US3865176A - Casting method for twin-belt continuous metal casting machines - Google Patents

Casting method for twin-belt continuous metal casting machines Download PDF

Info

Publication number
US3865176A
US3865176A US401703A US40170373A US3865176A US 3865176 A US3865176 A US 3865176A US 401703 A US401703 A US 401703A US 40170373 A US40170373 A US 40170373A US 3865176 A US3865176 A US 3865176A
Authority
US
United States
Prior art keywords
casting
strap
damblocks
along
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US401703A
Inventor
John Mary-Anthony Dompas
Robert William Hazelett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazelett Strip Casting Corp
Original Assignee
Hazelett Strip Casting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazelett Strip Casting Corp filed Critical Hazelett Strip Casting Corp
Priority to US401703A priority Critical patent/US3865176A/en
Priority to ZA00744880A priority patent/ZA744880B/en
Priority to CA206,178A priority patent/CA1034737A/en
Priority to AU72126/74A priority patent/AU492668B2/en
Priority to ZM135/74A priority patent/ZM13574A1/en
Priority to GB40101/74A priority patent/GB1487232A/en
Priority to BR7819/74A priority patent/BR7407819D0/en
Priority to BE148828A priority patent/BE820268A/en
Priority to CH1286974A priority patent/CH591912A5/xx
Priority to DE2445912A priority patent/DE2445912C2/en
Priority to SE7412232A priority patent/SE403261B/en
Priority to JP49111391A priority patent/JPS5823181B2/en
Priority to FR7432728A priority patent/FR2246333B1/fr
Priority to IT27883/74A priority patent/IT1022453B/en
Priority to US05/522,334 priority patent/US3955615A/en
Application granted granted Critical
Publication of US3865176A publication Critical patent/US3865176A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/066Side dams

Definitions

  • ABSTRACT lmproved casting method and side dam apparatus for use in twin-belt continuous metal casting machines are described particularly adapted for casting rectangular copper bar providing a casting speed almost double that obtained in prior twin-belt machines and a damblock lifetime which is more than doubled, while producing a more homogeneous and symmetrical casting structure.
  • the side dams are formed by stringing slotted damblocks along the entire length of a flexible metal strap, except for end portions of the strap.
  • An end-to-end weld forms an endless strap loop of accurately predetermined length, and special damblocks having two mating interlocking havles are inserted into the remaining space along the strap, whereby all blocks are free to slide on the strap but with little cumulative space between blocks, which are preferably made of a bronze alloy presenting better resistance to heat cracking and higher heat conductivity than in previous damblocks.
  • the side dams are passed by tension apparatus which deflects them along a smoothly curved arc convex toward the interior of the side dam loop to take up any available slack, forcing the blocks tightly together in end abutting relationship along the casting zone, thus ensuring a cast product without burrs on the side surfaces.
  • the damblocks are cooled by liquid sprays before re-entry into the machine.
  • the present invention relates to an improved casting method and side dam apparatus for use in twin-belt casting machines for continuously casting molten metal.
  • the upper and lower surfaces of a moving mold are defined by a pair of spaced endless flexible casting belts travelling along above and below the mold region.
  • a pair of spaced endless flexible side dams travel along between the casting belts and define the two side surfaces of the moving mold.
  • Each of these side dams is formed by a multiplicity of slotted blocks strung onto a flexible metal strap.
  • the straps are difficult to weld with blocks on them, and there was slack in the strap, causing the blocks to be loose. Gaps could occur between loose blocks adjacent to the casting region causing problems with leakage of molten metal into the gaps and producing irregular sides or burrs on the cast product.
  • the side dams are constructed by providing a metal strap with slotted damblocks strung onto the strap extending along almost the entire length of the strap. A predetermined small portion of each end of the strap, for example approximately 50 millimeters of each end, remains exposed. The two exposed ends of the strap are welded together to form an endless strap loop of accurately predetermined length. Then the exposed portion of the welded strap is covered with special dam blocks formed by fixing two mating interlocking half blocks together with a screw. In this manner, the strap of each side dam is constructed of accurately predetermined Iengthand welded into a continuous loop, and all of the blocks are free to slide on the strap to provide uniform conditions along the entire length of the side dam.
  • the damblocks are preferably made of a bronze alloy which presents a better resistance to heat cracking and a higher heat conductivity than the nickel-chromium steel damblocks previously used for casting copper.
