US3874942A - Electrophotographic photosensitive member - Google Patents

Electrophotographic photosensitive member Download PDF

Info

Publication number
US3874942A
US3874942A US292554A US29255472A US3874942A US 3874942 A US3874942 A US 3874942A US 292554 A US292554 A US 292554A US 29255472 A US29255472 A US 29255472A US 3874942 A US3874942 A US 3874942A
Authority
US
United States
Prior art keywords
layer
photosensitive member
insulating layer
read
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US292554A
Inventor
Hirokazu Negishi
Takashi Saito
Takao Komiya
Tatsuo Masaki
Takashi Ihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1341869A external-priority patent/JPS4833704B1/ja
Priority claimed from JP2294069A external-priority patent/JPS4833707B1/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to US292554A priority Critical patent/US3874942A/en
Application granted granted Critical
Publication of US3874942A publication Critical patent/US3874942A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14721Polyolefins; Polystyrenes; Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14726Halogenated polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14752Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14782Cellulose and derivatives

Definitions

  • This invention relates to an eletrophotgraphic photosensitive member and more particularly to a photosensitive member comprising basically a base body, a photoconductive layer, and an insulating layer, in which the insulating layer comprises inorganic substances or inorganic and organic substances.
  • an electrostatic image having such a high contrast and charge density is attained by first applying a high voltage, at charging step for forming an electrostatic image, to the surface of the photosensitive member on which an electrostatic image is to be formed and by giving a high electric charge to the sur face of the photosensitive member stated previously.
  • electrophotographic system there are known Xerography system, Electrofax system, etc.
  • the photosensitive member used in this process is characterized by the three layer structure comprising a conductive base plate, a photoconductive layer, and a surface insulating layer or the four layer structure having an insulating layer interposed between the base plate and the photoconductive layer in the abovementioned three layer stracture.
  • the surface of photosensitive member is covered with an insulating layer of high abrasion resistance, the fragile photoconductive layer, is protected against damage and the durability of the photosensitive member is improved.
  • the photosensitive member can be made from wide variety of materials as compared with conventional photosensitive member comprizing a single photoconductive layer.
  • highly sensitive photoconductors can not be used in conventional Xerography system and Electrofax system because they have, in general, a low resistance and a large dark decay.
  • the above-mentioned surface insulating layer there are used, in general, organic insulating materials composing of polyethylene terephthalate (registered trade mark: Mylar) and other highpolymer films.
  • the surface insulating layer maintains an electrostatic latent image of high contrast potential and, after developing the latent image, image transfer is preformed by applying a high external electric field. It shows a poor dielectric strength against impressed voltage and sometimes cause insulation breakdown of the surface insulating layer. For this reason it has been impossible to apply a voltage higher than a certain limit.
  • An object of this invention is to eliminate the abovementioned defects and provide a photosensitive member having a high dielectric strength capable of forming electrostatic latent images of high contrast, and showing no deterioration against repeated use over a long period of time.
  • a further object of this invention is to provide a photosensitive member which can maintain a high density electric charge against charging process contained in the formation of the electrostatic image and which is quite free from the production ofinsulation breakdown or the pin holes, one form of insulation breakdown, against a high voltage application.
  • Another object of this invention is to improve drastically the mechanical strength of insulating layer, especially that of the surface thereof, and to strengthen the durability against electric stress compared with conventional insulating layers.
  • the insulating layer is composed of inorganic substance or of inorganic insulating layer combined with organic insulating layer.
  • FIGS. 1, 3, 4, 5 and 6 are enlarged cross sectional views of embodiment of photosensitive member according to this invention.
  • FIGS. 2A 2D diagrammatically show an example for making the photosensitive member of this invention.
  • the most fundamental photosensitive layer according to this invention comprizes a base 1, a photoconductive layer 2 laid thereon, and an inorganic insulating layer 3 formed further thereon as shown in FIG. 1.
  • a coat of inorganic insulating layer 3 consisting of such inorganic insulating matters as glass and ceramic materials on the photoconductive layer 2,
  • the insulating layer is sometime subject to restriction in the material or coating method for reasons of smoothness, heat resistivity, etc. of the photosensitive layer. In such case, it is considered to remove the restrictions and perform lamination by, for example, employing the following method.
  • the insulating layer and the photoconductive layer are separately formed and finally they are laminated as shown in FIG. 2.
  • an inorganic insulating layer 3 is provided on the base 11, interposing a stripping layer 12 therebetween, and a polymer film 4 is made to adhere to the inorganic insulating layer 3 by way of an adhesive layer 13.
  • a photosensitive layer comprizing base 1 and photoconductive layer 2 is formed separately as shown in FIG. 2B and, the above-mentioned insulating layer is laminated on said photoconductive layer 2.
  • the insulating layer shown in FIG. 2A is peeled by means of the stripping layer 12 and is laminated on the photoconductive layer 2 shown in FIG. 2B.
  • the above-mentioned, stripped insulating layer is made to adhere to the photoconduc-. tive layer 2 in layer as is clearly shown in FIG. 2C.
  • the symbol 13' represents the adhesive layer used for adhesion of both layers.
  • an inorganic insulating layer is formed on the surface of the photosensitive member.
  • the polymer film 4 When using a polymer film 4 merely as the temporary protective layer of the inorganic insulating layer 3, the polymer film 4 is interposed in layer between the inorganic insulating layer 3 and the stripping layer 12 as shown in FIG. 2D, and, after adhering said inorganic insulating layer 3 to the photoconductive layer 2 shown in FIG. 2B, the polymer film 4 is stripped off.
  • an organic insulating material on the surface of the insulating layer to increase such properties of above-mentioned photosensitive member as water non-absorbing property, moisture non-permeating property, and adhesiveness of developer grains.
  • the photosensitive element shown in FIG. 3 comprizes four layers, conductive layer 21, photoconductive layer 2, inorganic insulating layer 3, and organic insulating layer 5, in which either the layer composed of the inorganic insulating layer 3 and the organic insulating layer which sandwiches the photo conductive layer 2 or the conductive layer 21 is permeable to radiations to which the photoconductive layer 2 is sensible and the inorganic insulating layer 3- and organic insulating layer 5 are used as the insulating section of the photosensitive member.
  • the photosensitive member is composed of five layers, that is, conductive layer 21, insulating layer 14 consisting of either inorganic substance or organic substance, photosensitive layer 2, inorganic insulating layer 3, and organic insulating layer 5, in which either the inorganic insulating layer 3 and.
  • this photosensitive member like the photosensitive member shown in FIG. 3, has as its insulating section the two layers of inorganic insulating layer 3 and organic insulating layer 5 and the organic insulating layer 5 as the surface layer of the photosensitive member to build the layer formation to attain the same object as the photosensitive member of FIG. 3.
  • this photosensitive member is characterized in that the two layers sandwiching the so-called photosensitive layer are two insulating layers, which, in
  • the insulat-k ing layer 14 is charged in reverse polarity to the charge of the organic insulating layer 5, and, by maintaining high density charge with the organic insulating layer, succeeds in forming a high contrasty electrostatic image. Therefore, the insulating layer 14 preferably comprises the above-mentioned insulating inorganic substances having, as insulating characteristics, a high dielectric strength in order to maintain the high density charge.
  • usual above-mentioned insulating organic substances can also attain the object of this invention.
  • inorganic insulating materials they must meet th requirements that the dielectric constant is 2 or more at normal temperatures and humidities, volume resistivity is 10 0 cm or more, dielectric strength is kv/mm, and the layer is l-40 ,u. in thickness (the layer is weak when it is thinner than 1 u and its flexibility is reduced when it is thicker than 40 t).
  • Suitable materials are glass materials and ceramic materials such as high silicate glass, crown glass, borosilicate glass, SiO
