling Officer C. MARSHALL DANN Commissioner nflalenls and Tradvmurkx FORM PO-105O (10-69) USCOMM-DC 60376-P69 us. eovzmmzm nzm'rma OFFICE: 930
ant, said infiow'means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at-said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface ofthe cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening ofthe nozzle and'the surface of the cast strand impinged by the spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface.
2. The cooling system as defined in claim 1, wherein the cross-sectionof the slotted outlet opening is smaller than the cross-section of the inflow means.
3. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a displaceable plug which can be positionally adjusted in the direction of the lengthwise axis of the nozzle body member, and means for. fixing the plug in desired adjusted position.
4. The cooling system as defined in claim 1, wherein said means for closing the one end of the nozzle body member incorporates a curved surface portion for contact with the liquid coolant.
5. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a plug. said nozzle body member and plug being movable relative to one another.
The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to regulate the spatial orientation of the spray pattern with respect to said guide means.
7. The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to adjust the distance between the means for-closing the one end of the nozzle body member and the slotted outlet opening, to thereby influence the configuration and spatial orientation of the spray pattern emanating from the spray nozzle.
8. The cooling system as defined in claim wherein said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spatial orientation of the spray pattern with respect to the transverse width dimension of the cast strand.
9. The cooling system as defined in claim 1, wherein the length of the slotted outlet opening for a given inner diameter of the nozzle body portion controls the spray Page 2 14 angle of the spray pattern in a plane extending substantially transversely across the cast strand.
10. The cooling system as defined in claim 1, wherein the slotted outlet opening produces a spray pattern which is directed substantially radially with respect to an axial flow direction of the liquid coolant through the inflow means towards said outflow means.
11. The cooling system as defined in claim 1, wherein the spray nozzle possesses a spacing between the slotted outlet opening and the surface of the means closing the one end of the nozzle body member which comes.
into contact with the liquid coolant which is at least about one-half inch.
12. The cooling system as defined in claim' 11, wherein the nozzle body member possesses an internal diameter in the range of about 0.6 inches to 1.60 inches, and a width of the slotted outlet opening in the 7 range of 0.05 to 0.07 inches.
13. .The cooling system as defined in claim 1, wherein said closing means comprises an adjustable member seated at said nozzle body member.
14. The cooling system as defined in claim 1, wherein said spray nozzle includes a plug member inserted in said nozzle body member.
15. The cooling system as defined in claim 14, wherein said nozzle body member possesses said slotted outlet opening and is rotatable relative to said plug to influence the spray pattern.
v 16. The cooling system as defined in claim 1, wherein said closing means is defined by a stationary end wall.
17. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand. said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for. the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface of the cast strand impinged by the 15 spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by'substantially straight parallel lines extending transversley across the strand surface,-the means closing the one end of the nozzle body member comprises a plug. said nozzle body member and plug being movable relative to one another, said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spray angle of the spray pattern.
18. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant andoutflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle Page 3 l 6 body member with a supply iltfeed for the liquid coolant, said inflow means'and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said slotted outlet opening of said spray nozzle being configured to produce a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface, said liquid coolant impinging the surface of the cast strand over an impingement area. to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingementarea.-.

Claims (18)

1. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular crosssectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface of the cast strand impinged by the spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface.
2. The cooling system as defined in claim 1, wherein the cross-section of the slotted outlet opening is smaller than the cross-section of the inflow means.
3. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a displaceable plug which can be positionally adjusted in the direction of the lengthwise axis of the nozzle body member, and means for fixing the plug in desired adjusted position.
4. The cooling system as defined in claim 1, wherein said means for closing the one end of the nozzle body member incorporates a curved surface portion for contact with the liquid coolant.
5. The cooling system as defined in claim 1, wherein the means closing the one end of the nozzle body member comprises a plug, said nozzle body member and plug being movable relative to one another.
6. The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to regulate the spatial orientation of the spray pattern with respect to said guide means.
7. The cooling system as defined in claim 5, wherein said nozzle body member and plug are movable relative to one another in the direction of the lengthwise axis of the spray nozzle in order to adjust the distance between the means for closing the one end of the nozzle body member and the slotted outlet opening, to thereby influence the configuration and spatial orientation of the spray pattern emanating from the spray nozzle.
8. The cooling system as defined in claim 5, wherein said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spatial orientation of the spray pattern with respect to the transverse width dimension of the cast strand.
9. The cooling system as defined in claim 1, wherein the length of the slotted outlet opening for a given inner diameter of the nozzle body portion controls the spray angle of the spray pattern in a plane extending substantially transversely across the cast strand.
10. The cooling system as defined in claim 1, wherein the slotted outlet opening produces a spray pattern which is directed substantially radially with respect to an axial flow direction of the liquid coolant through the inflow means towards said ouTflow means.
11. The cooling system as defined in claim 1, wherein the spray nozzle possesses a spacing between the slotted outlet opening and the surface of the means closing the one end of the nozzle body member which comes into contact with the liquid coolant which is at least about one-half inch.
12. The cooling system as defined in claim 11, wherein the nozzle body member possesses an internal diameter in the range of about 0.6 inches to 1.60 inches, and a width of the slotted outlet opening in the range of 0.05 to 0.07 inches.
13. The cooling system as defined in claim 1, wherein said closing means comprises an adjustable member seated at said nozzle body member.
14. The cooling system as defined in claim 1, wherein said spray nozzle includes a plug member inserted in said nozzle body member.
15. The cooling system as defined in claim 14, wherein said nozzle body member possesses said slotted outlet opening and is rotatable relative to said plug to influence the spray pattern.
16. The cooling system as defined in claim 1, wherein said closing means is defined by a stationary end wall.
17. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spray nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area, said slotted outlet opening comprises a slot possessing a substantially rectangular configuration, said slot being bounded by faces extending substantially perpendicular to the lengthwise axis of the cast strand and the lengthwise axis of the nozzle body member and serving to control the thickness of the spray pattern and the impingement area for a given distance between said slotted outlet opening of the nozzle and the surface of the cast strand impinged by the spray pattern, said slotted outlet opening of said spray nozzle producing a spray pattern bounded by substantially straight parallel lines extending transversley across the strand surface, the means closing the one end of the nozzle body member comprises a plug, said nozzle body member and plug being movable relative to one another, said relatively movable nozzle body member and plug are rotatable relative to one another in order to control the spray angle of the spray pattern.
