US3868233A - Grinding wheel core - Google Patents

Grinding wheel core Download PDF

Info

Publication number
US3868233A
US3868233A US375766A US37576673A US3868233A US 3868233 A US3868233 A US 3868233A US 375766 A US375766 A US 375766A US 37576673 A US37576673 A US 37576673A US 3868233 A US3868233 A US 3868233A
Authority
US
United States
Prior art keywords
core
volume percent
tin
resin
metallic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US375766A
Inventor
Edgar B Carver
Richard H Sioui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Abrasives Inc
Original Assignee
Norton Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norton Co filed Critical Norton Co
Priority to US375766A priority Critical patent/US3868233A/en
Priority to FR7408117A priority patent/FR2221235B1/fr
Priority to GB1075574A priority patent/GB1453650A/en
Priority to DE2411859A priority patent/DE2411859A1/en
Priority to JP2843774A priority patent/JPS5641390B2/ja
Application granted granted Critical
Publication of US3868233A publication Critical patent/US3868233A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/001Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as supporting member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/285Reaction products obtained from aldehydes or ketones

Definitions

  • ABSTRACT Bonded core for a cup-type grinding wheel including a predetermined volume percentage of aluminum or copper particles or a mixture thereof, a predetermined volume percentage of tin particles or particles of a tin alloy, a predetermined volume percentage of a resin binder, and a predetermined volume percentage of a solid lubricant.
  • This invention relates to the central core of a grinding wheel, and to such a core particularly useful in combination with a peripheral diamond abrasive section attached thereto for dry grinding operations at relatively high temperatures and stresses, since this core comprises a combination of a resin with particles of selected metals characterized by a high degree of thermal conductivity. by high strength at relatively high temperatures, and by ready dressability adjacent to the abrasive section.
  • the core material presently commonly used in combination with a peripheral diamond abrasive section for dry grinding operations comprises a major quantity of particulate aluminum, an intermediate quantity of resin, and a minor quantity of powdered graphite. the last included to facilitate dressing operations on the core.
  • U.S. Pat. No. 2,150,886 issued Mar. 14, I939 discloses a core or mounting, for a diamond grinding wheel, molded from a relatively large quantity of aluminum powder and a relatively small quantity of resin, but not disclosing any material such as graphite to facilitate dressing the mounting, consistent with the fact that the shapes of the mountings illustrated in this patent do not require dressing.
  • British Pat. No. 1,099,703 published Jan. 17, 1968 discloses a core for use with a diamond or other abrasive section composed of a relatively large quantity of copper powder and a relatively small quantity of resin, again not disclosing any material such as graphite to facilitate dressing the core, consistent with the fact that the core configuration illustrated in this patent does not require dressing.
  • U.S. Pat. No. 2,243,105 issued May 27, 1941 discloses a combination of materials used in an abrasive section to be molded to the metallic support for an abrasive tool, this abrasive section comprising a quantity of copper powder, a quantity of tin powder, and a quantity of a resinoid bond, all mixed together with a quantity of diamond powder.
  • this patent contemplates the use ofthe combination of metals and resin described, without abrasive particles, to form a core of a grinding wheel.
  • the present invention contemplates a central core for a grinding wheel composed of up to 90 volume per cent of particles of aluminum or copper or a mixture thereof to provide relatively high thermal conductivity through the core, as little as 5 volume percent of resin to serve as a binder, from 2 to 35 volume percent of tin or a tin alloy to serve as a supplemental binder, thereby imparting relatively high strength at relatively high temperatures to the core, and also to impart some dressability to the core, and from 2 'to volume percent of solid lubricant to enhance dressability composed of graphite, or hexagonal boron nitride, or polytetrafluoroethelene, or a mixture thereof.
  • An object of this invention is the provision of a grinding wheel core with a high degree of thermal conductivity.
  • Another object is the provision of a grinding wheel core having relatively high strength at relatively high temperature.
  • Still another object is the provision of a grinding wheel core with dressability.
  • Yet another object is the provision of a grinding wheel core effective to increase the performance of a grinding wheel in which it is incorporated, at the same time reducing the power input required.
  • the drawing shows a cup wheel generally designated by the reference numeral 10 including a core 12 supporting a diamond abrasive section 14 at its outer periphery.
  • the core includes a tapered conical side wall 16 intersecting a flat rear wall 18 provided at its center with an opening 22 by means of which the grinding wheel is mounted upon a suitable motor driven shaft.
  • Reference numeral 24 designates the area of the side wall 16 adjacent to the diamond abrasive section 14 which must be dressed from time to time as the diamond section is worn down in order to maintain clearance between the core 12 and a workpiece engaged by the diamond abrasive section 14. This dressing operation may be performed most readily by a hand held or fixedly mounted dressing tool, and somewhat less readily by a hand held dressing stick.
  • the core incorporating the instant invention may usefully be composed of from 40 to volume percent of particles of aluminum or copper or a mixture thereof, of from 2 to 35 volume percent of particles of tin or a tin alloy, of 5 to 30 volume percent of particles of resin, and of 0 to 15 volume percent of particles of a solid lubricant consisting of graphite, hexagonal boron nitride, or polytetrafluoroethylene, or a mixture thereof.
  • the core is formed first, and then the mixture of materials forming the abrasive section is introduced into a suitable peripheral recess on the core and then formed integrally with the core.
  • This method of manufacture may be carried out by filling a core mold assembly of the proper size and shape with a thoroughly blended dry mixture of the particulate metal components, the resin, and the solid lubricant forming the core.
  • the core is cold pressed under 7% tons per square inch pressure.
  • the core is removed from the mold assembly and trued to provide a suitably shaped recess on the periphery of side wall 16 for an abrasive section 14.
  • the abrasive section 14 may, for example, consist of a mixture of diamond abrasive particles and a suitable resin serving as a binder therefor, used to fill the recess after the core is returned to the mold assembly.
  • the abrasive section is hot pressed at 160C for 20 minutes under from 1 to 6 tons per square inch pressure, depending on the grade and composition of the abrasive section, the pressure used being determined in a manner well known in the art.
  • the combined core and abrasive section are removed from the mold assembly, they are subjected to a post curing operation at from 160 to 220C, for from 12 to 38 hours depending upon the expected end use of the grinding wheel, the temperature and time used being determined in a manner well known in the art.
  • this method of manufacture may be carried out by first hot pressing the core material at 160C and under 4 tons per square inch pressure for 20 minutes.
  • the core is removed from the mold assembly and trued to form a suitable recess in the periphery of side wall 16 for the abrasive section 14.
  • the core is returned to the mold assembly and the recess is filled with the materials forming the abrasive section.
  • the abrasive section is formed and cured as described above, assuming that the abrasive section in this case is also composed of a mixture of diamond abrasive particles and a suitable resin.
  • compositions of the core material preferred for use in the first method of manufacture described above consists of from 58 to 80 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of. tin or a tin alloy, from 8 to 16 volume percent of resin, and from 2 to volume percent of the solid lubricant.