  • such substances as Se, PbO, CaO, B 0 SrO and MgO may be contained in order copper, CdS CdSe, and other inorganic photoconduc tive substances in the form of single layer or binder dispersion system.
  • the photoconductive layer is composed mainly of anthracene, 3,6-dibromopoly-N- vinylcarbazole, nitrated poly-N-vinylcarbazole, brominated poly-N-vinylcarbazole, polyvinyl anthracene, and other organic photoconductive substances.
  • metals such as copper, aluminum, iron, stainless steel, and tin, or conductive glass formed by depositing, tin oxide layer called Nesaglass (Trade mark) and other substances which allow to be used as the conductive layer of the photosensitive member can be used.
  • tin oxide layer called Nesaglass (Trade mark) and other substances which allow to be used as the conductive layer of the photosensitive member
  • silicone resin oil which is heat resistant up to 250C, for example, dimethyl siloxane (l0O-l0,000 c.p.s.) or tetrafluoroethylene (Trade mark, Teflon) which is heat resistive to more than 300C, FEP, etc. can be used. These substances are sufficiently effective with a minimum required amount.
  • transparent solventless adhesives such as epoxy resin, polyester resin, vinyl acetatepolyethlene copolymer type hot melt adhesive can be used. When using them, it is resuired to apply them uniformly and keep the thickness within 5,u.
  • the numerical characteristic of the dielectric strength of the above-mentioned inorganic insulating layer is, for example, approximately 180 kv/mm or more when the above-mentioned inorganic substance is mica.
  • the dielectric strength is 120 kv/mm.
  • the toal dielectric strength becomes approximately over 4,000V as is clear from simple arithmetical calculation based on the numerical values of dielectric strengths of the abovementioned mica and polyethylene phthalate. This shows that the insulating layer of the photosensitive member has a higher dielectric strength than when only the insulating organic substance is used as the insulating layer.
  • the dielectric constant in the system of insulating section of the photosensitive member is approximately 9 and that of polyethylene phthalate is approximately 3, and that constant of the insulating section is approximately 5.4
  • Such values of dielectric constant are most preferable for the electrostatic image forming process in which a high voltage is applied to the photosensitive member.
  • the above-mentioned inorganic insulating substances and organic insulating substances are, of course, allowed to be selected and used freely depending on the operating environmental condition of the photosensitive member and, as a result, it is possible to form the insulating section of the photosensitive memher having any dielectric strength and dielectric constant within optimum ranges.
  • the photosensitive member according to this invention is not limited to the one stated above, but the photosensitive members concerned with electrophotographic system in which an electrostatic image is formed in the insulating layer of the photosensitive member are all contained.
  • the photosensitive member of this invention refers to a photosensitive member comprizing as fundamental composition three layer of an insulating layer, a photosensitive layer, a conductive or insulating layer, or four layers of an insulating layer, a photosensitive layer, an insulating layer, and a conductive layer, in which each insulating layer is either composed of a single inorganic insulating layer or composed of above-mentioned two layers of organic insulating layer and inorganic insulating layer piled on upon another, or composed of above-mentioned inorganic insulating substance.
  • the photosensitive member according to this invention is basically composed of three or four layers.
  • the photosensitive member may take more complicated composition.
  • the base takes a two layer formation by the combination of conductive substances and insulating substances.
  • the conductive layer is represented by 21 and the insulating layer by 22, of course, the layer formation is not restricted to this layer formation.
  • the insulating layer have a two layer formation, formed by the conbination of inorganic insulating layer and organic insulating layer, as shown, for example, in FIG. 6, symbol 7 or 8, the same thing can be applied to the composition of the base.
  • the layer formation of the base can be selected freely depending on the purpose.
  • the photosensitive member according to this invention has a high dielectric strength, maintains a high density charge against the charging process of electrostatic image formation and, accordingly, forms an electrostatic image of high electrostatic contrast, and even upon application of high voltage, does not causes insulation breakdown or pin holes which are the main causes of the deterioration of photosensitive member, and shows no deterioration after repeated use over a long period of time. Furthermore, the photosensitive member according to this invention is enabled to visualize a high contrast electrostatic image faithfully and to obtain a copied image by making the surface layer from the abovementioned organic insulating layer which is excellent in no-water-absorbing property, no-moisute premeating property, adhesiveness of developer powder, and mechanical strength.
  • EXAMPLE 1 On an aluminum foil of 50 microns in thickness was coated electrophotographic photosensitive material solution composed in weight composition of Cadmium sulfide activated by copper I parts Vinyl chloride vinyl acetate resin (as solid) parts Methyl ethyl ketone 100 parts The foil was dried with air heated to 70C, and a photosensitive layer of 80 microns in thickness was prepared.
  • a 12 micron thick polyethylene terephthalate (trade name: Diafoil, a product of MIT- SUBlSHl JUSHl Co.) and a micron thick mica were adhered to each other by using a polyacrylicvinyl adhesive (trade name: Esudai, a product of SEKlSUl KAGAKU Co.).
  • a polyacrylicvinyl adhesive (trade name: Esudai, a product of SEKlSUl KAGAKU Co.)
  • an epoxyresin (Trade name a Epikote, a product of SHELL CHEMICAL Co.) to form a photosensitive plate.
  • the thickness of the adhesive layer the polyacrylic vinyl adhesive layer was 2 microns in thickness and the epoxy resin adhesive layer was 25 microns in thickness, and total thickness of the photosensitive plate was 145 microns in average.
  • the whole surface of the ab0ve-mentioned layer was exposed uniformly to the 10W tungsten lamp for l-2 seconds to form an electrostatic image which conformed with the dark-bright pattern of the original image. Then, the resulting electrostatic latent images were developed by a magnetbrush method and excellent visible images of high fidelity to the original pattern were produced.
  • this photosensitive plate was subject to above-mentioned charging process repeatedly in succession to test the electrical strength. Even after 70 thousand times of charging process, the result obtained by carrying out the above-mentioned electrophotographic process showed no degradation of image quality and a very good copied image was obtained.
  • EXAMPLE 2 Onto a 50 micron thick aluminum foil was adhered a 12 micron thick polyethylene terephthalate film by using epoxy resin. The thickness of epoxy resin was about 3 microns. Next, the photosensitive layer, mica, and polyethylene terephthalate layer were adhered, in this order, to the polyethylene terephthalate film in a similar way to Example 1 and a photosensitive plate of 160 microns in average total thickness was prepared. Next, using this photosensitive plate and according to the electrophotographic process filed by the present applicant and disclosed in US. application Ser. No. 563,899, filed July 8, 1966, a charging process similar to Example 1 was applied, and the surface of the polyethylene terephthalate insulating layer was uniformly charged with positive charge.
  • an original image was projected to the photosensitive plate for about 0.5 second by a tungsten lamp of about l0 lux and contemporaneously a corona discharge having reversed polarity was applied thereto. Then, the surface of the above-mentioned insulating layer was exposed to a 10W tungsten lamp uniformly for 1-2 seconds and an electrostatic image that conformed with the dark-' bright pattern of the original image was formed.
  • EXAMPLE 3 On an aluminum base plate was formed a photoconductive layer comprising CdS fine grains bonded by epoxy resin. The plate was mounted to the anode of high frequency cathode spattering equipment and.96 percent silica glass was provided on the cathode.
  • the interior of the equipment was maintained at vacuum of 10 Torr, and the above-mentioned photosensitive member material was made to contact with a water-cooled plate by way of indium foil to control the temperature within the range of C to C during spattering. Moreover, in carrying out spattering, the efficiency was improved by joint application of magnetic filed. Thus a silica glass layer having the specified thickness of 8 ,u. was formed on the photoconductive layer in about 1 hour.
  • the surface insulating layer thus obtained was an insulating layer excellent in dielectric strength and surface characteristics.
  • V 1 An electrophotographic photosensitive member comprising a base, a photoconductive layer and a separate insulating layer on the photoconductive layer at least substantially transparent to actinic radiation and composed of a laminate of an inorganic insulating layer 7 composed of inorganic insulating material having a di-, electric constant of at least 2 and an organic insulating material having an insulative resistance of at least 10 ohm-cm, said laminate having a thickness of l to 40 microns.