18. A cooling system for cooling a continuously cast strand, especially a steel strand of essentially rectangular cross-sectional configuration, comprising guide means for guiding a cast strand along a predetermined path of travel, at least one spray nozzle for producing a spray pattern of pressurized liquid coolant for impingement with the surface of the cast strand, said spRay nozzle having inflow means for the pressurized liquid coolant and outflow means for the departure of said liquid coolant in the form of a spray pattern, said spray nozzle incorporating a nozzle body portion and means for closing the nozzle body portion at one end, means for connecting the opposite end of the nozzle body member with a supply infeed for the liquid coolant, said inflow means and outflow means of said spray nozzle providing respectively different flow directions for the liquid coolant, said outflow means incorporating means defining a substantially slotted outlet opening at said nozzle body member, said slotted outlet opening extending substantially transversely with respect to the lengthwise axis of the cast strand, said slotted outlet opening defining a discharge for the liquid coolant in the form of said spray pattern, said slotted outlet opening of said spray nozzle being configured to produce a spray pattern bounded by substantially straight parallel lines extending transversely across the strand surface, said liquid coolant impinging the surface of the cast strand over an impingement area, to produce substantially uniform cooling of the cast strand over its transverse width dimension, and wherein the distribution of liquid coolant is substantially uniform across at least the major extent of said impingement area.
US324541A 1973-01-16 1973-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern Expired - Lifetime US3877510A (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
US324541A US3877510A (en) 1973-01-16 1973-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern
AR19902074D AR199020A1 (en) 1973-01-16 1974-01-01 SPRAY NOZZLE PREFERENTIALLY FOR THE COOLING OF CONTINUOUS BARS AND A PROCEDURE FOR THE COOLING OF CONTINUOUS BARS PARTICULARLY IN THE CONTINUOUS STEEL CASTING PROCESS
AT26574A AT342798B (en) 1973-01-16 1974-01-14 SPRAY HOUSE FOR COOLING A STRAND IN CONTINUOUS CASTING
JP745274A JPS534805B2 (en) 1973-01-16 1974-01-14
CH43574A CH564991A5 (en) 1973-01-16 1974-01-14
JP745174A JPS535849B2 (en) 1973-01-16 1974-01-14
SU7401985255A SU579868A3 (en) 1973-01-16 1974-01-14 Jet nozzle
JP745074A JPS535848B2 (en) 1973-01-16 1974-01-14
JP744974A JPS535847B2 (en) 1973-01-16 1974-01-14
DE19742401649 DE2401649B2 (en) 1973-01-16 1974-01-15 METHOD OF COOLING A STRAND AND SPRAY NOZZLE
ZA00740279A ZA74279B (en) 1973-01-16 1974-01-15 A method of cooling a continuous casting, and a spray nozzle
TR18001A TR18001A (en) 1973-01-16 1974-01-15 MASHSUS PROCEDURE AND PUESKUERTING NOZZLE FOR THE COOLING OF A CLASS
IT19447/74A IT1003408B (en) 1973-01-16 1974-01-15 PROCEDURE FOR COOLING A BAR AND SPRAYING NOZZLE IN PARTICULAR DURING THE CASTING WITH STEEL TINUE
SE7400477A SE400914B (en) 1973-01-16 1974-01-15 WAY TO COOL A STRING IN MOVEMENT AND DEVICE FOR EXERCISING THE SET
CA190,223A CA1028822A (en) 1973-01-16 1974-01-15 Method of cooling a continuous casting and a spray nozzle
NL7400511A NL7400511A (en) 1973-01-16 1974-01-15
BR74249A BR7400249D0 (en) 1973-01-16 1974-01-15 PROCESS FOR COOLING A CONTINUOUS OR ROPE INGOT, AS WELL AS BORRIFACTION TUBE
FI97/74A FI55304C (en) 1973-01-16 1974-01-15 FOERFARANDE FOER KYLNING AV EN STRAENG, SAERSKILT VID STRAENGGJUTNING AV STAOL, OCH ANORDNING FOER TILLAEMPANDE AV FOERFARANDET
GB211474A GB1462643A (en) 1973-01-16 1974-01-16 Method of cooling a continuous casting
ES422533A ES422533A1 (en) 1973-01-16 1974-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern
GB211374A GB1462642A (en) 1973-01-16 1974-01-16 Apparatus for secondary cooling of a continuous casting
ES422534A ES422534A1 (en) 1973-01-16 1974-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern
AU64582/74A AU473697B2 (en) 1973-01-16 1974-01-16 A method of cooling a continuous casting, anda spray nozzle
BE139859A BE809804A (en) 1973-01-16 1974-01-16 PROCESS AND SPRAYER FOR COOLING A BAR
FR7401481A FR2213824B1 (en) 1973-01-16 1974-01-16
US05/447,006 US3935896A (en) 1973-01-16 1974-02-28 Method for cooling a continuously cast strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US324541A US3877510A (en) 1973-01-16 1973-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/447,006 Division US3935896A (en) 1973-01-16 1974-02-28 Method for cooling a continuously cast strand