  • the range of compositions of the core material so modified preferred for use in the first method of manufacture described above consists of from 68 to 84 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, and from 8 to 16 volume percent of resin.
  • This modified composition is somewhat less desireable than that described immediately above, because it is characteristically somewhat more difficult to dress.
  • the optimum composition for the first method of manufacture seems to be 66 volume percent of'aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, 13.3 volume percent of resin, 0.7 volume percent of lime, 4 volume percent of graphite, and 4 volume percent of polytetrafluoroethelene.
  • the optimum modified composition for the first method of manufac ture seems to be 76 volume percent of aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, and 12 volume percent of resin.
  • an annular abrasive section of resin bonded diamond particles is first formed and fully cured, then placed in the bottom of a core mold of the proper size and shape with a coating of phenolic or epoxy adhesive applied to its interface with the core, and then the mold is filled with a thoroughly blended 4 dry mixture of the metal and resin particles and particles of solid lubricant forming the core material of the instant invention.
  • the second method of manufacturing such a grinding wheel may be employed with an annular abrasive section of resin bonded diamond particles first formed in a ring, but not fully cured, then formed integrally with the core material of the instant invention as described above.
  • compositions of the core material preferred for use in the second method of manufacture described above consists of from 54 to volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, from 14 to 22 volume percent of resin, and from 2 to 10 volume percent of solid lubricant.
  • the range of compositions of the core material so modified preferred for use in the second method of manufacture described above consists of from 58 to 74 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, and from 18 to 26 volume percent of resin.
  • This modified composition is somewhat less desireable than that described immediately above, because it is characteristically somewhat more difficult to dress.
  • the optimum modified composition for the second method of manufacture seems to be 66 volume percent of aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, and 22 volume percent of resin.
  • the core comprising the instant invention When, under either method of manufacture, the core comprising the instant invention is attached to the abrasive section before the abrasive section is subjected to its post curing operation, the resin contained in the core will give off volatile gases during the post curing operation which may produce cracks or swelling in the core.
  • the lime is substituted for up to 15 weight percent of the resin included in the core material, the lime being effective to absorb the volatile gases released by the resin during the post curing operation.
  • the equivalent volume percent oflime is up to 1.9 core volume percent of lime replacing resin.
  • the equivalent volume percent of lime is up to 1 core volume percent of lime replacing resin.
  • the equivalent volume percent of lime is up to 1.6 core volume percent of lime replacing resin.
  • the optimum composition of the core material of the instant invention for the first method of manufacture including 12 core volume percent of resin, has performed satisfactorily with 0.6 core volume percent of lime replacing resin.
  • the particle size of the metallic components of the core material of the instant invention is not critical. However, as a practical matter, it is considered preferable that the size of these particles not exceed 1,000 microns.
  • the maximum size of the particles of resin is of the order of 500 microns or less. Satisfactory results have been obtained with cores containing aluminum particles 32 microns and finer, tin particles 32 microns and liner, and resin particles 76 microns and finer.
  • particles of aluminum and particles of copper may be used interchangeably or intermixed in the core material of the instant invention.
  • the dressability of the core material of the instant invention may be increased by increasing the volume percent of tin or a tin alloy with a corresponding reduction in the volume percent of aluminum or copper or a mixture thereof.
  • phenolic resin 12/i Modified Composition for this invention 2nd Method of Manufacture (l2 percent porosity) aluminum (re /i 12,300 1 1,000 10,800 tin 12' phenolic resin 22% since the copper is about 3 times as heavy as the aluminum, a core incorporating copper instead of aluminum offers substantially higher inertial forces, useful to maintain grinding wheel speed more nearly constant in the case of a marginal power supply to the grinding wheel.
  • an alloy of tin may be substituted for tin in the core material of the instant invention, provided this alloy demonstrates the strength and dressability of tin in this application. In order to be assured of such properties, this alloy should have a melting point at or less than 350C.
  • this alloy may consist of 75 weight percent tin and 25 weight percent zinc, or 60 weight percent tin, weight percent zinc, and 10 weight percent cadmium.
  • the core material of the instant invention has been formed satisfactorily using phenolic resin, and other thermosetting resins are also considered satisfactory for grinding wheel applications such as dry grinding in which the core material should demonstrate relatively high strength at relatively high temperatures.
  • resins suitable for this purpose include alkyd, melamineformaldehyde, polyester, epoxy, silicone and infusible polyimide resins.
  • thermoplastic res ins may be used in the .core material of the instant invention.
  • the core material of the instant invention is useful with abrasive sections incorporating various different types of bonding material.
  • the abrasive section may consist of diamond abrasive particles or other abrasive particles intermixed with a particulate metal or metals as a binder and formed integrally with the core material by the second method of manufacturing a grinding wheel described above, or by cold pressing the core according to the first method of manufacturing a grinding wheel described above.
  • the abrasive section may consist of diamond abrasive particles or other abrasive particles secured in a vitrified bond in turn secured to the core by the second method of manufacturing a grinding wheel described above.
  • a core comprising a particulate first metallic component, a particulate sec'ond metallic component, and a particulate synthetic thermosetting resin, all bonded together, wherein the first metallic component comprises from 40 to 90 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
  • the second metallic component comprises from 2 to 35 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C, and
  • the resin comprises from 5 to 30 core volume percent.
  • a core as described in claim 1, wherein the first metallic component comprises from 58 to 74 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
  • the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C, and
  • the resin comprises from 18 to 26 core volume percent.
  • a core comprising a particulate first metallic component, a particulate second metallic component, a particulate synthetic thermosetting resin, and a particulate solid lubricant, all bonded together, wherein the first metallic component comprises from 40 to 90 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof, the second metallic component comprises from 2 to 35 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C,
  • the resin comprises from 5 to 30 core volume percent
  • the solid lubricant comprises from 0 to [5 core volume percent of solid lubricant selected from the group consisting of graphite, hexagonal boron nitride. and polytetrafluoroethylene, or a mixture thereof.
  • a core as described in claim 3, wherein the first metallic component comprises from 54 to core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
  • the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C,
  • the resin comprises from 14 to 22 core volume percent
  • the solid lubricant comprises from 2 to 10 core volume percent.