Abstract

An electrophotographic photosensitive member has an inorganic insulating layer laminated on the photoconductive layer thereof. This electrophotographic photosensitive member shows high dielectric strength and no deterioration against repeated use over a long period of time.

Description

United States Patent Negishi et a1.
Apr. 1, 1975 ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MEMBER Inventors: Hirokazu Negishi, Yokohama;
Takashi Saito. Tokyo; Takao Komiya; Tatsuo Masaki. both of Yokohama; Takashi lhara, Kawasaki. all of Japan Assignee: Canon Kabushiki Kaisha, Tokyo Japan Filed: Sept. 27, 1972 Appl. No: 292,554
Related U.S. Application Data Continuation of Scr. No. 11.520. Feb. 16, 1970.
abandoned.
U.S. Cl. 96/15, 117/132 R Int. Cl 003g 5/00 Field of Search 96/15; 117/132 R [56] References Cited UNITED STATES PATENTS 1885434 5/1959 Owens 96/].5
Primary Eraminer-Ronald H. Smith Assistant E.\uminerJ0hn L. Goodrow Attornqv, Agent, or FirnzFitzpatrick, Cella. Harper & Scinto [57] ABSTRACT 5 Claims, 9 Drawing Figures SHEET 1 0f 2 FIG. l
FIG. 2B
3 FIG. 2C
FIG. 2D
A Elk\ I AQ/ ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MEMBER This is a continuation, of application Ser. No. 1 1,520, filed Feb. 16, 1970, now abandoned.
This invention relates to an eletrophotgraphic photosensitive member and more particularly to a photosensitive member comprising basically a base body, a photoconductive layer, and an insulating layer, in which the insulating layer comprises inorganic substances or inorganic and organic substances.
lt is already widely known that in general electrophotographic processes, for example, in electrophotographic methods which comprises, in combination, steps of electrostatic image formation, development, and fixation, and transfer and fixation, a highly contrasty electrostatic image of high charge density must be formed when forming an electrostatic image, which corresponds to the original image to be copied, on a photosensitive member, in order to obtain a highly contrasty and sharp copy.
The formation of an electrostatic image having such a high contrast and charge density is attained by first applying a high voltage, at charging step for forming an electrostatic image, to the surface of the photosensitive member on which an electrostatic image is to be formed and by giving a high electric charge to the sur face of the photosensitive member stated previously. As these electrophotographic system, there are known Xerography system, Electrofax system, etc.
Among them, as one of the excellent systems, a method, which, for example, is disclosed in US. applications of Ser. No. 563,899, filed July 8, 1966 and Ser. No. 571,538, filed Aug. 10, l966 and which consists of three steps primary corona discharge, secondary corona discharge with simultaneous exposure or AC discharge, and whole surface exposure, and which forms a highly contrasty electrostatic image, is offered.
The photosensitive member used in this process is characterized by the three layer structure comprising a conductive base plate, a photoconductive layer, and a surface insulating layer or the four layer structure having an insulating layer interposed between the base plate and the photoconductive layer in the abovementioned three layer stracture. These features are not observed in conventional Xerographic plate and Electrofax paper.
Since the surface of photosensitive member is covered with an insulating layer of high abrasion resistance, the fragile photoconductive layer, is protected against damage and the durability of the photosensitive member is improved.
Moreover, since the surface insulating layer responsible for maintaining electric charge and the photoconductive layer, which is sensitive to such radiations as the optical image at time of secondary charging like a kind of switching operation, assume the responsibilities separately, the photosensitive member can be made from wide variety of materials as compared with conventional photosensitive member comprizing a single photoconductive layer.
For example, highly sensitive photoconductors can not be used in conventional Xerography system and Electrofax system because they have, in general, a low resistance and a large dark decay.
These high sensitive materials have not become enabled to be used.
However, as the above-mentioned surface insulating layer, there are used, in general, organic insulating materials composing of polyethylene terephthalate (registered trade mark: Mylar) and other highpolymer films. The surface insulating layer maintains an electrostatic latent image of high contrast potential and, after developing the latent image, image transfer is preformed by applying a high external electric field. It shows a poor dielectric strength against impressed voltage and sometimes cause insulation breakdown of the surface insulating layer. For this reason it has been impossible to apply a voltage higher than a certain limit.
This means that, even if a voltage higher than the above-mentioned limit can be applied, the phenomenon of insulation breakdown of the photosensitive member or of production of pin holes, a form of insulation breakdown, which extremely deteriorates the photosensitive member, occurs jointly and gives image of poor guality.
An object of this invention is to eliminate the abovementioned defects and provide a photosensitive member having a high dielectric strength capable of forming electrostatic latent images of high contrast, and showing no deterioration against repeated use over a long period of time.
A further object of this invention is to provide a photosensitive member which can maintain a high density electric charge against charging process contained in the formation of the electrostatic image and which is quite free from the production ofinsulation breakdown or the pin holes, one form of insulation breakdown, against a high voltage application.
Another object of this invention is to improve drastically the mechanical strength of insulating layer, especially that of the surface thereof, and to strengthen the durability against electric stress compared with conventional insulating layers.
To be concrete, the insulating layer is composed of inorganic substance or of inorganic insulating layer combined with organic insulating layer.
Embodiment of each photosensitive member having the invented inorganic insulating layer will be described in the following referring to the drawings:
FIGS. 1, 3, 4, 5 and 6 are enlarged cross sectional views of embodiment of photosensitive member according to this invention; and
FIGS. 2A 2D diagrammatically show an example for making the photosensitive member of this invention.
The most fundamental photosensitive layer according to this invention comprizes a base 1, a photoconductive layer 2 laid thereon, and an inorganic insulating layer 3 formed further thereon as shown in FIG. 1. For example, it is possible to improve drastically the mechanical strength of the surface and to strengthen the durability against electric stess compared with conventional insulating materials by applying a coat of inorganic insulating layer 3 consisting of such inorganic insulating matters as glass and ceramic materials on the photoconductive layer 2,
When providing an inorganic insulating layer on the photoconductive layer as stated above, the insulating layer is sometime subject to restriction in the material or coating method for reasons of smoothness, heat resistivity, etc. of the photosensitive layer. In such case, it is considered to remove the restrictions and perform lamination by, for example, employing the following method.
That is, the insulating layer and the photoconductive layer are separately formed and finally they are laminated as shown in FIG. 2.