  • This alloy is Bronze Corson,"a trademark of Usines a Cuivre et a Zinc de vide, and has a composition of 1.5 to 2.5 percent Nickel, 0.4 to 0.9 percent Silicon, 0.l to 0.3 percent Iron, 0.1 to 0.5 percent Chromium, balance Copper.
  • the two side dams in travelling along their return path from the output to the input end of the machine are passed over arcuate tension roller apparatus to cause these side dams each to be deflected to travel along a smoothly curved arc which is convex in a direction toward the interior of the side darn loop. Any available slack or spacing between damblocks is taken up by this convex arcuate path curvature which is located away from the casting zone. Thereby the damblocks of both side dams are forced to be thoroughly tight together in end-to end abutting relationship along the casting zone, thus ensuring a uniform smooth sided cast product without burrs.
  • the arcuate tension roller apparatus advantageously serves to take up any slack which develops or accumulates during operation of the machine as a result of stretching of the strap or wearing of the ends of the damblocks.
  • the damblocks thereby remain firmly pressed together in the casting zone during operation regardless of such stretching or wear.
  • the side dams are cooled to a temperature of approximately l50to 200C by water sprays positioned in the region between the output end of the casting machine and the arcuate tension roller apparatus.
  • FIG. 2 is an enlarged cross-sectional view taken along the plane 22 in FIG. 1 showing the tension roller apparatus which maintains the dam blocks firmly pressed one against the other in the casting zone;
  • FIG. 4 is an enlarged cross section taken through the plane 4-4 in the casting zone in FIG. 1 illustrating the manner in which the new damblock material and the precooling of the damblocks by water sprays provide a more homogeneous and symmetrical casting structure in the product being cast;
  • FIG. 5 is an enlarged side elevational view of a portion of a side dam showing the special damblocks which are secured together after the ends of the strap been welded together;
  • FIG. 6 is a cross-sectional view taken along the plane 6-6 in FIG. showing the construction of the two mating interlocking half blocks on a strap.
  • the lower casting belt 10 is revolved around rolls l2 and 14.
  • the roll 12 is located at the input end of the machine and the roll 14 at the output end.
  • the moving casting mold is defined by the lower casting belt 10, by a pair of spaced side dams l6 and 18 (See also FIG. 4) and by an upper casting belt 20 as they are passed together along through a casting zone C.
  • This upper casting belt 20 revolves around rolls 22 and 24 partially shown in FIG. 1.
  • the two side dams l6 and 18 revolve with the belts, passing through the casting zone C and then returning from the output end to the input end of the machine along a path which is located away from the casting zone, as shown in FIG 1.
  • the casting zone is shown horizontal in FIG. 1, for convenience of illustration, in operation for casting the product described the output end is positioned lower than the input end.
  • Molten metal in this example being copper, is introduced into the input end and is solidified to form a cast product P ((FIG. 4) which is delivered from the output end of the machine.
  • the cooling of the molten metal in the casting zone is accomplished by the application of high velocity liquid coolant to the casting belts 10 and 20, for example, as explained in US. Pat. Nos. 3,036,348 and 3,041,686.
  • a very effective cooling action is provided by the side dams l6 and 18 each of which includes a multiplicity of slotted bronze alloy damblocks 26 (FIG. 4) strung on a flexible endless metal strap 28.
  • the side dams l6 and 18 are passed through weater spray cooling apparatus 30 positioned intermediate the output end and tension roller apparatus 32. This roller apparatus 32 will be explained in detail further below.
  • the side dam cooling apparatus 30 includes a cooling chamber 34 surrounded by a metal box 35 and having an entrance and exit openings 37 and 38 for passage of the two side dams through this chamber.
  • a cooling chamber 34 surrounded by a metal box 35 and having an entrance and exit openings 37 and 38 for passage of the two side dams through this chamber.
  • Within this chamber 34 there are a plurality of spray manifolds 39 which have orifices for projecting multiple liquid sprays 40 onto the individual damblocks 26.
  • a pipeline 43 supplies the cooling liquid, preferably water, under pressure to the manifolds 39, and a drain pipe drains the liquid from chamber 34.
  • An exhaust duct 46 removes the liquid vapor, e.g., steam which is generated when the sprays 40 strike the hot side dams.
