US3871349A - RFI suppression spark plug - Google Patents

RFI suppression spark plug Download PDF

Info

Publication number
US3871349A
US3871349A US323089A US32308973A US3871349A US 3871349 A US3871349 A US 3871349A US 323089 A US323089 A US 323089A US 32308973 A US32308973 A US 32308973A US 3871349 A US3871349 A US 3871349A
Authority
US
United States
Prior art keywords
spark plug
insulator
center electrode
spark
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US323089A
Inventor
James R Hager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Priority to US323089A priority Critical patent/US3871349A/en
Priority to AU63258/73A priority patent/AU473925B2/en
Priority to DE2400937A priority patent/DE2400937A1/en
Priority to IT47620/74A priority patent/IT1008687B/en
Priority to GB125274A priority patent/GB1453793A/en
Priority to FR7400833A priority patent/FR2324137A1/en
Priority to JP49006545A priority patent/JPS49101743A/ja
Priority to BE139733A priority patent/BE809653A/en
Application granted granted Critical
Publication of US3871349A publication Critical patent/US3871349A/en
Priority to SE7708509A priority patent/SE7708509L/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • a spark plug having a low resistance (less than 100 [58] Field of Search 313/134, 118, 141 Ohms) low inductance (10-50 microhenrtes) wire wound suppressor element integrally contained within the insulator body of the plug and in electrical series [56] References Cited UNITED STATES PATENTS with the center electrode.
  • the plug being effective, when utilized with capacitor discharge ignition systems, to suppress RFI generated at the spark gap; particularly in high speed high power two-cycle engines,
  • Radio frequency interference (RFI) generated by outboard motors employing capacitor discharge (CD) ignition systems has been a long standing problem, and has caused such motors to be banned from use on certain lakes in Europe.
  • CD ignition sys-v build up to 20 to 30 kv across the spark gap in 2 to 3 microseconds, compared to the inductive automotive type system which typically builds up to to kv in approximately 25 to 50 microseconds.
  • the typical CD ignition coil high voltage secondary winding has only 1/10 to US the turns, and only l/ to l/lO the ohmic resistance of the inductive automotive type secondary winding. The use of a larger spark gap further aids in combatting fouling.
  • the electrical impulse generated upon the breakdown of its annular gap spark plug is significantly more powerful and has an effect on a wider spectrum of frequencies than similar impulses previously encountered. It is this oscillatory electrical impulse with its very high frequency, high voltage excursions in the wiring of the ignition circuit which is the source of RFI attributable to the plug itself.
  • the invention comprises a spark plug body including a porcelain insulator retained within a metal body threaded for engagement within an engine block and a center electrode axially disposed within the insulator, including in electrical series therewith a low resistance low inductance suppression element disposed within the insulator suitable for suppressing RFI generated at the spark gap of the plug during its operation.
  • the suppression element is preferably wire wound upon a core of high dielectric strength having an inductance of approximately 10 to 50 microhenries with a resistance as low as possible consistent with the size restrictions upon the element, i.e., its ability to fit within the center electrode cavity of the spark plug.
  • spark plugs of their invention are used with a CD ignition system having neither mechanical breaker points nor rotating distributor, that no further suppression means is required; so that the spark plugs of the invention are sufficiently self-suppressing to eliminate the need for especially constructed ignition harness wire, harness shielding or external shielding of the plug itself.
  • a further advantage of the invention is that it suppresses RFI interference generated by a spark plug with little or no degradation of spark intensity or duration, and with no adverse effect upon the performance of the engine in which it is installed.
  • Another advantage of the integral construction of the spark plug of the invention is that it prevents removal or bypassing of the suppressing element.
  • a still further advantage of the spark plug construction of the invention is that it does not require the shunt capacitive filter elements as are shown in the construction of many prior art plugs.
  • FIG. 1 is a vertical cross-section of a spark plug of the invention.
  • FIG. 2 is a side elevation of a suppressor element of the invention.
  • FIG. 3 is a simplified electrical schematic of a breakerless distributorless CD ignition system with which a plug of the invention may be advantageously used.
  • FIG. 4 is a comparative plot of RFI radiated by an engine operating (a) with prior art spark plugs, and (b) with spark plugs of the invention.
  • an inductive suppressor element 1 of the invention is inserted in the center cavity 2 of a common annular gap spark plug 3.
  • the inductor element 1 is physically positioned between and in electrical series with an upper portion 4 and a lower portion 5 of the center electrode of the plug.
  • the upper and lower portions ofthe center electrode may be anchored .within the porcelain insulator 6 of the plug in any manner known to the art, and the inductor element 1 retained in series contact therebetween by a conducting compression spring 7.
  • a suppressor element 1 of the invention may be constructed by wrapping a coil 8 of fine wire tightly about a non-magnetic high dielectric strength core 9.
  • the opposite ends of the coil may be connected to conducting end caps 10 and 11 secured at the respective ends of the core 9.
  • An initial suppressor element 1 of the invention which proved to suppress RFI and to function successfully in a plug as illustrated in FIG. 1 consisted of a coil having one layer of 172 turns of number 44 A.W.G. wire wound onto a non-magnetic high dielectric strength rod 1% inch long and /3 inch in diameter.
  • the ends of the coil wire were soldered to brass terminals which were embedded within the ends of the rod.