Abstract

Bonded core for a cup-type grinding wheel including a predetermined volume percentage of aluminum or copper particles or a mixture thereof, a predetermined volume percentage of tin particles or particles of a tin alloy, a predetermined volume percentage of a resin binder, and a predetermined volume percentage of a solid lubricant.

Description

United States Patent Carver et a1.
GRINDING WHEEL CORE Inventors: Edgar B. Carver, Sutton; Richard H. Sioui, Holden, both of Mass.
Assignee: Norton Company, Worcester, Mass.
Filed: July 2, 1973 Appl. No.: 375,766
Related U.S. Application Data Continuation-impart of Ser. No. 340,578, March 12, 1973, abandoned.
U.S. Cl. 51/298, 51/309 Int. Cl C08g 51/12 Field of Search 51/298, 295, 293, 299,
References Cited UNITED STATES PATENTS 5/1941 Kuzmick 51/298 Feb. 25, 1975 3,283,448 11/1966 Thompson 51/298 3,385,684 5/1968 Voter..... 51/298 3,471,276 10/1969 Bragaw 51/298 3,664,819 5/1972 Sioui et al.. 51/295 3,779,727 12/1973 Sioui r a1. 51/295 Primary Examiner-Donald .1. Arnold Attorney, Agent, or FirmArthur A. Loiselle, Jr.
[57 ABSTRACT Bonded core for a cup-type grinding wheel including a predetermined volume percentage of aluminum or copper particles or a mixture thereof, a predetermined volume percentage of tin particles or particles of a tin alloy, a predetermined volume percentage of a resin binder, and a predetermined volume percentage of a solid lubricant.
4 Claims, 1 Drawing Figure GRINDING WHEEL CORE CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of U.S. Pat. application Ser. No. 340,578 filed Mar. 12, 1973 now abandoned.
BACKGROUND OF THE INVENTION 1. Field of Invention This invention relates to the central core of a grinding wheel, and to such a core particularly useful in combination with a peripheral diamond abrasive section attached thereto for dry grinding operations at relatively high temperatures and stresses, since this core comprises a combination of a resin with particles of selected metals characterized by a high degree of thermal conductivity. by high strength at relatively high temperatures, and by ready dressability adjacent to the abrasive section.
2. Description of the Prior Art The core material presently commonly used in combination with a peripheral diamond abrasive section for dry grinding operations comprises a major quantity of particulate aluminum, an intermediate quantity of resin, and a minor quantity of powdered graphite. the last included to facilitate dressing operations on the core.
U.S. Pat. No. 2,150,886 issued Mar. 14, I939 discloses a core or mounting, for a diamond grinding wheel, molded from a relatively large quantity of aluminum powder and a relatively small quantity of resin, but not disclosing any material such as graphite to facilitate dressing the mounting, consistent with the fact that the shapes of the mountings illustrated in this patent do not require dressing.
British Pat. No. 1,099,703 published Jan. 17, 1968 discloses a core for use with a diamond or other abrasive section composed of a relatively large quantity of copper powder and a relatively small quantity of resin, again not disclosing any material such as graphite to facilitate dressing the core, consistent with the fact that the core configuration illustrated in this patent does not require dressing.
U.S. Pat. No. 2,243,105 issued May 27, 1941 discloses a combination of materials used in an abrasive section to be molded to the metallic support for an abrasive tool, this abrasive section comprising a quantity of copper powder, a quantity of tin powder, and a quantity of a resinoid bond, all mixed together with a quantity of diamond powder. However, there is no indication this patent contemplates the use ofthe combination of metals and resin described, without abrasive particles, to form a core of a grinding wheel.
SUMMARY OF THE INVENTION The present invention contemplates a central core for a grinding wheel composed of up to 90 volume per cent of particles of aluminum or copper or a mixture thereof to provide relatively high thermal conductivity through the core, as little as 5 volume percent of resin to serve as a binder, from 2 to 35 volume percent of tin or a tin alloy to serve as a supplemental binder, thereby imparting relatively high strength at relatively high temperatures to the core, and also to impart some dressability to the core, and from 2 'to volume percent of solid lubricant to enhance dressability composed of graphite, or hexagonal boron nitride, or polytetrafluoroethelene, or a mixture thereof.
An object of this invention is the provision of a grinding wheel core with a high degree of thermal conductivity.
Another object is the provision of a grinding wheel core having relatively high strength at relatively high temperature.
Still another object is the provision of a grinding wheel core with dressability.
Yet another object is the provision of a grinding wheel core effective to increase the performance of a grinding wheel in which it is incorporated, at the same time reducing the power input required.
tially broken away, of a cup-type grinding wheel to which the core comprising the instant invention is particularly well suited.
DESCRIPTION OF THE PREFERRED EMBODIMENT The drawing shows a cup wheel generally designated by the reference numeral 10 including a core 12 supporting a diamond abrasive section 14 at its outer periphery. The core includes a tapered conical side wall 16 intersecting a flat rear wall 18 provided at its center with an opening 22 by means of which the grinding wheel is mounted upon a suitable motor driven shaft. Reference numeral 24 designates the area of the side wall 16 adjacent to the diamond abrasive section 14 which must be dressed from time to time as the diamond section is worn down in order to maintain clearance between the core 12 and a workpiece engaged by the diamond abrasive section 14. This dressing operation may be performed most readily by a hand held or fixedly mounted dressing tool, and somewhat less readily by a hand held dressing stick.
On the basis of experimental work completed to date, it appears that the core incorporating the instant invention may usefully be composed of from 40 to volume percent of particles of aluminum or copper or a mixture thereof, of from 2 to 35 volume percent of particles of tin or a tin alloy, of 5 to 30 volume percent of particles of resin, and of 0 to 15 volume percent of particles of a solid lubricant consisting of graphite, hexagonal boron nitride, or polytetrafluoroethylene, or a mixture thereof.
Within the ranges of volume percentages specified above for the various .materials included in the core, the preferred percentages vary dependent upon the method, of manufacturing a grinding wheel incorporating a core embodying the instant invention.
According to a first method of manufacturing such a grinding wheel, the core is formed first, and then the mixture of materials forming the abrasive section is introduced into a suitable peripheral recess on the core and then formed integrally with the core.
This method of manufacture may be carried out by filling a core mold assembly of the proper size and shape with a thoroughly blended dry mixture of the particulate metal components, the resin, and the solid lubricant forming the core. The core is cold pressed under 7% tons per square inch pressure. The core is removed from the mold assembly and trued to provide a suitably shaped recess on the periphery of side wall 16 for an abrasive section 14.