  • the spray cooling apparatus 30 serves to cool the side dams to a temperature hot enough to dry off the water from the damblocks before their re-entry into the input end of the machine, i.e.. above the boiling point of water, but not hot enough to harm the coating which may be applied to the damblocks.
  • the damblocks are cooled down below 280C. but above the boiling point of wa ter, the preferred range being approximately l5()C. to 200C.
  • the bronze alloy damblocks 26, preferably of Bronze Corson alloy, as described above, have a high heat conductivity.
  • the damblocks conduct heat rapidly away from the two side surfaces 41 of the cast product P.
  • the cooling of the damblocks by the apparatus 30 and, to a lesser extent, the alloy material enable the casting speed to be almost double that previously obtained for similar sizes of cast copper product.
  • the lifetime of the damblocks has been more than doubled in casting copper product.
  • the rate of heat conduction along the generally indicated heat conduction paths H from the east side surfaces 41 through the damblocks 26 into the casting belts l0 and 20 is commensurate with the rate at which heat is conducted directly away from the top and bottom surface 42 of the cast product P into the casting belts. Because the rates of heat conduction away from the four surfaces 41, 41, 42, 42 of the rectangular cast product P are commensurate with each other, more homogeneous and symmetrical cast structure is obtained than previously obtained when casting rectangular bar copper sections of similar sizes.
  • the lines L of crystal growth, if any, extend inwardly from the four corners of the cross section at angles of approximately 45 from the surfaces 41 and 42, indicating a symmetrical cast structure. Usually, the crystal structure produced is equiaxial because of the quench effect provided by the good cooling action achieved.
  • the side dams 16 and 18 are each constructed by sliding the slotted damblocks 26 onto the strap 28.
  • a predetermined small portion X of each end of the strap for example approximately 50 millimeters of each end, remain exposed.
  • Two exposed strap ends are welded together at a joint 44 which is smoothed by grinding to form an endless strap loop of accurately predetermined length.
  • the yet uncovered portion of the strap loop 28, for example of approximately mm in length, is covered by applying a plurality of special damblocks 26A and 26B each formed by fixing two mating interlocking half blocks 46-1 and 46-2 (FIG. 6) together with a machine screw 48.
  • the blocks 26 may, for example, have a length and width of 40 mm.
  • the height of the damblocks is equal to the height of the cast product, as seen in FIG. 4.
  • Two special blocks 26A are of the same cross section as blocks 26 and may, for example, each be approximately 30 mm in length.
  • a plurality of narrower special blocks 26B may be inserted as required to complete filling up the available space on the endless strap loop 28.
  • the interlocking halfblocks 46-1 and 46-2 are joined along a longidudinal vertical joint 50, extending perpendicular to the plane of the strap 28.
  • the joint 50 is offset from the center of the composite damblock to be positioned as far away as possible from the hot face, i.e. away from the face toward the casting zone C.
  • a channel or keyway 52 extends longitudinally of the joint surface of one block 46-1 intermediate the slot for strap 28 and the top surface of the block, and a longitudinal ridge or key 53 on the other block 46-2 mates into this keyway.
  • the screw 48 passes horizontally through the key 53 and threads into a socket in one half block, while its head 54 seats in a recess 55 located onthe side of the other half block away from the cast product, i.e.. away from the hot face.
  • the curved tension roller apparatus 32 is provided in order to force the damblocks 26 of both side dams l6 and 13 to be tight together in end-to-end abuting relationship along the casting zone C.
  • This apparatus 32 is located intermediate the cooling apparatus 30 and the input end of the casting zone and serves as deflecting means to deflect the travelling side dams along a smoothly curved path section S (HO. 3) which is convex in a direction toward the interior of the loop travelled by the side dams.
  • This path section S has sufficient convexity to force wedge-shaped spaces 56 to occur between adjacent damblocks along the convex curve above the tension apparatus 32.
  • the endless strap loop 28 permits all of the damblocks to slide on it. Thus, any available slack among all of the damblocks is accumulated by the spaces 56 along the curve S.
  • the strap 28 is positioned toward the interior of the side dam loop with respect to the longitudinal centerline of each block. Accordingly, the strap loop is near the widest part of the wedge-shaped spaces 56, and so a relatively short convex inward curve S effectively cumulatively absorbs the available slack space along the remainder of the entire side dam loop forcing blocks tightly together along the casting zone.