  • the windings of the coil were then protected by a layer of high temperature, high dielectric strength varnish.
  • the completed coil exhibited l8 ohms of resistance and 26 microhenries of inductance.
  • the invention is directed primarily to the concept of including an inductor element of the type herein defined in the body of a spark plug, and to the range of values of resistance and inductance which have proved effective in suppressing RFI generated by high performance CD ignition systems without adversely effecting engine performance.
  • a capacitor discharge ignition system typically comprises an alternator 20, a rectifying diode 21, and an energy storage capacitor 22.
  • the energy stored in the capacitor 22 is delivered to the primary windings 24 of an ignition transformer 25 by an electronic switch 23.
  • the surge of energy from the capacitor 22 through the primary windings 24 induces within the secondary winding 26 of the transformer a voltage potential which builds up to 20 to 30 kv before the spark occurs across the spark gap 27 of the spark plug.
  • Capacitor discharge ignition systems are characterized by an extremely fast build-up of potential differ-- ence across the spark gap 27 as well as the amount of energy which may be stored in the stray capacitance 31 of the secondary circuit for virtually instantaneous discharge across the spark gap 27.
  • FIG. 4 represents the results of an RFI evaluation conducted utilizing a two cylinder 20 hp outboard motor with a breakerless CD ignition system. Each cylinder has its own electronic timing switch, ignition transformer, and spark plug.
  • plot (0) represents the interference generated by the spark gap of a nonsuppressor type plug with an annular gap of 0.072 inches.
  • Plot (b) represents the interference under the same conditions generated by the spark gap of a plug constructed generally as herein described having a resistance of approximately 40 ohms and an inductance of approximately 40 microhenries and an annular gap of 0.050 inches.
  • the central reference line represents RFI limitations recommended by the Society of Automotive Engineers, in SAE Standard 1551a. The dotted portion of plot (b) beyond megahertz is estimated, as no actual interference was detected.
  • inductance values as low as microhenries are sufficient for effective RFI suppression, and there is some indication that it may be necessary to go that low to further reduce the impedance of the suppressor to avoid adverse effect upon the CD ignition system.
  • the effective impedance of this inductance theoretically ranges from 5,000 ohms to 0.25 megohms over a frequency range of from 20 to l,000 megahertz; however, it is doubtful if the higher value can be achieved when the inherent capacitance of the plug and the suppressor element are considered.
  • the stray capacitances from the high voltage ignition lead to elements of the surrounding engine cowling are also rendered essentially ineffective in transferring currents into the cowling, by virtue of the relatively very low frequency at which these stray capacitances are driven.
  • the precise structure of the suppressor element may vary; however, it is sufficient for the practice of the invention that certain desirable construction principles be recognized and certain unavoidable construction restraints be accepted.
  • the stray capacitance bridging the suppressor will be minimized, and more turns of wire can be used, which will increase the inductance and reduce the transient voltage between turns.
  • the overall suppressor diameter should be as large as possible to improve the mechanical strength of the suppressor, and increase the inductance obtained with a given number of turns.
  • the core of the coil should have a high dielectric strength, so as to withstand the high transient voltages developed between the two end caps of the suppressor element.
  • the winding should be an evenly spaced single layer winding to better withstand the high transient voltages developed across the winding so as to obtain an approximately equal distribution of the voltage stress between turns, and to alleviate the problems of automating the production of such windings.
  • the necessarily small cross-section wire used for the inductive winding should have as high a conductivity as possible, consistent with the other requirements that it be reasonable in cost, mechanically strong enough to be employed in automated winding machinery, and resist the oxidation or corrosion effects of its environment at those times when the bare metal may be exposed.
  • the turns of the winding must be insulated from one another, and must be prevented from slipping sideways such that an undesired electrical contact is formed between turns.
  • the fine cross-section wire of the suppressor must be protected from nicking or chafing at all times.
  • the turns should not unwind when the ends of the winding are being prepared for the terminal end caps.
  • the above requirements suggest an insulating coating that can insulate between turns, anchor the winding to the core, protect against nicking and chafing, raise the dielectric breakdown voltage between turns, and protect any bare wire from oxidation or corrosion influences.
  • the end caps should be short, such that the useful length of the inductive winding is not greatly reduced by the application of the end caps, and so that the stray capacity bridging the winding is minimized.
  • end caps of two different maximum diameters could be used to mechanically code the proper end of the suppressor to be nearest the spark plug gap.
  • the device of claim 2 further including a compression spring to maintain said inductor element in electrical contact within said center electrode assembly.
  • a spark plug comprising;
  • an outer metallic body comprising an annular ground electrode
  • a wire wound inductor also disposed within said insulating sleeve and in electrical series with said center electrode, said inductor element being of wound wire having relatively high electrical conductivity and capable of substantially suppressing radio frequency interference generating oscillations initiated by the firing of the spark plug without adversely affecting the performance of the engine in which it is operating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