Publications (1)

Publication Number Publication Date
US3877510A true US3877510A (en) 1975-04-15

Family

ID=23264039

Family Applications (1)

Application Number Title Priority Date Filing Date
US324541A Expired - Lifetime US3877510A (en) 1973-01-16 1973-01-16 Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern

Country Status (20)

Country Link
US (1) US3877510A (en)
JP (4) JPS535849B2 (en)
AR (1) AR199020A1 (en)
AT (1) AT342798B (en)
AU (1) AU473697B2 (en)
BE (1) BE809804A (en)
BR (1) BR7400249D0 (en)
CA (1) CA1028822A (en)
CH (1) CH564991A5 (en)
DE (1) DE2401649B2 (en)
ES (2) ES422533A1 (en)
FI (1) FI55304C (en)
FR (1) FR2213824B1 (en)
GB (2) GB1462643A (en)
IT (1) IT1003408B (en)
NL (1) NL7400511A (en)
SE (1) SE400914B (en)
SU (1) SU579868A3 (en)
TR (1) TR18001A (en)
ZA (1) ZA74279B (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924812A (en) * 1973-10-04 1975-12-09 Sumitomo Metal Ind Apparatus for supporting and guiding slab in the secondary cooling zone of continuous casting machine
US3974964A (en) * 1974-08-08 1976-08-17 Cotton Incorporated Liquid atomizing method and apparatus
US3981347A (en) * 1974-04-26 1976-09-21 Concast Ag Method and apparatus for strand cooling with a flat spray pattern
US3989093A (en) * 1974-03-18 1976-11-02 Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft Continuous casting plant for slabs
US3991942A (en) * 1974-01-17 1976-11-16 Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft Long-range nozzle
US4028906A (en) * 1975-07-14 1977-06-14 Charles E. Upchurch Fogging device for cooling a condenser coil
US4047985A (en) * 1976-02-09 1977-09-13 Wean United, Inc. Method and apparatus for symmetrically cooling heated workpieces
US4232629A (en) * 1978-07-13 1980-11-11 Phillips Petroleum Company Dispensing nozzle
US4235280A (en) * 1979-01-22 1980-11-25 Concast Incorporated Spray nozzle for cooling a continuously cast strand
US4320072A (en) * 1981-02-27 1982-03-16 Ecodyne Corporation Cooling tower spray nozzle
US4659016A (en) * 1983-05-11 1987-04-21 Slautterback Corporation Hot-melt dispenser with aimable nozzles
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
US6374901B1 (en) 1998-07-10 2002-04-23 Ipsco Enterprises Inc. Differential quench method and apparatus
US20180030678A1 (en) * 2016-08-01 2018-02-01 Specialized Pavement Marking, Inc. Striping apparatus
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US11098453B2 (en) 2019-05-03 2021-08-24 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11220394B2 (en) 2015-10-14 2022-01-11 First Quality Tissue, Llc Bundled product and system
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US20230219130A1 (en) * 2020-07-22 2023-07-13 Novelis Inc. Direct chill casting mold system
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11751728B2 (en) 2020-12-17 2023-09-12 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same
US11952721B2 (en) 2022-06-16 2024-04-09 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same
US11976421B2 (en) 2022-06-16 2024-05-07 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102525A (en) * 1974-01-17 1975-08-13
DE2612175C3 (en) * 1976-03-23 1980-03-13 Westfaelische Metall Industrie Kg, Hueck & Co, 4780 Lippstadt Nozzle for the dropwise application of washing liquid to a washing point
DE2636666C2 (en) * 1976-08-14 1978-06-29 Demag Ag, 4100 Duisburg Spray nozzle arrangement for metal, especially for continuous steel casting systems for extremely wide steel slabs
JPS5327265U (en) * 1976-08-17 1978-03-08
JPS53157417U (en) * 1977-05-18 1978-12-09
JPS54114106U (en) * 1978-01-30 1979-08-10
NL181451C (en) * 1980-05-08 1987-08-17 Hoogovens Groep Bv DEVICE FOR INFLUENCING THE FLOW OF A GAS.
GB2122920B (en) * 1982-06-26 1985-09-25 Smiths Industries Plc Improvements relating to spray nozzles
DE3425092A1 (en) * 1984-07-07 1986-02-06 SMS Schloemann-Siemag AG, 4000 Düsseldorf METHOD AND DEVICE FOR COOLING CONTINUOUSLY DELIVERED Pouring Strands in a Continuous Casting Plant
EP0245722A3 (en) * 1986-05-13 1988-03-02 Concast Service Union Ag Method for spraying strands
JPH0638605Y2 (en) * 1988-06-08 1994-10-12 新日本製鐵株式会社 Coolant spray device for transport rollers
AT410187B (en) * 2001-02-20 2003-02-25 Voest Alpine Ind Anlagen COOLING DEVICE FOR A HOT LONG STRETCHED METAL

