US3872232A - Water-cooled flexible riser tube cable terminal - Google Patents

Water-cooled flexible riser tube cable terminal Download PDF

Info

Publication number
US3872232A
US3872232A US432431A US43243174A US3872232A US 3872232 A US3872232 A US 3872232A US 432431 A US432431 A US 432431A US 43243174 A US43243174 A US 43243174A US 3872232 A US3872232 A US 3872232A
Authority
US
United States
Prior art keywords
cable
riser tube
component
terminal
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US432431A
Inventor
Daniel J Goodman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US432431A priority Critical patent/US3872232A/en
Priority to CA214,487A priority patent/CA976631A/en
Priority to GB5217574A priority patent/GB1448039A/en
Priority to DE19752500570 priority patent/DE2500570A1/en
Priority to JP50005037A priority patent/JPS50101885A/ja
Priority to ES433718A priority patent/ES433718A1/en
Application granted granted Critical
Publication of US3872232A publication Critical patent/US3872232A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/001Power supply cables for the electrodes of electric-welding apparatus or electric-arc furnaces

Definitions

  • ABSTRACT This water-cooled electric arc furnace cable terminal consists of a cup-shaped head and a rearwardly- Mar. 18, 1975 projecting bar-shaped terminal blade containing a cooling water passageway communicating with the interior of the head and opening into a stepped riser tube surrounded by an annular cavity in which are secured, as by solder, the outer ends of the stranded cable conductors or ropes.”
  • a perforated flexible tubular elastomeric core separates the inner sides of the stranded cable conductor from the inner component of the composite riser tube in spaced relationship therewith so as to provide a cooling water passesgeway therebetween.
  • the tubular core is provided with perforations enabling the cooling water to pass therethrough into the interstices between the hair-like wires of the so-called cable conductors or ropes.
  • the riser tube of the terminal is composed of coaxial outer and inner components of different diameters separated from one another by circumferentiallyseparated spacers so that the cooling water can flow through the arcuate auxiliary ports thus provided between the spacers and thereby flow around the outside of the inner component of the riser tube, as well as through the interior thereof, and thus bypass wire splinter masses which might otherwise clog or plug up the water cooling passageways and cause the cable to explode from the pressure of the steam thus produced.
  • the riser tube mounted within the cup-shaped head of the cable terminal consists of an outer component of larger diameter than an inner component joined thereto by circumferentially separated spacers which define arcuate auxiliary cooling water ports therebetween.
  • auxiliary cooling water ports are of sufficient size to enable the cooling water to pass therethrough and bypass collections or masses of cable wire splinters which may break off as a result of the flexing of the cable during use, and which might otherwise clog the cable and prevent the flow of the cooling water, with consequent accumulation of high pressure steam and eventual bursting of the cable hose as a result thereof.
  • the present invention reduces the likelihood of cable explosions resulting from the clogging of the water passageways by wire splinters by providing additional water channels resulting from the use of outer and inner riser tube components of different diameters interconnected by spacers so that cooling water can flow around the outside of the smaller-diameter component as well as through it, and thus can bypass portions of the cable clogged by wire splinters.
  • FIG. 1 is a central longitudinal section, taken along the line 1-1 in FIG. 2 and partly in side elevation, of a water-cooled electric furnace cable terminal equipped with the safety non-clogging riser tube of the present invention;
  • FIG. 2 is a cross-section taken along the line 2--2 in FIG. 1;
  • FIG. 3 is a cross-section taken along the line 3-3 in FIG. 1.
  • FIGS. 1 to 3 show a water-cooled electric arc furnace cable.
  • generally designated 10 including generally a furnace cable conductor assembly 11 disposed within a flexible tubular elastomeric casing or hose 13 and a terminal 12 joined thereto in the manner set forth below.
  • Each cable 10 is provided with a pair of the terminals 12, one at each end, and as these two terminals 12 are of similar construction, only one is shown in the drawing.
  • Each terminal 12 includes a body 15 having a cupshaped head 14 from which projects a bar-shaped blade or connection portion 16, notched out at 18 and drilled with multiple fastener holes 20 for the purpose of bolting or otherwise securing it to the transformer or furnace terminals (not shown).
  • the blade 16 at its outer end 22 is provided with a threaded port 24 for the coupling thereto of the correspondingly threaded fitting of a cooling water supply conduit (not shown).
  • a cooling water passageway 26 extends inward from the threaded port 24 and opens into a counterbore 30 from which an annular end surface 28 extends radially outward to a bore 34 in the cup-shaped socket 32 of the terminal head 14.
  • soldered or otherwise secured in the counterbore 30 against the end wall 36 thereof is the rearward end 38 of the elongated outer component 40 of an elongated stepped composite riser tube, generally designated 42, including an elongated flexible inner riser tube component 44 of smaller diameter having its rearward end 48 mounted in radially spaced overlapping relationship to the forward end 46 of the outer component 40.
  • Soldered or otherwise secured in circumferentially spaced relationship around the inner cylindrical surface 50 of the outer riser tube component 40 are the outer sides of several spacers 52, three being shown in FIG. 2.