The abrasive section 14 may, for example, consist of a mixture of diamond abrasive particles and a suitable resin serving as a binder therefor, used to fill the recess after the core is returned to the mold assembly. In order to form the abrasive section integrally with the core, the abrasive section is hot pressed at 160C for 20 minutes under from 1 to 6 tons per square inch pressure, depending on the grade and composition of the abrasive section, the pressure used being determined in a manner well known in the art.
After the combined core and abrasive section are removed from the mold assembly, they are subjected to a post curing operation at from 160 to 220C, for from 12 to 38 hours depending upon the expected end use of the grinding wheel, the temperature and time used being determined in a manner well known in the art.
Alternatively, this method of manufacture may be carried out by first hot pressing the core material at 160C and under 4 tons per square inch pressure for 20 minutes. The core is removed from the mold assembly and trued to form a suitable recess in the periphery of side wall 16 for the abrasive section 14. The core is returned to the mold assembly and the recess is filled with the materials forming the abrasive section. Thereafter, the abrasive section is formed and cured as described above, assuming that the abrasive section in this case is also composed of a mixture of diamond abrasive particles and a suitable resin.
The range of compositions of the core material preferred for use in the first method of manufacture described above consists of from 58 to 80 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of. tin or a tin alloy, from 8 to 16 volume percent of resin, and from 2 to volume percent of the solid lubricant.
1f the particles of a solid lubricant are omitted from the core material, the range of compositions of the core material so modified preferred for use in the first method of manufacture described above consists of from 68 to 84 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, and from 8 to 16 volume percent of resin. This modified composition is somewhat less desireable than that described immediately above, because it is characteristically somewhat more difficult to dress.
On the basis of experience to date, the optimum composition for the first method of manufacture seems to be 66 volume percent of'aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, 13.3 volume percent of resin, 0.7 volume percent of lime, 4 volume percent of graphite, and 4 volume percent of polytetrafluoroethelene.
On the basis of experience to date, the optimum modified composition for the first method of manufac ture seems to be 76 volume percent of aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, and 12 volume percent of resin.
According to a second method of manufacturing such a grinding wheel, an annular abrasive section of resin bonded diamond particles is first formed and fully cured, then placed in the bottom of a core mold of the proper size and shape with a coating of phenolic or epoxy adhesive applied to its interface with the core, and then the mold is filled with a thoroughly blended 4 dry mixture of the metal and resin particles and particles of solid lubricant forming the core material of the instant invention.
Thereafter, in order to form the core integrally with the annular abrasive section, it is hot pressed at l60C under 4 tons per square inch pressure for 20 minutes to complete the formation of the grinding wheel.
Alternatively, the second method of manufacturing such a grinding wheel may be employed with an annular abrasive section of resin bonded diamond particles first formed in a ring, but not fully cured, then formed integrally with the core material of the instant invention as described above.
In this variation of the second method of manufacturing such a grinding wheel, after the annular abrasive section and the attached core are removed from the mold assembly, they are both subjected to a post curing operation, as described above in connection with the first method of manufacturing such a grinding wheel.
The range of compositions of the core material preferred for use in the second method of manufacture described above consists of from 54 to volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, from 14 to 22 volume percent of resin, and from 2 to 10 volume percent of solid lubricant.
1f the particles of a solid lubricant are omitted from the core material, the range of compositions of the core material so modified preferred for use in the second method of manufacture described above consists of from 58 to 74 volume percent of aluminum or copper or a mixture thereof, from 8 to 16 volume percent of tin or a tin alloy, and from 18 to 26 volume percent of resin. This modified composition is somewhat less desireable than that described immediately above, because it is characteristically somewhat more difficult to dress.
On the basis of experience to date, the optimum modified composition for the second method of manufacture seems to be 66 volume percent of aluminum or copper or a mixture thereof, 12 volume percent of tin or a tin alloy, and 22 volume percent of resin.
When, under either method of manufacture, the core comprising the instant invention is attached to the abrasive section before the abrasive section is subjected to its post curing operation, the resin contained in the core will give off volatile gases during the post curing operation which may produce cracks or swelling in the core. In order to prevent such swelling or cracking lime is substituted for up to 15 weight percent of the resin included in the core material, the lime being effective to absorb the volatile gases released by the resin during the post curing operation.
For the broadest range of composition of the core material of the instant invention first referred to above, including up to 30 core volume percent resin, the equivalent volume percent oflime is up to 1.9 core volume percent of lime replacing resin.
For the preferred range of composition of the core material of the instant invention for the first method of manufacture, including up to 16 core volume percent resin, the equivalent volume percent of lime is up to 1 core volume percent of lime replacing resin.
For the preferred range of composition of the core material of the instant invention for the second method of manufacture, including up to 26 core volume percent resin, the equivalent volume percent of lime is up to 1.6 core volume percent of lime replacing resin.
The optimum composition of the core material of the instant invention for the first method of manufacture, including 12 core volume percent of resin, has performed satisfactorily with 0.6 core volume percent of lime replacing resin.
Experimental work performed to date indicates that the particle size of the metallic components of the core material of the instant invention is not critical. However, as a practical matter, it is considered preferable that the size of these particles not exceed 1,000 microns. The maximum size of the particles of resin is of the order of 500 microns or less. Satisfactory results have been obtained with cores containing aluminum particles 32 microns and finer, tin particles 32 microns and liner, and resin particles 76 microns and finer.