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542583A (en) * 1924-06-12 1925-06-16 John V Roberts Gaseous-fuel burner
US2284503A (en) * 1939-09-14 1942-05-26 Himself And Julia Lce Cox Will Apparatus for continuous casting
US2997244A (en) * 1958-02-19 1961-08-22 Quigley Co Spray nozzles
US3341133A (en) * 1965-07-06 1967-09-12 Rain Jet Corp Liquid discharge
US3412936A (en) * 1965-08-28 1968-11-26 Glenfield & Kennedy Ltd Liquid-ejecting nozzle
US3468362A (en) * 1966-05-31 1969-09-23 Concast Ag Method of cooling cast members from a continuous casting operation
US3612152A (en) * 1969-04-15 1971-10-12 Concast Ag Billet cooling method for continuous casting
US3630453A (en) * 1970-02-20 1971-12-28 United States Steel Corp Adjustable elongated spray nozzle
US3693352A (en) * 1970-09-22 1972-09-26 Demag Ag Method and apparatus for cooling wide continuous metal castings, particularly steel castings
US3753793A (en) * 1970-11-03 1973-08-21 Demag Ag Method for cooling metal webs

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1542583A (en) * 1924-06-12 1925-06-16 John V Roberts Gaseous-fuel burner
US2284503A (en) * 1939-09-14 1942-05-26 Himself And Julia Lce Cox Will Apparatus for continuous casting
US2997244A (en) * 1958-02-19 1961-08-22 Quigley Co Spray nozzles
US3341133A (en) * 1965-07-06 1967-09-12 Rain Jet Corp Liquid discharge
US3412936A (en) * 1965-08-28 1968-11-26 Glenfield & Kennedy Ltd Liquid-ejecting nozzle
US3468362A (en) * 1966-05-31 1969-09-23 Concast Ag Method of cooling cast members from a continuous casting operation
US3612152A (en) * 1969-04-15 1971-10-12 Concast Ag Billet cooling method for continuous casting
US3630453A (en) * 1970-02-20 1971-12-28 United States Steel Corp Adjustable elongated spray nozzle
US3693352A (en) * 1970-09-22 1972-09-26 Demag Ag Method and apparatus for cooling wide continuous metal castings, particularly steel castings
US3753793A (en) * 1970-11-03 1973-08-21 Demag Ag Method for cooling metal webs