  • the outer surface 54 of the elongated inner riser tube component 44 near the outer end 48 thereof.
  • the inner riser tube component 44 is preferably in the form of a flexible metal hose, such as flexible phosphor bronze metal hose.
  • the terminal head 14, blade 16, and outer riser tube component 42 are also preferably made from nonferrous metal, such as copper or bronze.
  • the inner and outer riser tube components 44 and 40 and their spacers 52 collectively form the composite flexible riser tube 42. Since the inner riser tube component 44 is of smaller diameter than the outer riser tube component 40 and is separated therefrom by the spacers 52, this arrangement provides a plurality of arcuate cooling water bypass ports between the spacers 52.
  • the outer surface 46 of the outer riser tube component 40, the inner surface 34 of the cup-shaped socket 32 in the terminal head 14 and the annular end surface 28 thereof collectively define an annular stranded conductor or wire rope pocket or cavity 68.
  • Secured, as by solder, in the annular cavity 68 are the outer end portions 70 of stranded cable conductors or wire ropes 72 which inwardly beyond their outer end portions 70 are surrounded by perforated elastomeric tubular jackets 76, these jackets extending lengthwise of the stranded conductors or wire ropes 72.
  • the flexible riser tube component 44 extends partway into the core 78.
  • the hollow cylindrical side wall 84 of the terminal head 14 is provided with an annularly toothed or jagged outer surface 86 over which is drawn the end portion 88 of the elastomeric casing or hose l3 tightly secured thereto by annular hose clamps 92.
  • the rearward end 38 of the outer component 40 of the previously assembled composite flexible riser tube 42 is soldered or otherwise secured in the counterbore 30.
  • the outer end portions 70 of the stranded wire conductors or wire ropes 72 are then inserted in the annular cavity 68 and secured therein by pouring solder, such as silver solder,
  • the remaining portion of the cooling water which does not flow through the chamber 96 of the flexible inner riser tube component 44 passes through the arcuate cooling water ports 60 between the spacers 52 and around the outer end 74 of the tubular elastomeric core 78 and through the channels provided by its fluted external surface 77, whence it flows in a similar manner through the perforations 82 into the tubular cable conductor jackets 76 and cools the hair-like wires thereof of the stranded conductors or wire ropes Subsequently, when the transmission of electric current through the cable or cables to the electric furnace heats the stranded conductors or wire ropes 72, the cable conductor assemblies are cooled by the cooling water flowing through each perforated tubular jacket 76 around the hair-like wires of the stranded conductors or wire ropes 72 of each such rope 72 in the manner described above so as to carry away the heat arising within the cable and thus prevent the cable from burning up during operation.
  • a cable terminal adapted to be connected to a cable conductor assembly including a multiplicity of flexible stranded wire conductor ropes surrounding a central flexible coolant conduit within the flexible tubular casing of a water-cooled electric arc furnace cable, said terminal comprising a terminal body having a cup-shaped head portion containing a socket and having an electrical connection portion projecting outward from one end of said head portion away from said socket, and an elongated riser tube structure having an outer component with an outer end secured to said body centrally within said socket and defining with said socket an annular cavity adapted to receive the outer ends of the conductor ropes and also adapted to receive means for securing the conductor ropes to said head portion, said body having a coolant passageway therethrough communicating with said outer end of said riser tube structure,
  • riser tube structure having an inner component disposed in coaxial end-to-end relationship with said outer component and adapted to be inserted in the outer end portion ofthe central flexible coolant conduit,
  • said riser tube structure having connecting means joining the outer end portion of said inner component with the inner end portion of said outer componentand having coolant bypass means disposed adjacent said connecting means and effecting coolant bypass flow from said outer component exteriorly of said inner component and also exteriorly of the flexible coolant conduit into the flexible tubular casing.
  • a cable terminal according to claim 1, wherein said inner component is composed of flexible metallic material.
  • a cable terminal according to claim 2, wherein said outer component is composed of substantially rigid metallic material.
  • a cable terminal according to claim 1, wherein said connecting means are disposed substantially in the plane of the inner end of said cup-shaped head, said coolant bypass means comprising coolant outlet port means disposed between the interconnected end portions of said outer and inner components.
  • a cable terminal according to claim 1, wherein said inner component is of smaller diameter than said outer component and wherein said connecting means secures said components to one another in radially spaced relationship, said coolant bypassing means being disposed in the space between said outer and inner components.
  • a cable terminal according to claim 5, wherein said connecting means are secured in circumferentially to-end overlapping relationship, and wherein said connecting means comprise spacers disposed in circumferentially spaced relationship between the overlapping end portions of said components.