A spark plug having a low resistance (less than 100 ohms) low inductance (10-50 microhenries) wire wound suppressor element integrally contained within the insulator body of the plug and in electrical series with the center electrode. The plug being effective, when utilized with capacitor discharge ignition systems, to suppress RFI generated at the spark gap; particularly in high speed high power two-cycle engines, and without adverse effect upon the performance of such engines.

Description

[ Mar. 18, 1975 549.343 7/1956 Belgium 123/169 EL 951,060 10/1956 Germany...................... 123/169 EL RF 1 SUPPRESSION SPARK PLUG [75] Inventors: JamesRI Hager, Fond du Lac,
Wis.
Primary Examiner-Manuel A. Antonakas [73] Assignee. Brunswick Corporation, Skokre, I11. Assistant Examiner R Lazarus [22] Filed: Jan. 12, 1973 [21] Appl. No.: 323,089
Attorney, Agent, or Firm-William G. Lawler, Jr.; Roy C. Hopgood [52] US. 123/169 EL, 313/134 [51] Int. F02p 1/00 123/148 P, 169 EL;
A spark plug having a low resistance (less than 100 [58] Field of Search 313/134, 118, 141 Ohms) low inductance (10-50 microhenrtes) wire wound suppressor element integrally contained within the insulator body of the plug and in electrical series [56] References Cited UNITED STATES PATENTS with the center electrode. The plug being effective, when utilized with capacitor discharge ignition systems, to suppress RFI generated at the spark gap; particularly in high speed high power two-cycle engines,
3,173,056 3/1965 Dresse1..
3,251,010 5/1966 Kirchgessner.....
3,267,325 8/1966 Why..........
3,771,006 11/1973 Berry FOREIGN PATENTS OR APPLICATIONS 1,225,099 3/ 1971 UnitedKingdom........... 123/169 EL 10 Claims, 4 Drawing Figures PATENIH] MAR I 8 I975 SHEET 1 2 V ELECTRONIC TIMER PATENIEUHAR 1 81975 3,871,349 sum 2 9g 2 DECIBELS ABOVE I MICROVOLT PER METER PER KILO. j
2O 3O 4O 6O 80 I00 200 400 600 800 I00 FREQUENCY IN MEGAHERTZ RFI SUPPRESSION SPARK PLUG BACKGROUND OF THE INVENTION Radio frequency interference (RFI) generated by outboard motors employing capacitor discharge (CD) ignition systems has been a long standing problem, and has caused such motors to be banned from use on certain lakes in Europe.
The environment in which a spark plug must operate in a high speed high compression two-cycle engine such as an outboard motor, motorcycle, or snowmobile, is vastly different from the environment within a fourcycle engine. The center electrode of an automobile type spark plug would overheat and effectively function as a glow plug in such engines and cause damaging pre-ignition. In order to overcome this difficulty annular gap spark plugs which inherently operate at a much lower temperature are now almost universally employed. Unfortunately, the annular gap spark plug runs so cold that it has a tendency to foul, particularly when employed with the conventional inductive automobile type ignition system. Consequently, CD ignition sys-v build up to 20 to 30 kv across the spark gap in 2 to 3 microseconds, compared to the inductive automotive type system which typically builds up to to kv in approximately 25 to 50 microseconds. The typical CD ignition coil high voltage secondary winding has only 1/10 to US the turns, and only l/ to l/lO the ohmic resistance of the inductive automotive type secondary winding. The use of a larger spark gap further aids in combatting fouling.
As a result of the aforementioned characteristics of the CD ignition system, the electrical impulse generated upon the breakdown of its annular gap spark plug is significantly more powerful and has an effect on a wider spectrum of frequencies than similar impulses previously encountered. It is this oscillatory electrical impulse with its very high frequency, high voltage excursions in the wiring of the ignition circuit which is the source of RFI attributable to the plug itself.
In automotive inductive type ignition systems the traditional approach to the suppression of RFI has been to insert resistance in series with the secondary of the ignition circuit typically with values of 10,000 ohms or more. However, we have found that the use of added resistance in the secondary of a CD ignition circuit visibly diminishes the brilliant intensity of the spark, and
measurably diminishes its duration. Such a resistance slows the discharge of energy through the spark gap and dissipates some of the potential spark energy in the form of useless heat. Further, it may be conclusively stated that insertion of a resistance in excess of approximately 1,000 ohms in the body of the spark plug in an attempt to suppress RFI from a CD ignition system will adversely effect the performance of the engine and even this low value of resistance may cause a slight roughness at idle speeds. Therefore, the application of prior art teachings with respect to suppression of RFI through the use of resistors is impractical where CD ignition systems are employed.
It is an objective of the invention to overcome the aforementionedproblems by providing a spark plug having a low resistance low inductance suppression element embodied therein, which spark plug will effectively suppress RFI generated by its spark gap; and it is a specific further objective to provide a spark plug which will accomplish the foregoing without degradation in the performance of the engine or ignition system in which it is employed.
It is another objective of the invention to provide a spark plug construction with the aforementioned qualities which is compatible with present methods and equipment for spark plug manufacture, and it is a further objective of the invention to provide a tamper proof suppression device which is in and of itself substantially effective in eliminating RFI from engines which employ CD ignition systems having no significant sources of RFI other than the gap discharges of the spark plugs themselves.