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924812A (en) * 1973-10-04 1975-12-09 Sumitomo Metal Ind Apparatus for supporting and guiding slab in the secondary cooling zone of continuous casting machine
US3991942A (en) * 1974-01-17 1976-11-16 Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft Long-range nozzle
US3989093A (en) * 1974-03-18 1976-11-02 Vereinigte Osterreichische Eisen- Und Stahlwerke-Alpine Montan Aktiengesellschaft Continuous casting plant for slabs
US3981347A (en) * 1974-04-26 1976-09-21 Concast Ag Method and apparatus for strand cooling with a flat spray pattern
US3974964A (en) * 1974-08-08 1976-08-17 Cotton Incorporated Liquid atomizing method and apparatus
US4028906A (en) * 1975-07-14 1977-06-14 Charles E. Upchurch Fogging device for cooling a condenser coil
US4047985A (en) * 1976-02-09 1977-09-13 Wean United, Inc. Method and apparatus for symmetrically cooling heated workpieces
US4232629A (en) * 1978-07-13 1980-11-11 Phillips Petroleum Company Dispensing nozzle
US4235280A (en) * 1979-01-22 1980-11-25 Concast Incorporated Spray nozzle for cooling a continuously cast strand
US4320072A (en) * 1981-02-27 1982-03-16 Ecodyne Corporation Cooling tower spray nozzle
US4659016A (en) * 1983-05-11 1987-04-21 Slautterback Corporation Hot-melt dispenser with aimable nozzles
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
US6374901B1 (en) 1998-07-10 2002-04-23 Ipsco Enterprises Inc. Differential quench method and apparatus
US9995005B2 (en) 2012-08-03 2018-06-12 First Quality Tissue, Llc Soft through air dried tissue
US10190263B2 (en) 2012-08-03 2019-01-29 First Quality Tissue, Llc Soft through air dried tissue
US10570570B2 (en) 2012-08-03 2020-02-25 First Quality Tissue, Llc Soft through air dried tissue
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
US9988763B2 (en) 2014-11-12 2018-06-05 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US11959226B2 (en) 2014-11-24 2024-04-16 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10900176B2 (en) 2014-11-24 2021-01-26 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10273635B2 (en) 2014-11-24 2019-04-30 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US11807992B2 (en) 2014-11-24 2023-11-07 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
US10675810B2 (en) 2014-12-05 2020-06-09 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US11752688B2 (en) 2014-12-05 2023-09-12 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US10099425B2 (en) 2014-12-05 2018-10-16 Structured I, Llc Manufacturing process for papermaking belts using 3D printing technology
US11242656B2 (en) 2015-10-13 2022-02-08 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10954636B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US10954635B2 (en) 2015-10-13 2021-03-23 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
US11577906B2 (en) 2015-10-14 2023-02-14 First Quality Tissue, Llc Bundled product and system
US11220394B2 (en) 2015-10-14 2022-01-11 First Quality Tissue, Llc Bundled product and system
US11028534B2 (en) 2016-02-11 2021-06-08 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10787767B2 (en) 2016-02-11 2020-09-29 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US11634865B2 (en) 2016-02-11 2023-04-25 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10208426B2 (en) 2016-02-11 2019-02-19 Structured I, Llc Belt or fabric including polymeric layer for papermaking machine
US10844548B2 (en) 2016-04-27 2020-11-24 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11668052B2 (en) 2016-04-27 2023-06-06 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10301779B2 (en) 2016-04-27 2019-05-28 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US11674266B2 (en) 2016-04-27 2023-06-13 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10941525B2 (en) 2016-04-27 2021-03-09 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US10858786B2 (en) 2016-04-27 2020-12-08 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
US20180030678A1 (en) * 2016-08-01 2018-02-01 Specialized Pavement Marking, Inc. Striping apparatus
US10982392B2 (en) 2016-08-26 2021-04-20 Structured I, Llc Absorbent structures with high wet strength, absorbency, and softness
EP4050155A1 (en) 2016-08-26 2022-08-31 Structured I, LLC Absorbent structures with high wet strength, absorbency, and softness
US11725345B2 (en) 2016-08-26 2023-08-15 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US10422082B2 (en) 2016-08-26 2019-09-24 Structured I, Llc Method of producing absorbent structures with high wet strength, absorbency, and softness
US11913170B2 (en) 2016-09-12 2024-02-27 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US10422078B2 (en) 2016-09-12 2019-09-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11098448B2 (en) 2016-09-12 2021-08-24 Structured I, Llc Former of water laid asset that utilizes a structured fabric as the outer wire
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US11286622B2 (en) 2017-08-23 2022-03-29 Structured I, Llc Tissue product made using laser engraved structuring belt
US11505898B2 (en) 2018-06-20 2022-11-22 First Quality Tissue Se, Llc Laminated paper machine clothing
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11702798B2 (en) 2019-05-03 2023-07-18 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11332889B2 (en) 2019-05-03 2022-05-17 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US11098453B2 (en) 2019-05-03 2021-08-24 First Quality Tissue, Llc Absorbent structures with high absorbency and low basis weight
US20230219130A1 (en) * 2020-07-22 2023-07-13 Novelis Inc. Direct chill casting mold system
US11751728B2 (en) 2020-12-17 2023-09-12 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same
US11952721B2 (en) 2022-06-16 2024-04-09 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same
US11976421B2 (en) 2022-06-16 2024-05-07 First Quality Tissue, Llc Wet laid disposable absorbent structures with high wet strength and method of making the same