Landscapes

  • Insulated Conductors (AREA)
  • Cable Accessories (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Discharge Heating (AREA)

Abstract

This water-cooled electric arc furnace cable terminal consists of a cup-shaped head and a rearwardly-projecting bar-shaped terminal blade containing a cooling water passageway communicating with the interior of the head and opening into a stepped riser tube surrounded by an annular cavity in which are secured, as by solder, the outer ends of the stranded cable conductors or ''''ropes.'''' A perforated flexible tubular elastomeric core separates the inner sides of the stranded cable conductor from the inner component of the composite riser tube in spaced relationship therewith so as to provide a cooling water passegeway therebetween. The tubular core is provided with perforations enabling the cooling water to pass therethrough into the interstices between the hair-like wires of the so-called cable conductors or ''''ropes.'''' To prevent clogging of the terminal by splinters of the hair-like wires of which these cable ropes are composed, the riser tube of the terminal is composed of coaxial outer and inner components of different diameters separated from one another by circumferentially-separated spacers so that the cooling water can flow through the arcuate auxiliary ports thus provided between the spacers and thereby flow around the outside of the inner component of the riser tube, as well as through the interior thereof, and thus bypass wire splinter masses which might otherwise clog or plug up the water cooling passageways and cause the cable to ''''explode'''' from the pressure of the steam thus produced.