In FIG. 2A, an inorganic insulating layer 3 is provided on the base 11, interposing a stripping layer 12 therebetween, and a polymer film 4 is made to adhere to the inorganic insulating layer 3 by way of an adhesive layer 13.
On the other hand, a photosensitive layer comprizing base 1 and photoconductive layer 2 is formed separately as shown in FIG. 2B and, the above-mentioned insulating layer is laminated on said photoconductive layer 2.
In other words, the insulating layer shown in FIG. 2A is peeled by means of the stripping layer 12 and is laminated on the photoconductive layer 2 shown in FIG. 2B.
As for the structure, the above-mentioned, stripped insulating layer is made to adhere to the photoconduc-. tive layer 2 in layer as is clearly shown in FIG. 2C.
The symbol 13' represents the adhesive layer used for adhesion of both layers.
In this way, an inorganic insulating layer is formed on the surface of the photosensitive member.
When using a polymer film 4 merely as the temporary protective layer of the inorganic insulating layer 3, the polymer film 4 is interposed in layer between the inorganic insulating layer 3 and the stripping layer 12 as shown in FIG. 2D, and, after adhering said inorganic insulating layer 3 to the photoconductive layer 2 shown in FIG. 2B, the polymer film 4 is stripped off.
As have been described above, by the employment of an inorganic insulating layer having an insulating characteristic of high dielectric strength, it is possible not only to prevent the occurrence of the phenomena which bring about deterioration of photosensitive member such as insulation breakdown or pin holes, but also to increase the mechanical and physical strength of the photosensitive member.
Furthermore, it is also effective to provide an organic insulating material on the surface of the insulating layer to increase such properties of above-mentioned photosensitive member as water non-absorbing property, moisture non-permeating property, and adhesiveness of developer grains.
When using such an organic insulating material, in the electrophotographic process following the formation of electrostatic latent image, it is possible, by the use of an organic insulating layer in order to obtain a visible transferred image that corresponds to the highly contrasty electrostatic image, to form a more excellent electrostatic image.
Therefore, in view of the above, it is possible to obtain a more effective photosensitive member by using both an inorganic insulating layer and an organic insulating layer simultaneously. This mode will be described hereinafter. The photosensitive element shown in FIG. 3 comprizes four layers, conductive layer 21, photoconductive layer 2, inorganic insulating layer 3, and organic insulating layer 5, in which either the layer composed of the inorganic insulating layer 3 and the organic insulating layer which sandwiches the photo conductive layer 2 or the conductive layer 21 is permeable to radiations to which the photoconductive layer 2 is sensible and the inorganic insulating layer 3- and organic insulating layer 5 are used as the insulating section of the photosensitive member.
As another embodiment of photosensitive member,
the one shown in FIG. 4 can also be considered. In this 1 photosensitive member, the photosensitive member is composed of five layers, that is, conductive layer 21, insulating layer 14 consisting of either inorganic substance or organic substance, photosensitive layer 2, inorganic insulating layer 3, and organic insulating layer 5, in which either the inorganic insulating layer 3 and.
organic insulating layer 5 or the conductive layer 21 and insulating layer 14 is permeated to the radiations to which the photosensitive layer 2 is sensitive. Therefore, this photosensitive member like the photosensitive member shown in FIG. 3, has as its insulating section the two layers of inorganic insulating layer 3 and organic insulating layer 5 and the organic insulating layer 5 as the surface layer of the photosensitive member to build the layer formation to attain the same object as the photosensitive member of FIG. 3. Moreover, this photosensitive member is characterized in that the two layers sandwiching the so-called photosensitive layer are two insulating layers, which, in
charging process by means of high voltage applied thereto for forming an electrostatic image, the insulat-k ing layer 14 is charged in reverse polarity to the charge of the organic insulating layer 5, and, by maintaining high density charge with the organic insulating layer, succeeds in forming a high contrasty electrostatic image. Therefore, the insulating layer 14 preferably comprises the above-mentioned insulating inorganic substances having, as insulating characteristics, a high dielectric strength in order to maintain the high density charge. However, usual above-mentioned insulating organic substances can also attain the object of this invention.
The construction materials of each layer of the photosensitive member of this invention will be described in the following. i
As inorganic insulating materials, they must meet th requirements that the dielectric constant is 2 or more at normal temperatures and humidities, volume resistivity is 10 0 cm or more, dielectric strength is kv/mm, and the layer is l-40 ,u. in thickness (the layer is weak when it is thinner than 1 u and its flexibility is reduced when it is thicker than 40 t). Suitable materials are glass materials and ceramic materials such as high silicate glass, crown glass, borosilicate glass, SiO
A1 0 TiO CaF BN, Ti O and mixtures of them. For reasons of manufacture, such substances as Se, PbO, CaO, B 0 SrO and MgO may be contained in order copper, CdS CdSe, and other inorganic photoconduc tive substances in the form of single layer or binder dispersion system. Or the photoconductive layer is composed mainly of anthracene, 3,6-dibromopoly-N- vinylcarbazole, nitrated poly-N-vinylcarbazole, brominated poly-N-vinylcarbazole, polyvinyl anthracene, and other organic photoconductive substances.
As for the base, metals such as copper, aluminum, iron, stainless steel, and tin, or conductive glass formed by depositing, tin oxide layer called Nesaglass (Trade mark) and other substances which allow to be used as the conductive layer of the photosensitive member can be used.
As the materials for the stripping layer used in the example shown in FIG. 2, silicone resin oil which is heat resistant up to 250C, for example, dimethyl siloxane (l0O-l0,000 c.p.s.) or tetrafluoroethylene (Trade mark, Teflon) which is heat resistive to more than 300C, FEP, etc. can be used. These substances are sufficiently effective with a minimum required amount.
As the adhesives, transparent solventless adhesives such as epoxy resin, polyester resin, vinyl acetatepolyethlene copolymer type hot melt adhesive can be used. When using them, it is resuired to apply them uniformly and keep the thickness within 5,u.
Materials for constructing each layer have been described so far. However, the materials described are only the representatives of the usable materials and, of course, materials applicable to this invention can all be used.