SUMMARY OF THE INVENTION Basically, the invention comprises a spark plug body including a porcelain insulator retained within a metal body threaded for engagement within an engine block and a center electrode axially disposed within the insulator, including in electrical series therewith a low resistance low inductance suppression element disposed within the insulator suitable for suppressing RFI generated at the spark gap of the plug during its operation. The suppression element is preferably wire wound upon a core of high dielectric strength having an inductance of approximately 10 to 50 microhenries with a resistance as low as possible consistent with the size restrictions upon the element, i.e., its ability to fit within the center electrode cavity of the spark plug.
We have discovered that a simple wire wound inductor having a resistance of approximately 40 ohms and an inductance of approximately 40 microhenries, inserted in the center electrode cavity of a spark plug of existing design, is more than sufficient to suppress to an acceptable level RFI generated by the spark gap of a spark plug operating in a two-cycle engine with a breakerless, distributorless CD ignition system. However, it is reasonable to anticipate that the invention will be effective in any ignition system having no other powerful sources of RFI.
Further, applicants have found that when spark plugs of their invention are used with a CD ignition system having neither mechanical breaker points nor rotating distributor, that no further suppression means is required; so that the spark plugs of the invention are sufficiently self-suppressing to eliminate the need for especially constructed ignition harness wire, harness shielding or external shielding of the plug itself.
A primary advantage of the invention is the integral inclusion of a suppressing element within the body of a spark plug, which element in company with the inherent capacitance of an ignition system is effective in suppressing RFI generated by the spark gap, even when operating within high speed high compression twocycle engines.
A further advantage of the invention is that it suppresses RFI interference generated by a spark plug with little or no degradation of spark intensity or duration, and with no adverse effect upon the performance of the engine in which it is installed.
Another advantage of the integral construction of the spark plug of the invention is that it prevents removal or bypassing of the suppressing element.
Still another advantage of the invention, and perhaps the most important, is that it is practical. The suppression elements described can and have been incorporated in existing spark plug bodies without substantial modification; and the performance and durability of this construction is both economically feasible and eminently satisfactory in the field.
A still further advantage of the spark plug construction of the invention is that it does not require the shunt capacitive filter elements as are shown in the construction of many prior art plugs.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a vertical cross-section of a spark plug of the invention.
FIG. 2 is a side elevation of a suppressor element of the invention.
FIG. 3 is a simplified electrical schematic of a breakerless distributorless CD ignition system with which a plug of the invention may be advantageously used.
FIG. 4 is a comparative plot of RFI radiated by an engine operating (a) with prior art spark plugs, and (b) with spark plugs of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, an inductive suppressor element 1 of the invention is inserted in the center cavity 2 of a common annular gap spark plug 3. The inductor element 1 is physically positioned between and in electrical series with an upper portion 4 and a lower portion 5 of the center electrode of the plug. The upper and lower portions ofthe center electrode may be anchored .within the porcelain insulator 6 of the plug in any manner known to the art, and the inductor element 1 retained in series contact therebetween by a conducting compression spring 7.
Referring to FIG. 2, a suppressor element 1 of the invention may be constructed by wrapping a coil 8 of fine wire tightly about a non-magnetic high dielectric strength core 9. The opposite ends of the coil may be connected to conducting end caps 10 and 11 secured at the respective ends of the core 9. An initial suppressor element 1 of the invention which proved to suppress RFI and to function successfully in a plug as illustrated in FIG. 1 consisted of a coil having one layer of 172 turns of number 44 A.W.G. wire wound onto a non-magnetic high dielectric strength rod 1% inch long and /3 inch in diameter. The ends of the coil wire were soldered to brass terminals which were embedded within the ends of the rod. The windings of the coil were then protected by a layer of high temperature, high dielectric strength varnish. The completed coil exhibited l8 ohms of resistance and 26 microhenries of inductance.
Although the physical construction of the spark plug and the inductor element 1 may vary considerably, the invention is directed primarily to the concept of including an inductor element of the type herein defined in the body of a spark plug, and to the range of values of resistance and inductance which have proved effective in suppressing RFI generated by high performance CD ignition systems without adversely effecting engine performance.
Referring to FIG. 3, a capacitor discharge ignition system typically comprises an alternator 20, a rectifying diode 21, and an energy storage capacitor 22. The energy stored in the capacitor 22 is delivered to the primary windings 24 of an ignition transformer 25 by an electronic switch 23. The surge of energy from the capacitor 22 through the primary windings 24 induces within the secondary winding 26 of the transformer a voltage potential which builds up to 20 to 30 kv before the spark occurs across the spark gap 27 of the spark plug. Capacitor discharge ignition systems are characterized by an extremely fast build-up of potential differ-- ence across the spark gap 27 as well as the amount of energy which may be stored in the stray capacitance 31 of the secondary circuit for virtually instantaneous discharge across the spark gap 27. The performance of CD systems is attributed in large part to the storage of energy in the stray capacitance 31 of the secondary winding 26 and the ignition lead 30; which energy is immediately available and is dumped through