Description

United States Patent [191 Goodman WATER-COOLED FLEXIBLE RISER TUBE CABLE TERMINAL [76] Inventor: Daniel J. Goodman, 23236 Westbury Dr., St. Clair Shores, Mich. 48080 [22] Filed: Jan. 11, 1974 [21] Appl. No.: 432,431
[52] U.S. Cl. 174/19, 174/15 C [51] Int. Cl. H0lb 7/34 [58] Field of Search 174/15 R, 15 C, 16 B, 19,
Primary Examiner-Arthur T. Grimley [5 7] ABSTRACT This water-cooled electric arc furnace cable terminal consists of a cup-shaped head and a rearwardly- Mar. 18, 1975 projecting bar-shaped terminal blade containing a cooling water passageway communicating with the interior of the head and opening into a stepped riser tube surrounded by an annular cavity in which are secured, as by solder, the outer ends of the stranded cable conductors or ropes." A perforated flexible tubular elastomeric core separates the inner sides of the stranded cable conductor from the inner component of the composite riser tube in spaced relationship therewith so as to provide a cooling water passegeway therebetween. The tubular core is provided with perforations enabling the cooling water to pass therethrough into the interstices between the hair-like wires of the so-called cable conductors or ropes. To prevent clogging of the terminal by splinters of the hairlike wires of which these cable ropes are composed, the riser tube of the terminal is composed of coaxial outer and inner components of different diameters separated from one another by circumferentiallyseparated spacers so that the cooling water can flow through the arcuate auxiliary ports thus provided between the spacers and thereby flow around the outside of the inner component of the riser tube, as well as through the interior thereof, and thus bypass wire splinter masses which might otherwise clog or plug up the water cooling passageways and cause the cable to explode from the pressure of the steam thus produced.
7 Claims, 3 Drawing Figures PATENTEU 1 81975 mm N w 3. mm wm WATER-COOLED FLEXIBLE RISER TUBE CABLE TERMINAL SUMMARY OF THE INVENTION The riser tube mounted within the cup-shaped head of the cable terminal consists of an outer component of larger diameter than an inner component joined thereto by circumferentially separated spacers which define arcuate auxiliary cooling water ports therebetween. These auxiliary cooling water ports are of sufficient size to enable the cooling water to pass therethrough and bypass collections or masses of cable wire splinters which may break off as a result of the flexing of the cable during use, and which might otherwise clog the cable and prevent the flow of the cooling water, with consequent accumulation of high pressure steam and eventual bursting of the cable hose as a result thereof.
BACKGROUND OF THE INVENTION Clogging of the water passageways in a water-cooled electric furnace cable, with consequent cutting off of the cooling water by tiny splinters or fragments of the hair-like wires making up the stranded cable conductors or ropes has been a serious hazard constantly facing users ofsuch cables. Such clogging of the water passageways by such splinters, by cutting off the cooling water circulation, causes the generation of steam, the pressure of which eventually causes the cable to burst. Furthermore, the consequent cutting off of the cooling water causes the cable to be destroyed by the heat generated in the uncooled cable. In my US. Pat. No. 3,784,722, issued Jan. 8, 1974 upon my application Ser. No. 272,579, filed July 17, 1972, for Water- Cooled Electric Furnace Cable, an improvement of this condition was achieved by the provision of a flexible riser tube of non-ferrous metal in place of the rigid riser tubes previously employed, the flexible riser tube enabling the stranded cable conductors to flex more easily without the abrupt fulcrum set up by the ends of the previously used rigid riser tubes. As a result, the production of wire splinters was considerably reduced, but not completely eliminated.
The present invention reduces the likelihood of cable explosions resulting from the clogging of the water passageways by wire splinters by providing additional water channels resulting from the use of outer and inner riser tube components of different diameters interconnected by spacers so that cooling water can flow around the outside of the smaller-diameter component as well as through it, and thus can bypass portions of the cable clogged by wire splinters.
In the drawing,
FIG. 1 is a central longitudinal section, taken along the line 1-1 in FIG. 2 and partly in side elevation, of a water-cooled electric furnace cable terminal equipped with the safety non-clogging riser tube of the present invention;
FIG. 2 is a cross-section taken along the line 2--2 in FIG. 1; and
FIG. 3 is a cross-section taken along the line 3-3 in FIG. 1.