Also Published As

Publication number Publication date
JPS49102528A (en) 1974-09-27
JPS535848B2 (en) 1978-03-02
TR18001A (en) 1976-08-20
ES422534A1 (en) 1976-05-01
CA1028822A (en) 1978-04-04
ZA74279B (en) 1975-01-29
CH564991A5 (en) 1975-08-15
ATA26574A (en) 1976-05-15
FR2213824A1 (en) 1974-08-09
AU6458274A (en) 1975-07-17
IT1003408B (en) 1976-06-10
AU473697B2 (en) 1976-07-01
GB1462642A (en) 1977-01-26
DE2401649B2 (en) 1976-09-16
BR7400249D0 (en) 1974-08-22
JPS535849B2 (en) 1978-03-02
GB1462643A (en) 1977-01-26
JPS49102527A (en) 1974-09-27
NL7400511A (en) 1974-07-18
JPS49102526A (en) 1974-09-27
SE400914B (en) 1978-04-17
AT342798B (en) 1978-04-25
BE809804A (en) 1974-07-16
JPS534805B2 (en) 1978-02-21
ES422533A1 (en) 1976-05-01
FI55304C (en) 1979-07-10
AR199020A1 (en) 1974-07-31
DE2401649A1 (en) 1974-07-18
FR2213824B1 (en) 1980-04-11
SU579868A3 (en) 1977-11-05
FI55304B (en) 1979-03-30
JPS535847B2 (en) 1978-03-02
JPS49102525A (en) 1974-09-27

Similar Documents

Publication Publication Date Title
US3877510A (en) Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern
US3935896A (en) Method for cooling a continuously cast strand
US3468362A (en) Method of cooling cast members from a continuous casting operation
EP0161307B1 (en) Nozzle for atomized fan-shaped spray
US4658882A (en) Machine for direct rolling of steel casting and producing steel product therefrom
KR100511867B1 (en) Spray nozzle assembly
CN101394946B (en) The cooling device of hot rolled strip and cooling means
US4031946A (en) Method and apparatus for changing the secondary cooling during continuous casting of steel
CA2414953C (en) Belt-cooling and guiding means for continuous belt casting of metal strip
US3934641A (en) Cooling arrangement for continuously cast metal objects
US3578064A (en) Continuous casting apparatus
US3981347A (en) Method and apparatus for strand cooling with a flat spray pattern
US5065945A (en) Multiple head spray nozzle assembly with common supply manifold
CA1207511A (en) Process for cooling a continuously cast ingot during casting
KR0128161B1 (en) Jet wiping nozzle
CA2837888C (en) A nozzle for guiding a metal melt
US3647346A (en) Extrusion die with adjustable dams
CA1320334C (en) Direct chill casting mould with controllable impingement point
US4765390A (en) Method of and arrangement for cooling a continuously cast strand
US3800852A (en) Cooling device for a continuous casting machine
JPH10263778A (en) Method for secondarily cooling cast slab in continuous casting
US3916984A (en) Cooling device for continuous casting machines
KR100725034B1 (en) Method and device for preventing an undesirable cooling of the band edge areas of a casting strand
SU1586852A1 (en) Method of adjusting secondary cooling system for continuously cast wide slabs when changing products being cast in curvilinear machines
US3532598A (en) Method and apparatus for controlling the distribution of the rate of flow of papermaking fibers

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMS CONCAST INC.

Free format text: CHANGE OF NAME;ASSIGNOR:CONCAST INCORPORATED;REEL/FRAME:004397/0366

Effective date: 19850312

AS Assignment

Owner name: SMS CONCAST INC.

Free format text: CHANGE OF NAME;ASSIGNOR:CONCAST INCORPORATED;REEL/FRAME:004387/0592

Effective date: 19840808