  • the rectangular bar product P is thereby cast without burrs. The resulting product is advantageous for use in subsequent rolling to form quality copper rod.
  • the side tension apparatus 32 includes a plurality of rollers 58 engaging each of the side dams 16 and 18, with means for individually guiding the dams.
  • this guiding means may be flanges 59 on the rollers.
  • a plurality of rollers 58 are mounted at spaced positions along a curve 61 convex upwards on a member 60 having a support pedestal 62 which is free to slide up and down in a bore 65 in a base 64. Springs 66 surrounding the pedestals 62 urge the mounting member 60 upwardly.
  • the base 64 is adjustably secured to framework 68 in the machine by set screws 70. Raising the base 64 applies greater upward spring force on the rollers 58 for adjusting the tension appparatus 32 to press the damblocks more tightly together along the casting zone C.
  • Keying means 72 may be provided to prevent the pedestals 62 from turning in the bores 65 while permitting the pedestals to slide freely up and down.
  • spring actuation of the tension roller apparatus it is also possible to incorporate counter weight actuation or fluid cylinder actuation into the design of the tension roller apparatus.
  • the leading and trailing ends of the curve 61 may be curved along a shorter radius than the central portion of this curve, as seen in FIG. 3, to accommodate sub stantial yet smooth curvature of the side dams while travelling over the tension apparatus 32.
  • a space 74 may often exist between the travelling side dams and the leading and trailing roller 58. If is normally advantageous to position the tension apparatus 32 closer to the output end of the machine than to the input end to ensure that the side dam loop will consistently hang in a smooth arcuate path between the tension apparatus and the input end.
  • the resulting suspended side dam loops help to pull the damblocks over the tension apparatus and help to maintain a consistent path of travel for the side dams during their return trip from the output end to the input end.
  • a rectangular copper bar product P is shown having a section 50 mm thick and 1 mm wide (about 2 inches by 4.3 inches) equivalent to 8.6 square inches in cross-sectional area and weighing 31.2 pounds per foot.
  • a casting speed of approximately 36 feet per minute is provided, thus producing 30 metric tons of cast product per hour.
  • the relatively cool damblocks also serve as heat sinks to help provide a rapid cooling quenching of the cast product as well as serving to conduct heat into the casting belts, as explained further above.
  • temperature sensing means 76 are provided connected by electrical leads 78 to a temperature control 80.
  • the temperature sensing means 76 are shown as being radiation responsive and being spaced away from the respective side dams 16 and 118. It is to be understood that there are temperature sensing means for each side dam l6 and 18 for individually controlling their temperatures.
  • a cylindrical protector and shield 77 protects the infra red radiation responsive sensor 76 which is aimed upwardly at the respective side dam loop which is travelling toward the machine input.
  • This tubular shield 77 may be tilted slightly away from vertical as shown to prevent dirt particles from dropping directly onto the sensor 76. In case any dirt enters the tube shield 77, it may be cleaned through a port 79.
  • the control 80 may include a gage 81 to indicate the damblock temperature which is maintained above 100C. but below 280C., the preferred range being 150C. to 200C. for the size of cast cooper product described above.
  • Circuit means 82 connected the control 80 to an actuator 84 for controlling a valve 86 which regulates the amount of cooling spray 40 being applied to the respective side dams l6 and 18.
  • the side dams are cooled to the desired temperature as they approach the input end of the machine.
  • there may be separate pipelines 43 and manifolds 39 for cooling each side dam and a separate actuator 84 and valve 86 individually controls the temperature of each side dam l6 and 18.
  • a manual actuator 88 may be provided so that the valve 86 can be controlled by hand, if desired.
  • the casting belts l0 and 20 may be coated with a carbonaceous material coating, and the inner faces of the damblocks. i.e. their faces toward the casting zone C, are liquid-spray coated with insulative material by means of a spray nozzle 90.
  • a liquid thermally insulative material is fed through a pipe line 91 to the nozzle to provide a spray pattern 92 which is aimed at the inner faces of the damblocks in both of the side dams 16 and 18.
  • the liquid-spray coating 92 being used in this embodiment is finely divided carbon, for instance lampblack or soot suspended in a quick-drying liquid vehicle, for instance such as trichlorethane.