Referring to the drawing in detail, FIGS. 1 to 3 show a water-cooled electric arc furnace cable. generally designated 10, according to a preferred form of the invention, including generally a furnace cable conductor assembly 11 disposed within a flexible tubular elastomeric casing or hose 13 and a terminal 12 joined thereto in the manner set forth below. Each cable 10 is provided with a pair of the terminals 12, one at each end, and as these two terminals 12 are of similar construction, only one is shown in the drawing.
Each terminal 12 includes a body 15 having a cupshaped head 14 from which projects a bar-shaped blade or connection portion 16, notched out at 18 and drilled with multiple fastener holes 20 for the purpose of bolting or otherwise securing it to the transformer or furnace terminals (not shown). The blade 16 at its outer end 22 is provided with a threaded port 24 for the coupling thereto of the correspondingly threaded fitting of a cooling water supply conduit (not shown). A cooling water passageway 26 extends inward from the threaded port 24 and opens into a counterbore 30 from which an annular end surface 28 extends radially outward to a bore 34 in the cup-shaped socket 32 of the terminal head 14. Soldered or otherwise secured in the counterbore 30 against the end wall 36 thereof is the rearward end 38 of the elongated outer component 40 of an elongated stepped composite riser tube, generally designated 42, including an elongated flexible inner riser tube component 44 of smaller diameter having its rearward end 48 mounted in radially spaced overlapping relationship to the forward end 46 of the outer component 40. Soldered or otherwise secured in circumferentially spaced relationship around the inner cylindrical surface 50 of the outer riser tube component 40 are the outer sides of several spacers 52, three being shown in FIG. 2. Similarly secured to the inner sides of the spacers 52 is the outer surface 54 of the elongated inner riser tube component 44 near the outer end 48 thereof. The inner riser tube component 44 is preferably in the form of a flexible metal hose, such as flexible phosphor bronze metal hose. The terminal head 14, blade 16, and outer riser tube component 42 are also preferably made from nonferrous metal, such as copper or bronze. The inner and outer riser tube components 44 and 40 and their spacers 52 collectively form the composite flexible riser tube 42. Since the inner riser tube component 44 is of smaller diameter than the outer riser tube component 40 and is separated therefrom by the spacers 52, this arrangement provides a plurality of arcuate cooling water bypass ports between the spacers 52.
The outer surface 46 of the outer riser tube component 40, the inner surface 34 of the cup-shaped socket 32 in the terminal head 14 and the annular end surface 28 thereof collectively define an annular stranded conductor or wire rope pocket or cavity 68. Secured, as by solder, in the annular cavity 68 are the outer end portions 70 of stranded cable conductors or wire ropes 72 which inwardly beyond their outer end portions 70 are surrounded by perforated elastomeric tubular jackets 76, these jackets extending lengthwise of the stranded conductors or wire ropes 72. Mounted between the composite flexible riser tube 58 and the end portions 70 of the stranded conductors or wire ropes 72 is the end 74 of a perforated elastomeric tubular core 78 having a fluted or longitudinally grooved outer surface 77 containing cooling water flow ports 80 adjacent the perforations 82 of the perforated jackets 76. The flexible riser tube component 44 extends partway into the core 78. The hollow cylindrical side wall 84 of the terminal head 14 is provided with an annularly toothed or jagged outer surface 86 over which is drawn the end portion 88 of the elastomeric casing or hose l3 tightly secured thereto by annular hose clamps 92.
In the assembly of the furnace cable 13, the rearward end 38 of the outer component 40 of the previously assembled composite flexible riser tube 42 is soldered or otherwise secured in the counterbore 30. The outer end portions 70 of the stranded wire conductors or wire ropes 72 are then inserted in the annular cavity 68 and secured therein by pouring solder, such as silver solder,
cable hose clamps 92 therearound.
in the operation of the water-cooled electric furnace conductor cable 10, let it be assumed that the blades 16 of the terminals 12 thereof-have been bolted or otherwise secured to the proper terminals of the conventional transformer and furnace respectively (not shown), and that cooling water has been supplied to the threaded port 24 whence it flows through the passageway 26 into the chamber 94 of the outer riser tube component 40. The major portion of the cooling water flows onward through the chamber 96 of the flexible inner riser tube component 44 and emerges at its inner end 97 into the passageway 98 through the core 78 beyond the inner end 97 of the flexible inner riser tube component 44. It then flows through the perforations 80 of they tubular core 78 around the jackets 76 of the cable conductors or ropes 70 and thence through the jacket perforations 82 into the interstices between the hair-like wires of the cable conductors or ropes 70 so as to cool them.