the spark gap 27 at the time of firing. Physical observation of such CD ignition systems reveal a brilliant'spark signifying a high intensity discharge. Both the speed of voltage build-up and the peak discharge power ofCD ignition systems aid greatly in eliminating spark plug fouling caused by the presence of fuel, oil or deposits in the neighborhood of the spark gap. To place a resistance in the path of the spark discharge would largely destroy the benefits of the CD ignition system. Further, tests have indicated that as pressure within the operating cylinders increases, resistance type suppressor elements lose their effectiveness much more quickly then the inductive elements of the invention. This effect is particularly noticable at the mid-range engine speeds where the suppressor element of the invention continues to operate quite effectively. It has been estimated that the current produced across the spark gap by a CD system is 20 times that produced by the conventional inductive system. As power consumed may be equated to PR, the rate of energy loss to resistance in a CD system may be estimated to be many times the rate of energy loss to resistance in a conventional inductive system. It is, therefore, important that the resistance of the suppressor element 1 be held to a minimum consistent with unimpaired engine performance and practical plug construction.
FIG. 4 represents the results of an RFI evaluation conducted utilizing a two cylinder 20 hp outboard motor with a breakerless CD ignition system. Each cylinder has its own electronic timing switch, ignition transformer, and spark plug. With the engine running at 1,500 rpm, and a vertical antenna to one side of the engine, plot (0) represents the interference generated by the spark gap of a nonsuppressor type plug with an annular gap of 0.072 inches. Plot (b) represents the interference under the same conditions generated by the spark gap of a plug constructed generally as herein described having a resistance of approximately 40 ohms and an inductance of approximately 40 microhenries and an annular gap of 0.050 inches. The central reference line represents RFI limitations recommended by the Society of Automotive Engineers, in SAE Standard 1551a. The dotted portion of plot (b) beyond megahertz is estimated, as no actual interference was detected.
Tests have been conducted on various spark plugs of the construction described herein with resistance in the suppressor element ranging from 18 ohms to 40 ohms, with corresponding values of inductance ranging from 25 microhenries to 40 microhenries. While suppression of RFI remained below the prescribed standards on all tests, the best results, represented by FIG. 4, were obtained with a suppressor element having a resistance of approximately 40 ohms and an inductance of 40 microhenries. Higher inductance values may prove more effective from a suppression standpoint but are difficult to achieve within the physical limitations of the element, and are more likely to adversely effect engine performance. Also, it is quite likely that inductance values as low as microhenries are sufficient for effective RFI suppression, and there is some indication that it may be necessary to go that low to further reduce the impedance of the suppressor to avoid adverse effect upon the CD ignition system. The effective impedance of this inductance theoretically ranges from 5,000 ohms to 0.25 megohms over a frequency range of from 20 to l,000 megahertz; however, it is doubtful if the higher value can be achieved when the inherent capacitance of the plug and the suppressor element are considered.
Applicants believe that the reasons for the remarkable effectiveness of the inductor spark plug on CD ignition systems having no mechanical breaker points or mechanical distributor are the following:
. 1. There are no arcing contacts other than the spark plug gap(s).
2. The inductance of the spark plug suppressor cooperates with the stray capacitance of the CD ignition secondary circuit, in particular the stray capacitance to engine block ground of the CD ignition coil secondary winding, together forming a low pass LC filter driven by the spark discharge, which in turn drives the high voltage ignition lead as a transmitting antenna. While the low pass LC filter does not eliminate the very high voltage transient oscillation on the high voltage ignition lead, it does very substantially reduce the frequency of that very high voltage oscillation to a relatively very low frequency.
3. As a transmitting antenna, the high voltage ignition lead is rendered essentially ineffective by the relatively very low frequency at which it is thus driven.
4. The stray capacitances from the high voltage ignition lead to elements of the surrounding engine cowling are also rendered essentially ineffective in transferring currents into the cowling, by virtue of the relatively very low frequency at which these stray capacitances are driven.
The precise structure of the suppressor element may vary; however, it is sufficient for the practice of the invention that certain desirable construction principles be recognized and certain unavoidable construction restraints be accepted.
For practicality, the maximum physical dimensions of the suppressor element may be limited by the size of the cavity within a spark plug insulator; within these limitations the suppressor should be as long as possible. If a compression spring is used to assure electrical contact, it should be made as short as possible. By making the suppressor as long as possible, the ability of the suppressor to withstand the high transient voltages developed across the length of the suppressor is maximized.
By making the suppressor as long as possible, the stray capacitance bridging the suppressor will be minimized, and more turns of wire can be used, which will increase the inductance and reduce the transient voltage between turns. Similarly, within the space limitations of the insulator cavity, the overall suppressor diameter should be as large as possible to improve the mechanical strength of the suppressor, and increase the inductance obtained with a given number of turns.