  • This liquidspray coating 92 preferably includes a small amount of silicone resin.
  • the damblocks are above C. but below 280C. when they issue from the cooling chamber 34. Thus, they are dry of all liquid coolant, e.g., water, before they arrive in position for the spray coating 92. Moreover, fast drying of the damblocks at their controlled temperature permits the liquid-spray coating 92 to dry out and form a dry carbon containing coating on the inner faces of both side dams l6 and 18 before the side dams re-enter the input end of the casting zone.
  • liquid coolant e.g., water
  • the sum of the cross-sectional areas of the copper alloy damblocks in the two side dams in this embodiment of the invention is approximately equal to the cross-sectional area of the copper product being cast.
  • a highly effective cooling quenching action is provided.
  • the sum of the cross sections of the two damblocks is 50 square centimeters (about 7.8 square inches) and the cross section of the product is 55 square centimeters (about 8.6 square inches).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Improved casting method and side dam apparatus for use in twinbelt continuous metal casting machines are described particularly adapted for casting rectangular copper bar providing a casting speed almost double that obtained in prior twin-belt machines and a damblock lifetime which is more than doubled, while producing a more homogeneous and symmetrical casting structure. The side dams are formed by stringing slotted damblocks along the entire length of a flexible metal strap, except for end portions of the strap. An end-to-end weld forms an endless strap loop of accurately predetermined length, and special damblocks having two mating interlocking havles are inserted into the remaining space along the strap, whereby all blocks are free to slide on the strap but with little cumulative space between blocks, which are preferably made of a bronze alloy presenting better resistance to heat cracking and higher heat conductivity than in previous damblocks. During return travel from the output end of the machine to the input, the side dams are passed by tension apparatus which deflects them along a smoothly curved arc convex toward the interior of the side dam loop to take up any available slack, forcing the blocks tightly together in end abutting relationship along the casting zone, thus ensuring a cast product without burrs on the side surfaces. The damblocks are cooled by liquid sprays before re-entry into the machine.

Description

lJite Sttes Patent [191 Dompas et al.
[4 1 Feb. 11,1975
1 1 CASTHNG METHOD FOR TWIN-BELT CONTINUOUS METAL CASTING MACHINES [75] Inventors: John Mary-Anthony Dompas, Olen,
Belgium; Robert William l-lazelett,
Winooski, Vt.
[731 Assignee: Hazelett Strip Casting Corporation,
Winooski, Vt.
[22] Filed: Sept. 28, 1973 21 Appl. No.: 401,703
Primary Examiner-Al Lawrence Smith Assistant ExaminerR0bert C. Watson Attorney, Agent, or Firm-Bryan, Parmelee, Johnson & Bollinger [57] ABSTRACT lmproved casting method and side dam apparatus for use in twin-belt continuous metal casting machines are described particularly adapted for casting rectangular copper bar providing a casting speed almost double that obtained in prior twin-belt machines and a damblock lifetime which is more than doubled, while producing a more homogeneous and symmetrical casting structure. The side dams are formed by stringing slotted damblocks along the entire length of a flexible metal strap, except for end portions of the strap. An end-to-end weld forms an endless strap loop of accurately predetermined length, and special damblocks having two mating interlocking havles are inserted into the remaining space along the strap, whereby all blocks are free to slide on the strap but with little cumulative space between blocks, which are preferably made of a bronze alloy presenting better resistance to heat cracking and higher heat conductivity than in previous damblocks. During return travel from the output end of the machine to the input, the side dams are passed by tension apparatus which deflects them along a smoothly curved arc convex toward the interior of the side dam loop to take up any available slack, forcing the blocks tightly together in end abutting relationship along the casting zone, thus ensuring a cast product without burrs on the side surfaces. The damblocks are cooled by liquid sprays before re-entry into the machine.
7 Claims, 6 Drawing Figures PATENTEUFEBI H975 3865,17;
SHEET 1 OF 2 CONTROL CASTING METHOD FOR TWIN-BELT CONTINUOUS METAL CASTING MACHINES FIELD OF THE INVENTION The present invention relates to an improved casting method and side dam apparatus for use in twin-belt casting machines for continuously casting molten metal. In such casting machines, the upper and lower surfaces of a moving mold are defined by a pair of spaced endless flexible casting belts travelling along above and below the mold region. A pair of spaced endless flexible side dams travel along between the casting belts and define the two side surfaces of the moving mold. Each of these side dams is formed by a multiplicity of slotted blocks strung onto a flexible metal strap.