In the embodiments of this invention described so far, the numerical characteristic of the dielectric strength of the above-mentioned inorganic insulating layer is, for example, approximately 180 kv/mm or more when the above-mentioned inorganic substance is mica. On the other hand, in the case of polyethylene terephthalate, which is considered to be excellent in dielectric strength as the insulating organic substance used in above-mentioned organic insulating layer, the dielectric strength is 120 kv/mm. Therefore, in the layer formation of insulating section of the photosensitive member formed by the piling of the abovementioned inorganic insulating layer and organic insulating layer, for example, in the case of a 20 micron thick inorganic insulating layer composing of mica and a micron thick organic insulating layer composing of polyethylene terephthalate, the toal dielectric strength becomes approximately over 4,000V as is clear from simple arithmetical calculation based on the numerical values of dielectric strengths of the abovementioned mica and polyethylene phthalate. This shows that the insulating layer of the photosensitive member has a higher dielectric strength than when only the insulating organic substance is used as the insulating layer. Furthermore, as to the dielectric constant in the system of insulating section of the photosensitive member, the dielectric constant of mica is approximately 9 and that of polyethylene phthalate is approximately 3, and that constant of the insulating section is approximately 5.4 Such values of dielectric constant are most preferable for the electrostatic image forming process in which a high voltage is applied to the photosensitive member.
Furthermore, the above-mentioned inorganic insulating substances and organic insulating substances are, of course, allowed to be selected and used freely depending on the operating environmental condition of the photosensitive member and, as a result, it is possible to form the insulating section of the photosensitive memher having any dielectric strength and dielectric constant within optimum ranges.
The photosensitive member according to this invention is not limited to the one stated above, but the photosensitive members concerned with electrophotographic system in which an electrostatic image is formed in the insulating layer of the photosensitive member are all contained.
In composition, the photosensitive member of this invention refers to a photosensitive member comprizing as fundamental composition three layer of an insulating layer, a photosensitive layer, a conductive or insulating layer, or four layers of an insulating layer, a photosensitive layer, an insulating layer, and a conductive layer, in which each insulating layer is either composed of a single inorganic insulating layer or composed of above-mentioned two layers of organic insulating layer and inorganic insulating layer piled on upon another, or composed of above-mentioned inorganic insulating substance.
As stated above, the photosensitive member according to this invention is basically composed of three or four layers. However, in other case, for example, where the composition of the base is different, the photosensitive member may take more complicated composition.
To illustrate this, in FIG. 5, when the insulating layer is a single layer of inorganic insulating layer, the base takes a two layer formation by the combination of conductive substances and insulating substances. In FIG. 5, although the conductive layer is represented by 21 and the insulating layer by 22, of course, the layer formation is not restricted to this layer formation.
When the insulating layer have a two layer formation, formed by the conbination of inorganic insulating layer and organic insulating layer, as shown, for example, in FIG. 6, symbol 7 or 8, the same thing can be applied to the composition of the base. In short, the layer formation of the base can be selected freely depending on the purpose.
As have so far been described, the photosensitive member according to this invention has a high dielectric strength, maintains a high density charge against the charging process of electrostatic image formation and, accordingly, forms an electrostatic image of high electrostatic contrast, and even upon application of high voltage, does not causes insulation breakdown or pin holes which are the main causes of the deterioration of photosensitive member, and shows no deterioration after repeated use over a long period of time. Furthermore, the photosensitive member according to this invention is enabled to visualize a high contrast electrostatic image faithfully and to obtain a copied image by making the surface layer from the abovementioned organic insulating layer which is excellent in no-water-absorbing property, no-moisute premeating property, adhesiveness of developer powder, and mechanical strength.
Still further, by selecting and using the abovementioned inorganic and organic layer composing materials freely depending upon the operating environmental conditions of the photosensitive member, it is possible to offer a photosensitive member having optimum dielectric strength and dielectric constant.
This invention is further illustrated by the following nonlimitative examples.
EXAMPLE 1 On an aluminum foil of 50 microns in thickness was coated electrophotographic photosensitive material solution composed in weight composition of Cadmium sulfide activated by copper I parts Vinyl chloride vinyl acetate resin (as solid) parts Methyl ethyl ketone 100 parts The foil was dried with air heated to 70C, and a photosensitive layer of 80 microns in thickness was prepared.
On the other hand, a 12 micron thick polyethylene terephthalate (trade name: Diafoil, a product of MIT- SUBlSHl JUSHl Co.) and a micron thick mica were adhered to each other by using a polyacrylicvinyl adhesive (trade name: Esudai, a product of SEKlSUl KAGAKU Co.). These layers were then adhered to the surface of the above-mentioned photosensitive layer by using an epoxyresin (Trade name a Epikote, a product of SHELL CHEMICAL Co.) to form a photosensitive plate. As for the thickness of the adhesive layer, the polyacrylic vinyl adhesive layer was 2 microns in thickness and the epoxy resin adhesive layer was 25 microns in thickness, and total thickness of the photosensitive plate was 145 microns in average.
Next, by using this photosensitive member, and ac cording to the electrophotographic process applied for patent by this applicant and disclosed in US. application Ser. No. 571,538, filed Aug. 10, l966, by corona discharge wire established 10mm above the surface of the photosensitive member, a +6KV corona discharge was applied to the surface of polyethylene terephthalate insulating layer of the photosensitive plate to charge the surface uniformly with positive charge and, following this, an original image was projected for about 0.1 to 0.3 second by a tungsten lamp of about 10 lux onto the surface of the above-mentioned insulating layer and, contemporaneously, an AC 6KV corona discharge was applied. Further, the whole surface of the ab0ve-mentioned layer was exposed uniformly to the 10W tungsten lamp for l-2 seconds to form an electrostatic image which conformed with the dark-bright pattern of the original image. Then, the resulting electrostatic latent images were developed by a magnetbrush method and excellent visible images of high fidelity to the original pattern were produced.
Moreover, this photosensitive plate was subject to above-mentioned charging process repeatedly in succession to test the electrical strength. Even after 70 thousand times of charging process, the result obtained by carrying out the above-mentioned electrophotographic process showed no degradation of image quality and a very good copied image was obtained.
EXAMPLE 2 Onto a 50 micron thick aluminum foil was adhered a 12 micron thick polyethylene terephthalate film by using epoxy resin. The thickness of epoxy resin was about 3 microns. Next, the photosensitive layer, mica, and polyethylene terephthalate layer were adhered, in this order, to the polyethylene terephthalate film in a similar way to Example 1 and a photosensitive plate of 160 microns in average total thickness was prepared. Next, using this photosensitive plate and according to the electrophotographic process filed by the present applicant and disclosed in US. application Ser. No. 563,899, filed July 8, 1966, a charging process similar to Example 1 was applied, and the surface of the polyethylene terephthalate insulating layer was uniformly charged with positive charge. Next, an original image was projected to the photosensitive plate for about 0.5 second by a tungsten lamp of about l0 lux and contemporaneously a corona discharge having reversed polarity was applied thereto. Then, the surface of the above-mentioned insulating layer was exposed to a 10W tungsten lamp uniformly for 1-2 seconds and an electrostatic image that conformed with the dark-' bright pattern of the original image was formed. Next,