At the same time, the remaining portion of the cooling water which does not flow through the chamber 96 of the flexible inner riser tube component 44 passes through the arcuate cooling water ports 60 between the spacers 52 and around the outer end 74 of the tubular elastomeric core 78 and through the channels provided by its fluted external surface 77, whence it flows in a similar manner through the perforations 82 into the tubular cable conductor jackets 76 and cools the hair-like wires thereof of the stranded conductors or wire ropes Subsequently, when the transmission of electric current through the cable or cables to the electric furnace heats the stranded conductors or wire ropes 72, the cable conductor assemblies are cooled by the cooling water flowing through each perforated tubular jacket 76 around the hair-like wires of the stranded conductors or wire ropes 72 of each such rope 72 in the manner described above so as to carry away the heat arising within the cable and thus prevent the cable from burning up during operation. Since the conventional electric arc furnace used in making steel is tilted in order first to pour out the slag and then the molten steel beneath it, such tilting flexes each cable 10 suspended between it and the terminals of the transformer to which the other end of the cable 10 is connected. Breaking or splintering of the hair-like wires of the stranded conductors or wire ropes 72 during such flexing, together with some stretching of the cable during such tilting, is minimized by the bending of the flexible inner component 44 of the composite riser tube 42. Any formation of wire splinters, however, which would otherwise tend to obstruct the flow of cooling water is likewise minimized by the additional cooling water flowing through the arcuate auxiliary water cooling ports 60 between the spacers 52 over and outside the cooling water flowing through the chamber 96 of the inner flexible riser tube component 44, according to the present invention.
1 claim: l. A cable terminal adapted to be connected to a cable conductor assembly including a multiplicity of flexible stranded wire conductor ropes surrounding a central flexible coolant conduit within the flexible tubular casing of a water-cooled electric arc furnace cable, said terminal comprising a terminal body having a cup-shaped head portion containing a socket and having an electrical connection portion projecting outward from one end of said head portion away from said socket, and an elongated riser tube structure having an outer component with an outer end secured to said body centrally within said socket and defining with said socket an annular cavity adapted to receive the outer ends of the conductor ropes and also adapted to receive means for securing the conductor ropes to said head portion, said body having a coolant passageway therethrough communicating with said outer end of said riser tube structure,
said riser tube structure having an inner component disposed in coaxial end-to-end relationship with said outer component and adapted to be inserted in the outer end portion ofthe central flexible coolant conduit,
said riser tube structure having connecting means joining the outer end portion of said inner component with the inner end portion of said outer componentand having coolant bypass means disposed adjacent said connecting means and effecting coolant bypass flow from said outer component exteriorly of said inner component and also exteriorly of the flexible coolant conduit into the flexible tubular casing.
2. A cable terminal, according to claim 1, wherein said inner component is composed of flexible metallic material.
3. A cable terminal, according to claim 2, wherein said outer component is composed of substantially rigid metallic material.
4. A cable terminal, according to claim 1, wherein said connecting means are disposed substantially in the plane of the inner end of said cup-shaped head, said coolant bypass means comprising coolant outlet port means disposed between the interconnected end portions of said outer and inner components.
5. A cable terminal, according to claim 1, wherein said inner component is of smaller diameter than said outer component and wherein said connecting means secures said components to one another in radially spaced relationship, said coolant bypassing means being disposed in the space between said outer and inner components.
6. A cable terminal, according to claim 5, wherein said connecting means are secured in circumferentially to-end overlapping relationship, and wherein said connecting means comprise spacers disposed in circumferentially spaced relationship between the overlapping end portions of said components.