Since they have substantially the same thermal conductive properties, particles of aluminum and particles of copper may be used interchangeably or intermixed in the core material of the instant invention. However,
ticles of solid lubricant is not absolutely necessary, however a core material of the composition described herein, but omitting the solid lubricant, is characterized by somewhat decreased dressability.
Alternatively, the dressability of the core material of the instant invention may be increased by increasing the volume percent of tin or a tin alloy with a corresponding reduction in the volume percent of aluminum or copper or a mixture thereof.
The achievement of increased dressability by increasing the volume percent of tin or a tin alloy as indicated above is relatively undesireable, because this increased volume percent of tin or a tin alloy creates relatively undesireable working conditions as large chips are formed which spray the operator during a core dressing operation.
The relatively high strength at relatively high temperatures of the core material of the instant invention as compared to the relatively low strength at high temperatures ofthe core material commonly used prior to this invention is indicated in the following table:
TABLE 1 Flexural Strength (psi) Volume Percent of the Core Material Mixture Room Temp. 100C 150C Composition in Common Usage (7 percent porosity) rior art aluminum 58.1% 12,400 9,700 4,000 graphite 15.8% phenolic resin 26.1% Composition for 1st this invention Method of Manufacture (10 percent porosity) Aluminum 687! 11,000 8,000 6,500 Tin 12'71 phenolic resin 12% graphite 4% polytetrafluoro- 4% ethylene Modified Composition for this invention 1st Method of Manufacture 12 percent porosity) aluminum 76% 12,100 1 1,800 10,700 tin 12'7! phenolic resin 12/i Modified Composition for this invention 2nd Method of Manufacture (l2 percent porosity) aluminum (re /i 12,300 1 1,000 10,800 tin 12' phenolic resin 22% since the copper is about 3 times as heavy as the aluminum, a core incorporating copper instead of aluminum offers substantially higher inertial forces, useful to maintain grinding wheel speed more nearly constant in the case of a marginal power supply to the grinding wheel.
An alloy of tin may be substituted for tin in the core material of the instant invention, provided this alloy demonstrates the strength and dressability of tin in this application. In order to be assured of such properties, this alloy should have a melting point at or less than 350C. By way of illustration, this alloy may consist of 75 weight percent tin and 25 weight percent zinc, or 60 weight percent tin, weight percent zinc, and 10 weight percent cadmium.
The inclusion ofthe specified volume percent of par- Thermal conductivity measurements have shown a core of the modified composition described herein, produced by the first method of manufacturing a grinding wheel, to be 78 percent more conductive than the core commonly used prior to this invention, which will enhance wheel perform anee by reducing the temperature of the grinding surface. In fact, initial results indicate grinding wheels incorporating a core of the modified composition referred to above draw about 10 percent less power than grinding wheels with the core previously commonly used, and are about 10 percent higher in G-ratio, that is the ratio of the cubic inches of metal removed to the cubic inches of wheel wear.
The core material of the instant invention has been formed satisfactorily using phenolic resin, and other thermosetting resins are also considered satisfactory for grinding wheel applications such as dry grinding in which the core material should demonstrate relatively high strength at relatively high temperatures. Such resins suitable for this purpose include alkyd, melamineformaldehyde, polyester, epoxy, silicone and infusible polyimide resins.
For grinding wheel applications in which relatively high strength of the core material at relatively high temperatures is not critical, suitable thermoplastic res ins may be used in the .core material of the instant invention.
While the instant invention has been described particularly with reference to a diamond abrasive section, it should be understood that the core material of the instant invention is also useful with an abrasive section containing other abrasive materials such as cubic boron nitride.
It should also be understood that the core material of the instant invention is useful with abrasive sections incorporating various different types of bonding material. For example, the abrasive section may consist of diamond abrasive particles or other abrasive particles intermixed with a particulate metal or metals as a binder and formed integrally with the core material by the second method of manufacturing a grinding wheel described above, or by cold pressing the core according to the first method of manufacturing a grinding wheel described above. Alternatively, the abrasive section may consist of diamond abrasive particles or other abrasive particles secured in a vitrified bond in turn secured to the core by the second method of manufacturing a grinding wheel described above.
The description of the invention provided herein is illustrative rather than limiting, and the scope of this invention is limited only by the scope of the appended claims.
What is claimed is:
1. In a grinding wheel with a peripheral abrasive section, a core comprising a particulate first metallic component, a particulate sec'ond metallic component, and a particulate synthetic thermosetting resin, all bonded together, wherein the first metallic component comprises from 40 to 90 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
the second metallic component comprises from 2 to 35 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C, and
the resin comprises from 5 to 30 core volume percent.
2. A core as described in claim 1, wherein the first metallic component comprises from 58 to 74 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
1 the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C, and
the resin comprises from 18 to 26 core volume percent.
3. In a grinding wheel with a peripheral abrasive section, a core comprising a particulate first metallic component, a particulate second metallic component, a particulate synthetic thermosetting resin, and a particulate solid lubricant, all bonded together, wherein the first metallic component comprises from 40 to 90 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof, the second metallic component comprises from 2 to 35 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C,
the resin comprises from 5 to 30 core volume percent, and
the solid lubricant comprises from 0 to [5 core volume percent of solid lubricant selected from the group consisting of graphite, hexagonal boron nitride. and polytetrafluoroethylene, or a mixture thereof.
4. A core as described in claim 3, wherein the first metallic component comprises from 54 to core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof,
the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350C,
the resin comprises from 14 to 22 core volume percent, and
the solid lubricant comprises from 2 to 10 core volume percent.