as a result of carrying out the electrophotographic process to develop the electrostatic image by cascade de' veloping method, a visible image faithful to the original image and of good quality was obtained.
Moreover, upon testing the electric strength of this. photosensitive plate under the same condition as Example l, even after thousand times of charging pro-.
cess, the result obtained after carrying out the abovementioned electrophotographic process was an extremely excellent copied image showing no degrada tion in image quality.
EXAMPLE 3 On an aluminum base plate was formed a photoconductive layer comprising CdS fine grains bonded by epoxy resin. The plate was mounted to the anode of high frequency cathode spattering equipment and.96 percent silica glass was provided on the cathode.
The interior of the equipment was maintained at vacuum of 10 Torr, and the above-mentioned photosensitive member material was made to contact with a water-cooled plate by way of indium foil to control the temperature within the range of C to C during spattering. Moreover, in carrying out spattering, the efficiency was improved by joint application of magnetic filed. Thus a silica glass layer having the specified thickness of 8 ,u. was formed on the photoconductive layer in about 1 hour.
The surface insulating layer thus obtained was an insulating layer excellent in dielectric strength and surface characteristics.
What is claimed is: V 1. An electrophotographic photosensitive member comprising a base, a photoconductive layer and a separate insulating layer on the photoconductive layer at least substantially transparent to actinic radiation and composed ofa laminate of an inorganic insulating layer 7 composed of inorganic insulating material having a di-, electric constant of at least 2 and an organic insulating material having an insulative resistance of at least 10 ohm-cm, said laminate having a thickness of l to 40 microns.
2. An electrophotographic photosensitive member as set forth in claim 1, in which the base is composed of a conductive substance.
3. An electrophotographic photosensitive member as set forth in claim 1, in which the base is-a laminate of a conductive substance and an insulating substance and the conductive substance is in contact with the'photoset forth in claim 1, in which the base is composed of i an insulating substance.
UNITED ST TES A'li-LNT ommzxg; CERTIFICATE O1? CORRECTION Patent N5. ,942 Dated April 1, 1 975 Inventor(s) HIROKAZU NEGISHI ET AL It is certified that error appears in the above-identified patent and that said Letters Patent are'hereby corrected as shown below:
On the cover page, between items [21] and [63] on the left hand column, insert:
- [30] FOREIGN APPLICATION PRIORI'I. Y DATA Feb. 22, 1969 I Japan '-l3 4l8/l969- Mar. 26 1969 Japan--. -22940/l969-- Column 1, line 6, change "eletrophotgraphi c 'f to read electrohotoraphi-c- I line 24, "at charcjin should. read at the c harging- .e A A line 29, "system" should read -s yste msv line 32 "of" should be deleted 4 line 45, "-stracture" should read -structure-- line 48, "surface of" should read surfae'e of the-- line 59, "'from wide should read froma wideline 60, "member Comprizing" should read -members comprisingline 67, 'Yhigh" should read highly- I UNI'IED S'IA'IES PA'IENT OFFICE CERTIFICATE OF CO RHECTIQN I a '2 .afifl l Patent No. 3 874 q4 Dated Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shmm below.
Column 2, line 3, "composing" should read comg osed line 7, "preformed" should read performed-- line 10, "cause" should read causes-- line 18, "gives image" should read c ;ives an image- I D line 19, "quality" should read quality line 29, "against charging" should read -agai nst 'a chargingline 32, "the" "should be deleted line "of insulating" should read of the insulatingline 39, "composed of" should read --composed of line 40, "of inorganic" should read --of an organicline 41, "withorganic" should read with an organic-- line 42, "Embodiment" should read --Embo diments-- Patent No.
UNI'IED S'IATES PA'IE'YT OFFICE Page 3 Dated Inventor(s)' It is certified that error appears in the above-identified patent and that said Letters Pa tent are hereby corrected as shown below:
Column 2,
and "member" Column 3,
line
.line 47, "embodiment" should read ----embodiments-- should read -members*- line 52, "comprizes" should read "comprises line 57, "stess" should read -stress line ll, "comprizing" should read comprisingline 22., "layer" should read -la ersline 29, "in layer" should be deleted 34, "As have should ,read -As has-- line 39/ "of photosensitive" should read --of the photosensitiveline 44, "of above" should read -of the above- Column 4,
line 50, "of electrostatic" should read -o f the electrostaticline 61, "comprizes" should read comrisesline 68, "sensible" should read sensitiv e-- line 12, "permeated" should read permeable-- line 24, "which, in" should read -whiich, in a-:
UNITED S'IA'IES IA'll-JNT ()FFICE Fatent No.
Inventor(s) Dated April.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 4, line 52, "layer produce filter" should read Column Column --layer and produce a filter-- line 53, "for organic" should read for the organicline line
line
60', "thick" should read -thickness 5, line 8, "allow to" should "read allow it to line line
line
line
line
line
49 and'56, in both occurrence- "phtnalate" should read --terephthalate- 6, line 5, "with electrophoto should read --with an electrophoto- CERTIFICATE OF CORRECTION Patent No.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby, corrected as shown below:
Column 6 line 10, "compriz" should read --compris line ' line lineline line
line 'line line line
line
line.
line
line
line
"layer 'of should read laye rs:
"posed of" should read. -posed of the-- "upon" should read -one-- "of aboveshould read -of the above- "case" should read --cas es "take more should read -take a more-- f'have" should read "has- "conbinal:ion. should read -co mbinati on 42, "have" -s hould "read +has-- "causes" should read cause "memher" should read members- "is-"enabled" should read enahles 'ohe- "no-moisute premeating" should read -no moisture permeating-- line 6 UNITED STA'IES PATENT ()FFKJLI CERTIFICATE OI. CORRECTION.
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 7,- line 2, "coated electrophotographic" should read --coated an electrophotographio line '21, "Trade name a" should read -Trade name a:
line 26, "and total thickness" should read -and the total average thickness-- line 27; "in average" should be deleted line29, "applied for" should be'deleted line 30, "p a pp t n Should be deleted; and inserted therefore should be a pplicants' copendingline 49 "subject" should read subjected-- line 50, "above" should read --rthe aboveline 52, "of charging process" should be deleted line 67, "filed by the present" should be deleted Column 8, line 1, "applicant and should be deleted, and
"in U.S." should read .in applicants copending UNI'IED S'IA'ITES PATENT opmczu 7 CERTIFICATE 0.1; CORRECTION It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 8, line 14, "by cascade" should read -by the cascadeline 18, "condition as Ex" should read -conditious as in Exlines '19 and 20 'of chargirig process" should be deleted.
line 27, ."anode of" should read auode of a line 28, "spattering" should read sputtering- 7 Line 30, "at vac-" should read -.at a vacline 35, "spattering" at both occurrences should readsputtering V Signed and sealed thi s 24th clay of June 1975.-