The core of the coil should have a high dielectric strength, so as to withstand the high transient voltages developed between the two end caps of the suppressor element. The winding should be an evenly spaced single layer winding to better withstand the high transient voltages developed across the winding so as to obtain an approximately equal distribution of the voltage stress between turns, and to alleviate the problems of automating the production of such windings.
It is anticipated that future studies may show that there is a greater transient voltage per turn developed within the first few turns nearest the spark plug gap; if so, it would be desirable to increase the spacings between these first few turns as is done in many ignition coils.
The necessarily small cross-section wire used for the inductive winding should have as high a conductivity as possible, consistent with the other requirements that it be reasonable in cost, mechanically strong enough to be employed in automated winding machinery, and resist the oxidation or corrosion effects of its environment at those times when the bare metal may be exposed.
The turns of the winding must be insulated from one another, and must be prevented from slipping sideways such that an undesired electrical contact is formed between turns. The fine cross-section wire of the suppressor must be protected from nicking or chafing at all times. The turns should not unwind when the ends of the winding are being prepared for the terminal end caps. The above requirements suggest an insulating coating that can insulate between turns, anchor the winding to the core, protect against nicking and chafing, raise the dielectric breakdown voltage between turns, and protect any bare wire from oxidation or corrosion influences.
The end terminal caps 10 and 11 may vary in their construction, but must fulfill certain requirements: they must make secure electrical contact to the fine wire of the winding, they must be solidly anchored to the suppressor, and they must be rugged enough to withstand the compression force and the vibration forces acting on the suppressor.
The end caps should be short, such that the useful length of the inductive winding is not greatly reduced by the application of the end caps, and so that the stray capacity bridging the winding is minimized.
The end caps may advantageously be slightly larger in diameter than the winding diameter which will allow the suppressor to be handled by the more rugged end caps, and which further prevents the inside walls of the insulator cavity from touching and damaging the suppressor winding during operation of the engine.
If future studies show that one end of the inductive winding should have a few widely spaced turns (a surge-winding section) then end caps of two different maximum diameters could be used to mechanically code the proper end of the suppressor to be nearest the spark plug gap. By proper design of the spark plug insulator cavity and the suppressor end caps, correct insertion of such an unsymmetrical suppressor could be assured.
I claim:
1. A spark plug for suppressing radio frequency interference and having particular application utility in an ignition system of the capacitor-discharge type, said spark plug comprising; an outer body, an insulator attached to said body and a center electrode assembly disposed within said insulator, said center electrode assembly including in electrical series therewith an inductor element having a minimum resistance, said inductor element being of wound wire having relatively high electrical conductivity and substantially enclosed within said insulator.
2. The device of claim 1 wherein said inductor element is wire wound upon a core of high dielectric strength.
3. The device of claim 2 further including a compression spring to maintain said inductor element in electrical contact within said center electrode assembly.
4. The device of claim 2 wherein said wire wound inductor element has an inductance of from to 100 microhenries.
5. The device of claim 4 wherein said wire wound inductor element has a resistance of less than 1,000 ohms.
6. A radio frequency interference suppressing spark plug including an outer body comprising the ground electrode of the plug, an insulator retained within said outer body, a center electrode disposed within said insulator and together with said outer body forming the spark gap of the spark plug characterized by an inductor encased within said insulator and in electrical series with said center electrode, said inductor preferably having an inductance of 10 to 50 microhenries and a resistance of less than 100 ohms.
7. A spark plug comprising;
an outer metallic body comprising an annular ground electrode,
an insulating sleeve extending within and attached to said outer body,
a center electrode disposed within said insulating sleeve and with said annular ground electrode forming an annular spark gap, and,
a wire wound inductor also disposed within said insulating sleeve and in electrical series with said center electrode, said inductor element being of wound wire having relatively high electrical conductivity and capable of substantially suppressing radio frequency interference generating oscillations initiated by the firing of the spark plug without adversely affecting the performance of the engine in which it is operating.
8. The spark plug of claim 7 wherein said inductor element comprises a single layer coil winding having a diameter substantially equal to the largest diameter of said center electrode.
9. The device of claim 1, in which said inductor element has a resistance of less than 50 ohms.
10. ln a spark-plug construction for suppressing radio-frequency interference, said construction comprising an outer body, a center electrode within said insulator, and an external terminal carried by said insulator for application of excitation voltage to said electrode, the improvement which comprises a coiled-wire inductance establishing the electrical series connection of said electrode to said terminal, said inductance being substantially contained within said insulator and of wire having relatively high electrical conductivity and therefore minimum resistance.