Claims (7)

1. A cable terminal adapted to be connected to a cable conductor assembly including a multiplicity of flexible stranded wire conductor ropes surrounding a central flexible coolant conduit within the flexible tubular casing of a water-cooled electric arc furnace cable, said terminal comprising a terminal body having a cup-shaped head portion containing a socket and having an electrical connection portion projecting outward from one end of said head portion away from said socket, and an elongated riser tube structure having an outer component with an outer end secured to said body centrally within said socket and defining with said socket an annular cavity adapted to receive the outer ends of the conductor ropes and also adapted to receive means for securing the conductor ropes to said head portion, said body having a coolant passageway therethrough communicating with said outer end of said riser tube structure, said riser tube structure having an inner component disposed in coaxial end-to-end relationship with said outer component and adapted to be inserted in the outer end portion of the central flexible coolant conduit, said riser tube structure having connecting means joining the outer end portion of said inner component with the inner end portion of said outer component and having coolant bypass means disposed adjacent said connecting means and effecting coolant bypass flow from said outer component exteriorly of said inner component and also exteriorly of the flexible coolant conduit into the flexible tubular casing.
2. A cable terminal, according to claim 1, wherein said inner component is composed of flexible metallic material.
3. A cable terminal, according to claim 2, wherein said outer component is composed of substantially rigid metallic material.
4. A cable terminal, according to claim 1, wherein said connecting means are disposed substantially in the plane of the inner end of said cup-shaped head, said coolant bypass means comprising coolant outlet port means disposed between the interconnected end portions of said outer and inner components.
5. A cable terminal, according to claim 1, wherein said inner component is of smaller diameter than said outer component and wherein said connecting means secures said components to one another in radially spaced relationship, said coolant bypassing means being disposed in the space between said outer and inner components.
6. A cable terminal, according to claim 5, wherein said connecting means are secured in circumferentially spaced relationship to one another between said outer and inner components, said coolant bypass means being disposed adjacent said connecting means.
7. A cable terminal, according to claim 6, wherein said outer and inner components are disposed in end-to-end overlapping relationship, and wherein said connecting means comprise spacers disposed in circumferentially spaced relationship between the overlapping end portions of said components.
US432431A 1974-01-11 1974-01-11 Water-cooled flexible riser tube cable terminal Expired - Lifetime US3872232A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US432431A US3872232A (en) 1974-01-11 1974-01-11 Water-cooled flexible riser tube cable terminal
CA214,487A CA976631A (en) 1974-01-11 1974-11-22 Water-cooled flexible riser tube cable terminal
GB5217574A GB1448039A (en) 1974-01-11 1974-12-03 Water cooled flexiblre riser tube cable terminal
DE19752500570 DE2500570A1 (en) 1974-01-11 1975-01-09 CABLE CONNECTION FOR A LIQUID-COOLED HIGH-CURRENT CABLE
JP50005037A JPS50101885A (en) 1974-01-11 1975-01-10
ES433718A ES433718A1 (en) 1974-01-11 1975-01-10 Water-cooled flexible riser tube cable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US432431A US3872232A (en) 1974-01-11 1974-01-11 Water-cooled flexible riser tube cable terminal

Publications (1)

Publication Number Publication Date
US3872232A true US3872232A (en) 1975-03-18

Family

ID=23716130

Family Applications (1)

Application Number Title Priority Date Filing Date
US432431A Expired - Lifetime US3872232A (en) 1974-01-11 1974-01-11 Water-cooled flexible riser tube cable terminal

Country Status (6)

Country Link
US (1) US3872232A (en)
JP (1) JPS50101885A (en)
CA (1) CA976631A (en)
DE (1) DE2500570A1 (en)
ES (1) ES433718A1 (en)
GB (1) GB1448039A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101730A (en) * 1977-02-25 1978-07-18 Gould Inc. Termination for stranded cable
US4442312A (en) * 1981-01-28 1984-04-10 Oshkin Anatoly I End piece of bipolar water-cooled cable
US4647712A (en) * 1984-02-10 1987-03-03 Les Cables De Lyon Electric cable for transportation very high current at low voltage, and methods of manufacturing such a cable
DE19740912C1 (en) * 1997-09-17 1999-04-01 Karlsruhe Forschzent Flexible, fluid-cooled cable piece for high electric current
US10766374B2 (en) * 2018-09-17 2020-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle charging cable