Claims (5)

1. AN ELECTROPHOTOGRAPHIC PHOTOSENSITIVE MEMBER COMPRISING A BASE, A PHOTOCONDUCTIVE LAYER AND A SEPARATE INSULATING LAYER ON THE PHOTOCONDUCTIVE LAYER AT LEAST SUBSTANTIALLY TRANSPARENT TO ACTINIC RADIATION AND COMPOSED OF A LAMINATE OF AN INORGANIC INSULATING LAYER COMPOSED OF INORGANIC INSULATING MATERIAL HAVING A DIELECTRIC CONSTANT OF AT LEAST 2 AND AN ORGANIC INSULATING MATERIAL HAVING AN INSULATIVE RESISTANCE OF AT LEAST 10**12 OHM-CM, SAID LAMINATE HAVING A THICKNESS OF 1 TO 40 MICRONS.
2. An electrophotographic photosensitive member as set forth in claim 1, in which the base is composed of a conductive substance.
3. An electrophotographic photosensitive member as set forth in claim 1, in which the base is a laminate of a conductive substance and an insulating substance and the conductive substance is in contact with the photoconductive layer.
4. An electrophotographic photosensitive member as set forth in claim 1, in which the base is a laminate of a conductive substance and an insulating substance and the insulating subStance is in contact with the photoconductive layer.
5. An electrophotographic photosensitive member as set forth in claim 1, in which the base is composed of an insulating substance.
US292554A 1969-02-22 1972-09-27 Electrophotographic photosensitive member Expired - Lifetime US3874942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US292554A US3874942A (en) 1969-02-22 1972-09-27 Electrophotographic photosensitive member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1341869A JPS4833704B1 (en) 1969-02-22 1969-02-22
JP2294069A JPS4833707B1 (en) 1969-03-26 1969-03-26
US1152070A 1970-02-16 1970-02-16
US292554A US3874942A (en) 1969-02-22 1972-09-27 Electrophotographic photosensitive member