Claims (4)

1. IN A GRINDING WHEEL WITH A PERIPHERAL ABRASIVE SECTION, A CORE COMPRISING A PARTICULATE FIRST METALLIC COMPONENT, A PARTICULATE SECOND METALLIC COMPONENT, AND A PARTICULATE SYNTHETIC THERMOSETTING RESIN, ALL BONDED TOGETHER, WHEREIN THE FIRST METALLIC COMPONENT COMPRISES FROM 40 TO 90 CORE VOLUME PERCENT OF A METAL SELECTED FROM THE GROUP CONSISTING OF ALUMINUM AND COPPER AND A MIXTURE THEREOF, THE SECOND METALLIC COMPONENT COMPRISES FROM 2 TO 35 CORE VOLUME PERCENT OF A METAL SELECTED FROM THE GROUP CONSISTING OF TIN AND AN ALLOY OF TIN WITH A MELTING POINT AT OR LESS THAN 350*C, AND THE RESIN COMPRISES FROM 5 TO 30 CORE VOLUME PERCENT.
2. A core as described in claim 1, wherein the first metallic component comprises from 58 to 74 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof, the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350*C, and the resin comprises from 18 to 26 core volume percent.
3. In a grinding wheel with a peripheral abrasive section, a core comprising a particulate first metallic component, a particulate second metallic component, a particulate synthetic thermosetting resin, and a particulate solid lubricant, all bonded together, wherein the first metallic component comprises from 40 to 90 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof, the second metallic component comprises from 2 to 35 core volume percent of a metal selected from the group consisting of tin and an alloy of tin with a melting point at or less than 350*C, the resin comprises from 5 to 30 core volume percent, and the solid lubricant comprises from 0 to 15 core volume percent of solid lubricant selected from the group consisting of graphite, hexagonal boron nitride, and polytetrafluoroethylene, or a mixture thereof.
4. A core as described in claim 3, wherein the first metallic component comprises from 54 to 70 core volume percent of a metal selected from the group consisting of aluminum and copper and a mixture thereof, the second metallic component comprises from 8 to 16 core volume percent of a metal selected from the group consisting of tin and an alloy Of tin with a melting point at or less than 350*C, the resin comprises from 14 to 22 core volume percent, and the solid lubricant comprises from 2 to 10 core volume percent.
US375766A 1973-03-12 1973-07-02 Grinding wheel core Expired - Lifetime US3868233A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US375766A US3868233A (en) 1973-03-12 1973-07-02 Grinding wheel core
FR7408117A FR2221235B1 (en) 1973-03-12 1974-03-11
GB1075574A GB1453650A (en) 1973-03-12 1974-03-11 Grinding wheel
DE2411859A DE2411859A1 (en) 1973-03-12 1974-03-12 GRINDING WHEEL
JP2843774A JPS5641390B2 (en) 1973-03-12 1974-03-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34057873A 1973-03-12 1973-03-12
US375766A US3868233A (en) 1973-03-12 1973-07-02 Grinding wheel core