Claims (10)

1. A spark plug for suppressing radio frequency interference and having particular application utility in an ignition system of the capacitor-discharge type, said spark plug comprising; an outer body, an insulator attached to said body and a center electrode assembly disposed within said insulator, said center electrode assembly including in electrical series therewith an inductor element having a minimum resistance, said inductor element being of wound wire having relatively high electrical conductivity and substantially enclosed within said insulator.
2. The device of claim 1 wherein said inductor element is wire wound upon a core of high dielectric strength.
3. The device of claim 2 further including a compression spring to maintain said inductor element in electrical contact within said center electrode assembly.
4. The device of claim 2 wherein said wire wound inductor element has an inductance of from 10 to 100 microhenries.
5. The device of claim 4 wherein said wire wound inductor element has a resistance of less than 1,000 ohms.
6. A radio frequency interference suppressing spark plug including an outer body comprising the ground electrode of the plug, an insulator retained within said outer body, a center electrode disposed within said insulator and together with said outer body forming the spark gap of the spark plug characterized by an inductor encased within said insulator and in electrical series with said center electrode, said inductor preferably having an inductance of 10 to 50 microhenries and a resistance of less than 100 ohms.
7. A spark plug comprising; an outer metallic body comprising an annular ground electrode, an insulating sleeve extending within and attached to said outer body, a center electrode disposed within said insulating sleeve and with said annular ground electrode forming an annular spark gap, and, a wire wound inductor also disposed within said insulating sleeve and in electrical series with said center electrode, said inductor element being of wound wire having relatively high electrical conductivity and capable of substantially suppressing radio frequency interference generating oscillations Initiated by the firing of the spark plug without adversely affecting the performance of the engine in which it is operating.
8. The spark plug of claim 7 wherein said inductor element comprises a single layer coil winding having a diameter substantially equal to the largest diameter of said center electrode.
9. The device of claim 1, in which said inductor element has a resistance of less than 50 ohms.
10. In a spark-plug construction for suppressing radio-frequency interference, said construction comprising an outer body, a center electrode within said insulator, and an external terminal carried by said insulator for application of excitation voltage to said electrode, the improvement which comprises a coiled-wire inductance establishing the electrical series connection of said electrode to said terminal, said inductance being substantially contained within said insulator and of wire having relatively high electrical conductivity and therefore minimum resistance.
US323089A 1973-01-12 1973-01-12 RFI suppression spark plug Expired - Lifetime US3871349A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US323089A US3871349A (en) 1973-01-12 1973-01-12 RFI suppression spark plug
AU63258/73A AU473925B2 (en) 1973-01-12 1973-12-05 Rfi suppression sparkplug
DE2400937A DE2400937A1 (en) 1973-01-12 1974-01-09 REMOVED SPARK PLUG
GB125274A GB1453793A (en) 1973-01-12 1974-01-10 Rfi suppression spark plug
IT47620/74A IT1008687B (en) 1973-01-12 1974-01-10 SPARK PLUG FOR ENGINES AND ITS SUPPRESSOR ELEMENT OF DISTOR BI
FR7400833A FR2324137A1 (en) 1973-01-12 1974-01-10 HIGH-FREQUENCY PARASITE ELIMINATOR SPARK PLUG
JP49006545A JPS49101743A (en) 1973-01-12 1974-01-11
BE139733A BE809653A (en) 1973-01-12 1974-01-11 SPARK PLUG WITH RADIO-ELECTRIC PARASITE SUPPRESSOR
SE7708509A SE7708509L (en) 1973-01-12 1977-07-25 TENDER PIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US323089A US3871349A (en) 1973-01-12 1973-01-12 RFI suppression spark plug