Publications (1)

Publication Number Publication Date
US3874942A true US3874942A (en) 1975-04-01

Family

ID=27455989

Family Applications (1)

Application Number Title Priority Date Filing Date
US292554A Expired - Lifetime US3874942A (en) 1969-02-22 1972-09-27 Electrophotographic photosensitive member

Country Status (1)

Country Link
US (1) US3874942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966471A (en) * 1973-12-25 1976-06-29 Ricoh Co., Ltd. Electro photosensitive materials with a protective layer
US4015984A (en) * 1973-05-17 1977-04-05 Kabushiki Kaisha Ricoh Inorganic photoconductor in glass binds with glass overcoat layer
FR2456342A1 (en) * 1977-05-12 1980-12-05 Coulter Systems Corp FAST ELECTROPHOTOGRAPHIC MEDIUM AND METHOD OF USE
US4252883A (en) * 1972-04-28 1981-02-24 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
US5049466A (en) * 1988-01-25 1991-09-17 Minolta Camera Kabushiki Kaisha Photosensitive member with intermediate layer of high polymer resin
US5302478A (en) * 1990-08-30 1994-04-12 Xerox Corporation Ionographic imaging members and methods for making and using same
US20070201895A1 (en) * 2006-02-24 2007-08-30 Kyocera Corporation Electrophotographic Photosensitive Member and Image Forming Apparatus Using Same
US20170033235A1 (en) * 2015-07-31 2017-02-02 Au Optronics Corporation Pixel structure and method for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886434A (en) * 1955-06-06 1959-05-12 Horizons Inc Protected photoconductive element and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886434A (en) * 1955-06-06 1959-05-12 Horizons Inc Protected photoconductive element and method of making same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252883A (en) * 1972-04-28 1981-02-24 Canon Kabushiki Kaisha Process for producing electrophotographic photosensitive member
US4015984A (en) * 1973-05-17 1977-04-05 Kabushiki Kaisha Ricoh Inorganic photoconductor in glass binds with glass overcoat layer
US3966471A (en) * 1973-12-25 1976-06-29 Ricoh Co., Ltd. Electro photosensitive materials with a protective layer
FR2456342A1 (en) * 1977-05-12 1980-12-05 Coulter Systems Corp FAST ELECTROPHOTOGRAPHIC MEDIUM AND METHOD OF USE
US5049466A (en) * 1988-01-25 1991-09-17 Minolta Camera Kabushiki Kaisha Photosensitive member with intermediate layer of high polymer resin
US5302478A (en) * 1990-08-30 1994-04-12 Xerox Corporation Ionographic imaging members and methods for making and using same
US20070201895A1 (en) * 2006-02-24 2007-08-30 Kyocera Corporation Electrophotographic Photosensitive Member and Image Forming Apparatus Using Same
US7941070B2 (en) * 2006-02-24 2011-05-10 Kyocera Corporation Electrophotographic photosensitive member and image forming apparatus using same
US20170033235A1 (en) * 2015-07-31 2017-02-02 Au Optronics Corporation Pixel structure and method for fabricating the same
US10121901B2 (en) * 2015-07-31 2018-11-06 Au Optronics Corporation Pixel structure with isolator and method for fabricating the same

Similar Documents

Publication Publication Date Title
US5039598A (en) Ionographic imaging system
US3639121A (en) Novel conducting lacquers for electrophotographic elements
GB1603137A (en) Electrophotographic material
US3909262A (en) Imaging migration member employing a gelatin overcoating
US3816115A (en) Method for forming a plurality of electrostatic latent images on an electrophotographic plate
US3874942A (en) Electrophotographic photosensitive member
US3783021A (en) Conducting lacquers for electrophotographic elements
JPS58105178A (en) Method and apparatus for making transparent picture
US3719481A (en) Electrostatographic imaging process
US3647427A (en) Germanium and silicon additives to dual-layer electrophotographic plates
US3271146A (en) Xeroprinting with photoconductors exhibiting charge-storage asymmetry
US3288604A (en) Imaging method using an element having a glass overcoating
US3124456A (en) figure
US3666364A (en) Electrophotographic apparatus
US3447957A (en) Method of making a smooth surfaced adhesive binder xerographic plate
US3723110A (en) Electrophotographic process
US3677750A (en) Photoelectrosolographic imaging process
US3953206A (en) Induction imaging method utilizing an imaging member with an insulating layer over a photoconductive layer
US3912505A (en) Color imaging method employing a monolayer of beads
JPS5919335B2 (en) electrophotography
US4348469A (en) Photo-sensitive medium for electrophotography
US3666365A (en) Electrophotographic process and apparatus involving persistent internal polarization
US3794418A (en) Imaging system
US3268361A (en) Thermoplastic recording member
US3615387A (en) Strippable layer relief imaging process