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521546U (en) * 1978-07-28 1980-02-12
JPS5526819U (en) * 1978-08-10 1980-02-21
JPS5651222U (en) * 1979-09-28 1981-05-07
US4479029A (en) * 1982-09-07 1984-10-23 Toliyattinsky Politekhnichesky Institut Bipolar flexible water-cooled cable
US5125004A (en) * 1991-01-30 1992-06-23 Consarc Composition Vacuum induction melting assembly having simultaneously activated cooling and power connections
CN107887730B (en) * 2017-09-29 2023-10-10 深圳市沃尔新能源电气科技股份有限公司 Liquid-cooled cable plug-in assembly and connector
CN110829350A (en) * 2019-11-25 2020-02-21 淮北市平祥感应炉有限公司 Water-cooled cable joint of induction furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879317A (en) * 1957-10-24 1959-03-24 John S Wreford Liquid-cooled obstruction-bypassing welding cable
US2985708A (en) * 1960-03-16 1961-05-23 Northern Electric Co Electrical cable terminating and supporting means
US3244792A (en) * 1962-04-06 1966-04-05 Gar Wood Ind Inc Water cooled connecting cable for spot welding machines
US3265803A (en) * 1964-01-14 1966-08-09 Gar Wood Ind Inc Flexible electrical cable
US3551581A (en) * 1968-06-20 1970-12-29 Gar Wood Ind Inc Water cooled electric cable
US3604831A (en) * 1969-10-21 1971-09-14 Daniel J Goodman Fluted core

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879317A (en) * 1957-10-24 1959-03-24 John S Wreford Liquid-cooled obstruction-bypassing welding cable
US2985708A (en) * 1960-03-16 1961-05-23 Northern Electric Co Electrical cable terminating and supporting means
US3244792A (en) * 1962-04-06 1966-04-05 Gar Wood Ind Inc Water cooled connecting cable for spot welding machines
US3265803A (en) * 1964-01-14 1966-08-09 Gar Wood Ind Inc Flexible electrical cable
US3551581A (en) * 1968-06-20 1970-12-29 Gar Wood Ind Inc Water cooled electric cable
US3604831A (en) * 1969-10-21 1971-09-14 Daniel J Goodman Fluted core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101730A (en) * 1977-02-25 1978-07-18 Gould Inc. Termination for stranded cable
US4442312A (en) * 1981-01-28 1984-04-10 Oshkin Anatoly I End piece of bipolar water-cooled cable
US4647712A (en) * 1984-02-10 1987-03-03 Les Cables De Lyon Electric cable for transportation very high current at low voltage, and methods of manufacturing such a cable
US4731134A (en) * 1984-02-10 1988-03-15 Les Cables De Lyon Methods of manufacturing electric cable for transporting very high current at low voltage
DE19740912C1 (en) * 1997-09-17 1999-04-01 Karlsruhe Forschzent Flexible, fluid-cooled cable piece for high electric current
US10766374B2 (en) * 2018-09-17 2020-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Motor vehicle charging cable

Also Published As

Publication number Publication date
GB1448039A (en) 1976-09-02
DE2500570A1 (en) 1975-07-17
JPS50101885A (en) 1975-08-12
ES433718A1 (en) 1977-01-01
CA976631A (en) 1975-10-21

Similar Documents

Publication Publication Date Title
US3872232A (en) Water-cooled flexible riser tube cable terminal
US3992565A (en) Composite welding cable having gas ducts and switch wires therein
US3145287A (en) Plasma flame generator and spray gun
EP0012573B1 (en) Electric arc furnace electrodes
US3359734A (en) Electrothermal propulsion unit of the electric arc type
US2858412A (en) Arc torch
US2222574A (en) Electrical cable for welding machines
US3098892A (en) Welding cable
US3551581A (en) Water cooled electric cable
GB1481806A (en) Welding gun assembly
US4018976A (en) Kickless resistance welding cable and method of making the same
US2504777A (en) Welding cable
US2691691A (en) Welding cable assembly
US3127467A (en) Welding cable assembly
US2768280A (en) Gas shielded arc welding gun with consumable electrode wire
US3801724A (en) Safety-anchored multi-conductor water-cooled electric arc furnace cable
US3244792A (en) Water cooled connecting cable for spot welding machines
US2659797A (en) Arc welding apparatus
US3163704A (en) Welding cable with pressed lugs
US2879317A (en) Liquid-cooled obstruction-bypassing welding cable
US3501665A (en) Plasma torch
US4198111A (en) Means and method of securing welding cable conductors to their terminal components
US4146773A (en) Welding torch for plasma-mig-welding
GB1325374A (en) Couplings for electric high tension cables
GB1477904A (en) Liquid-cooled heavy-current connection cables suitable for use with electric arc melting furnaces and the like