Publications (1)

Publication Number Publication Date
US3868233A true US3868233A (en) 1975-02-25

Family

ID=26992169

Family Applications (1)

Application Number Title Priority Date Filing Date
US375766A Expired - Lifetime US3868233A (en) 1973-03-12 1973-07-02 Grinding wheel core

Country Status (5)

Country Link
US (1) US3868233A (en)
JP (1) JPS5641390B2 (en)
DE (1) DE2411859A1 (en)
FR (1) FR2221235B1 (en)
GB (1) GB1453650A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042346A (en) * 1975-12-24 1977-08-16 Norton Company Diamond or cubic boron nitride grinding wheel with resin core
US4042347A (en) * 1974-04-15 1977-08-16 Norton Company Method of making a resin-metal composite grinding wheel
US4184854A (en) * 1978-04-24 1980-01-22 Norton Company Magnetic cores for diamond or cubic boron nitride grinding wheels
US4382803A (en) * 1980-07-31 1983-05-10 Rowland, Incorporated Tools for optical lenses
US5164265A (en) * 1989-12-11 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive elements
US5460635A (en) * 1993-07-30 1995-10-24 Western Atlas Inc. Magnesium oxychloride cement containing graphite
US6121143A (en) * 1997-09-19 2000-09-19 3M Innovative Properties Company Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6203589B1 (en) * 1999-03-31 2001-03-20 Riken Metal-resis bond grindstone and method for manufacturing the same
WO2006123353A1 (en) * 2005-05-20 2006-11-23 Ajay Jariwala Kantilal A metal punch used in the manufacture of artificial stones, the method and apparatus for making such punch
US20090005488A1 (en) * 2002-08-30 2009-01-01 Shin-Nissan Diamond Tools Mfg. Co., Ltd. Heat resistant resin bonded grindstone
CN102240987A (en) * 2011-05-30 2011-11-16 上海百兰朵电子科技有限公司 Synthetic copper plate grinding disk
US20150375367A1 (en) * 2014-06-29 2015-12-31 Saint-Gobain Abrasives, Inc. Abrasive article including a core and a bonded abrasive body
WO2017019942A1 (en) 2015-07-29 2017-02-02 Saint-Gobain Abrasives, Inc. Abrasive article having a core including a composite material
US11059148B2 (en) 2016-09-09 2021-07-13 Saint-Gobain Abrasives, Inc. Abrasive articles having a plurality of portions and methods for forming same
US11850706B2 (en) 2017-07-25 2023-12-26 Lukas-Erzett Vereinigte Schleif- Und Fraswerkzeugfabriken Gmbh & Co. Kg Abrasive tool and use of such an abrasive tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006660A1 (en) * 1990-03-03 1991-09-05 Winter & Sohn Ernst Grinding disc for profiling spectacle lens edges - has plastic body with outer abrasive edge of diamond particles in metal, e.g. bronze, and a supporting copper ring
US6783450B1 (en) 1990-03-03 2004-08-31 Ernst Winter & Sohn Diamantwerkzeuge Gmbh & Co. For grinding wheel for grinding process
JPH05301169A (en) * 1992-04-24 1993-11-16 Sankyo Daiyamondo Kogyo Kk Metal bond diamond wheel for chamfering and its manufacture
US6102789A (en) * 1998-03-27 2000-08-15 Norton Company Abrasive tools
US6019668A (en) * 1998-03-27 2000-02-01 Norton Company Method for grinding precision components
JP2003039331A (en) 2001-08-01 2003-02-13 Noritake Co Ltd Grinding wheel having resin core part, manufacturing method thereof, and recycling method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2243105A (en) * 1939-07-28 1941-05-27 J K Smit & Sons Inc Abrasive tool
US3283448A (en) * 1964-08-14 1966-11-08 Bay State Abrasive Products Co Organic bonded abrasive article
US3385684A (en) * 1966-01-03 1968-05-28 Du Pont Multicrystalline diamond abrasive composition and article
US3471276A (en) * 1966-11-02 1969-10-07 Du Pont Peripheral abrasive wheels with composite rims
US3664819A (en) * 1969-11-14 1972-05-23 Norton Co Resin bonded metal-coated diamond or cubic boron nitride abrasive tools containing an inorganic crystalline filler and graphite
US3779727A (en) * 1971-07-19 1973-12-18 Norton Co Resin-bonded abrasive tools with metal fillers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2243105A (en) * 1939-07-28 1941-05-27 J K Smit & Sons Inc Abrasive tool
US3283448A (en) * 1964-08-14 1966-11-08 Bay State Abrasive Products Co Organic bonded abrasive article
US3385684A (en) * 1966-01-03 1968-05-28 Du Pont Multicrystalline diamond abrasive composition and article
US3471276A (en) * 1966-11-02 1969-10-07 Du Pont Peripheral abrasive wheels with composite rims
US3664819A (en) * 1969-11-14 1972-05-23 Norton Co Resin bonded metal-coated diamond or cubic boron nitride abrasive tools containing an inorganic crystalline filler and graphite
US3779727A (en) * 1971-07-19 1973-12-18 Norton Co Resin-bonded abrasive tools with metal fillers