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US51699074A Division 1974-10-22 1974-10-22

Publications (1)

Publication Number Publication Date
US3871349A true US3871349A (en) 1975-03-18

Family

ID=23257691

Family Applications (1)

Application Number Title Priority Date Filing Date
US323089A Expired - Lifetime US3871349A (en) 1973-01-12 1973-01-12 RFI suppression spark plug

Country Status (9)

Country Link
US (1) US3871349A (en)
JP (1) JPS49101743A (en)
AU (1) AU473925B2 (en)
BE (1) BE809653A (en)
DE (1) DE2400937A1 (en)
FR (1) FR2324137A1 (en)
GB (1) GB1453793A (en)
IT (1) IT1008687B (en)
SE (1) SE7708509L (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186712A (en) * 1974-10-22 1980-02-05 Brunswick Corporation RFI-suppressing ignition system for an internal combustion engine
WO1987001767A1 (en) * 1985-09-24 1987-03-26 Combustion Electromagnetics, Inc. An ignition system producing capacitive and inductive spark
US5406242A (en) * 1994-01-10 1995-04-11 Ford Motor Company Ignition coil
US20090050123A1 (en) * 2005-06-23 2009-02-26 Xavier Jaffrezic Spark plug for an internal combustion engine
US20100180873A1 (en) * 2007-07-24 2010-07-22 Toyota Jidosha Kabushiki Kaisha Ignition device for internal combustion engine
EP2239458A1 (en) * 2009-03-31 2010-10-13 NGK Spark Plug Co., Ltd. Plasma-jet spark plug
US20130192571A1 (en) * 2012-01-27 2013-08-01 Mitsubishi Electric Corporation Ignition apparatus
US20150114334A1 (en) * 2012-05-04 2015-04-30 Luiz Philippe De Orleans E Bragança Spark plug for internal combustion engines incorporating a diode
US11391260B2 (en) * 2018-10-10 2022-07-19 Robert Bosch Gmbh Method for operating an internal combustion engine, and controller for carrying out the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133641A (en) * 1975-05-16 1976-11-19 Hitachi Ltd Noise preventive type ignition plug
GB2267125A (en) * 1992-05-13 1993-11-24 Dawson Royalties Ltd I.c.engine spark ignition circuit.
JP4209400B2 (en) * 2005-03-23 2009-01-14 三菱電機株式会社 Ignition device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173056A (en) * 1960-08-11 1965-03-09 Stackpole Carbon Co Spark plug containing electrical resistor
US3251010A (en) * 1959-01-14 1966-05-10 Bosch Gmbh Robert Two-terminal lossy resonant filter for suppressing interference frequencies in ignition systems
US3267325A (en) * 1962-12-06 1966-08-16 Gen Motors Corp Combined spark plugs and oscillatory circuit
US3771006A (en) * 1972-02-14 1973-11-06 N Berry Ignition circuit radiation suppression structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH229925A (en) * 1941-06-26 1943-11-30 Fides Gmbh Interference suppression device, in particular for ignition systems of internal combustion engines.
FR79438E (en) * 1959-01-14 1962-11-30 Bosch Gmbh Robert Anti-interference dipole for engine ignition systems
FR1294841A (en) * 1961-04-17 1962-06-01 Anti-interference spark plug for internal combustion engines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251010A (en) * 1959-01-14 1966-05-10 Bosch Gmbh Robert Two-terminal lossy resonant filter for suppressing interference frequencies in ignition systems
US3173056A (en) * 1960-08-11 1965-03-09 Stackpole Carbon Co Spark plug containing electrical resistor
US3267325A (en) * 1962-12-06 1966-08-16 Gen Motors Corp Combined spark plugs and oscillatory circuit
US3771006A (en) * 1972-02-14 1973-11-06 N Berry Ignition circuit radiation suppression structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4186712A (en) * 1974-10-22 1980-02-05 Brunswick Corporation RFI-suppressing ignition system for an internal combustion engine
WO1987001767A1 (en) * 1985-09-24 1987-03-26 Combustion Electromagnetics, Inc. An ignition system producing capacitive and inductive spark
US4774914A (en) * 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
US5406242A (en) * 1994-01-10 1995-04-11 Ford Motor Company Ignition coil
US20090050123A1 (en) * 2005-06-23 2009-02-26 Xavier Jaffrezic Spark plug for an internal combustion engine
US7652414B2 (en) * 2005-06-23 2010-01-26 Renault S.A.S. Spark plug having an inductive upper portion incorporating a coil wound around an elastically deformable core element
US20100180873A1 (en) * 2007-07-24 2010-07-22 Toyota Jidosha Kabushiki Kaisha Ignition device for internal combustion engine
US8267075B2 (en) * 2007-07-24 2012-09-18 Toyota Jidosha Kabushiki Kaisha Ignition device for internal combustion engine
EP2239458A1 (en) * 2009-03-31 2010-10-13 NGK Spark Plug Co., Ltd. Plasma-jet spark plug
US8558441B2 (en) 2009-03-31 2013-10-15 Ngk Spark Plug Co., Ltd. Plasma jet ignition plug
US20130192571A1 (en) * 2012-01-27 2013-08-01 Mitsubishi Electric Corporation Ignition apparatus
US9212646B2 (en) * 2012-01-27 2015-12-15 Mitsubishi Electric Corporation Ignition apparatus
US20150114334A1 (en) * 2012-05-04 2015-04-30 Luiz Philippe De Orleans E Bragança Spark plug for internal combustion engines incorporating a diode
US11391260B2 (en) * 2018-10-10 2022-07-19 Robert Bosch Gmbh Method for operating an internal combustion engine, and controller for carrying out the method

Also Published As

Publication number Publication date
GB1453793A (en) 1976-10-27
FR2324137A1 (en) 1977-04-08
DE2400937A1 (en) 1974-08-01
JPS49101743A (en) 1974-09-26
FR2324137B1 (en) 1979-01-26
AU6325873A (en) 1975-06-05
IT1008687B (en) 1976-11-30
BE809653A (en) 1974-05-02
AU473925B2 (en) 1976-07-08
SE7708509L (en) 1977-07-25

Similar Documents

Publication Publication Date Title
US4186712A (en) RFI-suppressing ignition system for an internal combustion engine
US3871349A (en) RFI suppression spark plug
US4514712A (en) Ignition coil
AU574158B2 (en) Engine ignition system with an insulated and extendable extender
US4757297A (en) Cable with high frequency suppresion
US4039787A (en) Distributor for internal combustion engine containing apparatus for suppressing noise
US4327702A (en) Plasma jet ignition system with noise suppressing arrangement
US3965879A (en) Radio frequency interference suppression apparatus
US3566202A (en) Self-resonant ignition coil and system
US4029990A (en) Spark plug construction
US4308488A (en) Plasma jet ignition system
EP1320159A1 (en) Current peaking spark plug
US3882341A (en) Spark plug with inductive suppressor
US4613789A (en) Spark plug with capacitor spark discharge
US4658185A (en) Arrangement for the ignition of ignitable mixtures
US4636690A (en) Spark plug for an internal combustion engine, having a pilot breakdown gap
US4105007A (en) Device for suppressing ignition noise
US2963624A (en) Ignition systems
US4468543A (en) Ignition distributor
US3771006A (en) Ignition circuit radiation suppression structure
US3542006A (en) Internal combustion engine radio frequency radiation suppressing ignition system
US6422225B1 (en) Ignition coil and method of making
US2531638A (en) Ignition circuit
US1971497A (en) Ignition interference suppression
US6292082B1 (en) Ignition device for an internal combustion engine