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042347A (en) * 1974-04-15 1977-08-16 Norton Company Method of making a resin-metal composite grinding wheel
US4042346A (en) * 1975-12-24 1977-08-16 Norton Company Diamond or cubic boron nitride grinding wheel with resin core
US4184854A (en) * 1978-04-24 1980-01-22 Norton Company Magnetic cores for diamond or cubic boron nitride grinding wheels
US4382803A (en) * 1980-07-31 1983-05-10 Rowland, Incorporated Tools for optical lenses
US5164265A (en) * 1989-12-11 1992-11-17 Minnesota Mining And Manufacturing Company Abrasive elements
US5460635A (en) * 1993-07-30 1995-10-24 Western Atlas Inc. Magnesium oxychloride cement containing graphite
US5624472A (en) * 1993-07-30 1997-04-29 Western Atlas, Inc. Method for dry grinding with improved magnesium oxychloride cement bond containing graphite
US6121143A (en) * 1997-09-19 2000-09-19 3M Innovative Properties Company Abrasive articles comprising a fluorochemical agent for wafer surface modification
US6203589B1 (en) * 1999-03-31 2001-03-20 Riken Metal-resis bond grindstone and method for manufacturing the same
SG83751A1 (en) * 1999-03-31 2001-10-16 Riken Metal-resin bond grindstone and method for manufacturing the same
US20090005488A1 (en) * 2002-08-30 2009-01-01 Shin-Nissan Diamond Tools Mfg. Co., Ltd. Heat resistant resin bonded grindstone
WO2006123353A1 (en) * 2005-05-20 2006-11-23 Ajay Jariwala Kantilal A metal punch used in the manufacture of artificial stones, the method and apparatus for making such punch
CN102240987A (en) * 2011-05-30 2011-11-16 上海百兰朵电子科技有限公司 Synthetic copper plate grinding disk
CN102240987B (en) * 2011-05-30 2016-06-15 上海百兰朵电子科技有限公司 Synthesis copper dish abrasive disk
US20150375367A1 (en) * 2014-06-29 2015-12-31 Saint-Gobain Abrasives, Inc. Abrasive article including a core and a bonded abrasive body
WO2017019942A1 (en) 2015-07-29 2017-02-02 Saint-Gobain Abrasives, Inc. Abrasive article having a core including a composite material
EP3328586A4 (en) * 2015-07-29 2019-01-23 Saint-Gobain Abrasives, Inc. Abrasive article having a core including a composite material
US10449659B2 (en) 2015-07-29 2019-10-22 Saint-Gobain Abrasives, Inc. Abrasive article having a core including a composite material
US11059148B2 (en) 2016-09-09 2021-07-13 Saint-Gobain Abrasives, Inc. Abrasive articles having a plurality of portions and methods for forming same
US11583977B2 (en) 2016-09-09 2023-02-21 Saint-Gobain Abrasives, Inc. Abrasive articles having a plurality of portions and methods for forming same
US11850706B2 (en) 2017-07-25 2023-12-26 Lukas-Erzett Vereinigte Schleif- Und Fraswerkzeugfabriken Gmbh & Co. Kg Abrasive tool and use of such an abrasive tool

Also Published As

Publication number Publication date
FR2221235B1 (en) 1977-09-23
FR2221235A1 (en) 1974-10-11
DE2411859A1 (en) 1974-09-19
JPS5641390B2 (en) 1981-09-28
GB1453650A (en) 1976-10-27
JPS5047289A (en) 1975-04-26

Similar Documents

Publication Publication Date Title
US3868233A (en) Grinding wheel core
US4378233A (en) Metal bonded grinding wheel containing diamond or CBN abrasive
US2986455A (en) Bonded abrasive articles
US2225193A (en) Abrasive wheel
US3928949A (en) Hollow body grinding materials
US3664819A (en) Resin bonded metal-coated diamond or cubic boron nitride abrasive tools containing an inorganic crystalline filler and graphite
US3594141A (en) Method for making a metal bonded diamond abrasive tool
USRE29808E (en) Hollow body grinding materials
US4042347A (en) Method of making a resin-metal composite grinding wheel
JP3373797B2 (en) Resin-impregnated reinforced vitrified grinding wheel and method of manufacturing the same
US3864101A (en) Process for preparing a resin-bonded grinding article containing stress-absorbing particulate material
EP0482412B1 (en) Abrasive product and method of its use
US3925035A (en) Graphite containing metal bonded diamond abrasive wheels
JPS5882678A (en) Coarse tissue organic matter coupled grinding body
JP4443870B2 (en) Super abrasive wheel and manufacturing method thereof
USRE21165E (en) Abrasive wheel
US4042346A (en) Diamond or cubic boron nitride grinding wheel with resin core
US2949351A (en) Heat-resistant abrasive wheels
US3246970A (en) Abrasive articles with iron sulfide and potassium aluminum fluoride filler
US2162600A (en) Filler for abrasive articles
US3402035A (en) Abrasive wheel having a metal coated graphite lubricant therein
US2952529A (en) Resinoid bonded abrasive wheels
US2173833A (en) Abrasive article and its manufacture
JPH01183370A (en) Compound bond diamond grindstone and manufacture thereof
US4184854A (en) Magnetic cores for diamond or cubic boron nitride grinding wheels