DESCRIPTION OF THE PRIOR ART In U.S. Pat. No. 2,904,860 edge dams are described comprising blocks of metal or refractory material provided with slots through which is passed a flexible metal strap. After the blocks were placed on the strap, it was welded into a continuous strap to form a side dam, as illustrated in FIG. 2 of that patent.
In accordance with that practice, the straps are difficult to weld with blocks on them, and there was slack in the strap, causing the blocks to be loose. Gaps could occur between loose blocks adjacent to the casting region causing problems with leakage of molten metal into the gaps and producing irregular sides or burrs on the cast product.
In US Pat. No. 3,036,348 the ends ofthe metal strap are shown in FIG. 16 joined together by screwing them to one of the blocks. Holes were drilled in the ends of the strap, and machine screws were passed through these holes into threaded sockets in this one block. Side dams were thereby made with less slack in the strap. However, the one block to which the ends of the strap were attached was fixed in position on the strap, while all of the other blocks were loose to slide somewhat on the strap. A non-uniform behavior of the travelling side dams resulted due to the fact that one damblock was attached while all of the other damblocks were free to move with respect to the strap. Also, stress was concentrated at the ends of the strap where the screw holes were located tending to cause cracking or failure of the strap at that location.
SUMMARY OF THE INVENTION In accordance with the present invention, the side dams are constructed by providing a metal strap with slotted damblocks strung onto the strap extending along almost the entire length of the strap. A predetermined small portion of each end of the strap, for example approximately 50 millimeters of each end, remains exposed. The two exposed ends of the strap are welded together to form an endless strap loop of accurately predetermined length. Then the exposed portion of the welded strap is covered with special dam blocks formed by fixing two mating interlocking half blocks together with a screw. In this manner, the strap of each side dam is constructed of accurately predetermined Iengthand welded into a continuous loop, and all of the blocks are free to slide on the strap to provide uniform conditions along the entire length of the side dam.
The damblocks are preferably made of a bronze alloy which presents a better resistance to heat cracking and a higher heat conductivity than the nickel-chromium steel damblocks previously used for casting copper. This alloy is Bronze Corson,"a trademark of Usines a Cuivre et a Zinc de Liege, and has a composition of 1.5 to 2.5 percent Nickel, 0.4 to 0.9 percent Silicon, 0.l to 0.3 percent Iron, 0.1 to 0.5 percent Chromium, balance Copper.
In the casting machine, the two side dams in travelling along their return path from the output to the input end of the machine are passed over arcuate tension roller apparatus to cause these side dams each to be deflected to travel along a smoothly curved arc which is convex in a direction toward the interior of the side darn loop. Any available slack or spacing between damblocks is taken up by this convex arcuate path curvature which is located away from the casting zone. Thereby the damblocks of both side dams are forced to be thoroughly tight together in end-to end abutting relationship along the casting zone, thus ensuring a uniform smooth sided cast product without burrs.
In addition, the arcuate tension roller apparatus advantageously serves to take up any slack which develops or accumulates during operation of the machine as a result of stretching of the strap or wearing of the ends of the damblocks. The damblocks thereby remain firmly pressed together in the casting zone during operation regardless of such stretching or wear.
The side dams are cooled to a temperature of approximately l50to 200C by water sprays positioned in the region between the output end of the casting machine and the arcuate tension roller apparatus. By virtue of use of the preferred bronze alloy material to make the damblocks and this cooling before their re-entry into the casting zone, the lifetime of the damblocks has more than doubled in casting copper product. Moreover, the cooling of the damblocks and, to a lesser extent, the preferred new damblock material, allow the casting speed for copper bar product to be almost doubled, while providing a more homogeneous and symmetrical cast copper structure than previously obtained.
The various objects, aspects and advantages of the present invention will be more fully understood from a consideration of the following description of a presently preferred embodiment of the invention.
DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of the casting zone, the lower casting belt and one of the side dams in a twin-belt metal casting machine embodying the invention;
FIG. 2 is an enlarged cross-sectional view taken along the plane 22 in FIG. 1 showing the tension roller apparatus which maintains the dam blocks firmly pressed one against the other in the casting zone;
FIG. 3 is an enlargement of a portion of FIG. 1 showing the arcuate tensioning roller apparatus for tightening the damblocks together in the casting zone;
FIG. 4 is an enlarged cross section taken through the plane 4-4 in the casting zone in FIG. 1 illustrating the manner in which the new damblock material and the precooling of the damblocks by water sprays provide a more homogeneous and symmetrical casting structure in the product being cast;
FIG. 5 is an enlarged side elevational view of a portion of a side dam showing the special damblocks which are secured together after the ends of the strap been welded together; and
FIG. 6 is a cross-sectional view taken along the plane 6-6 in FIG. showing the construction of the two mating interlocking half blocks on a strap.
DETAILED DESCRIPTION In a twin-belt continuous metal casting machine as partially shown in FIG. 1, the lower casting belt 10 is revolved around rolls l2 and 14. The roll 12 is located at the input end of the machine and the roll 14 at the output end. The moving casting mold is defined by the lower casting belt 10, by a pair of spaced side dams l6 and 18 (See also FIG. 4) and by an upper casting belt 20 as they are passed together along through a casting zone C. This upper casting belt 20 revolves around rolls 22 and 24 partially shown in FIG. 1. As the casting belts l0 and 20 are revolved, the two side dams l6 and 18 revolve with the belts, passing through the casting zone C and then returning from the output end to the input end of the machine along a path which is located away from the casting zone, as shown in FIG 1. Although the casting zone is shown horizontal in FIG. 1, for convenience of illustration, in operation for casting the product described the output end is positioned lower than the input end.
Molten metal, in this example being copper, is introduced into the input end and is solidified to form a cast product P ((FIG. 4) which is delivered from the output end of the machine. The cooling of the molten metal in the casting zone is accomplished by the application of high velocity liquid coolant to the casting belts 10 and 20, for example, as explained in US. Pat. Nos. 3,036,348 and 3,041,686.
In addition, a very effective cooling action is provided by the side dams l6 and 18 each of which includes a multiplicity of slotted bronze alloy damblocks 26 (FIG. 4) strung on a flexible endless metal strap 28. As the side dams l6 and 18 are returning from the output end of the casting zone, they are passed through weater spray cooling apparatus 30 positioned intermediate the output end and tension roller apparatus 32. This roller apparatus 32 will be explained in detail further below.
The side dam cooling apparatus 30 includes a cooling chamber 34 surrounded by a metal box 35 and having an entrance and exit openings 37 and 38 for passage of the two side dams through this chamber. Within this chamber 34 there are a plurality of spray manifolds 39 which have orifices for projecting multiple liquid sprays 40 onto the individual damblocks 26. A pipeline 43 supplies the cooling liquid, preferably water, under pressure to the manifolds 39, and a drain pipe drains the liquid from chamber 34. An exhaust duct 46 removes the liquid vapor, e.g., steam which is generated when the sprays 40 strike the hot side dams. The spray cooling apparatus 30 serves to cool the side dams to a temperature hot enough to dry off the water from the damblocks before their re-entry into the input end of the machine, i.e.. above the boiling point of water, but not hot enough to harm the coating which may be applied to the damblocks. The damblocks are cooled down below 280C. but above the boiling point of wa ter, the preferred range being approximately l5()C. to 200C.
The bronze alloy damblocks 26, preferably of Bronze Corson alloy, as described above, have a high heat conductivity. Thus, as shown in FIG. 4, the damblocks conduct heat rapidly away from the two side surfaces 41 of the cast product P. The cooling of the damblocks by the apparatus 30 and, to a lesser extent, the alloy material enable the casting speed to be almost double that previously obtained for similar sizes of cast copper product. Moreover, by virtue of the use of this alloy material and the cooling of the damblocks before their re-entry into the casting zone, the lifetime of the damblocks has been more than doubled in casting copper product.
The rate of heat conduction along the generally indicated heat conduction paths H from the east side surfaces 41 through the damblocks 26 into the casting belts l0 and 20 is commensurate with the rate at which heat is conducted directly away from the top and bottom surface 42 of the cast product P into the casting belts. Because the rates of heat conduction away from the four surfaces 41, 41, 42, 42 of the rectangular cast product P are commensurate with each other, more homogeneous and symmetrical cast structure is obtained than previously obtained when casting rectangular bar copper sections of similar sizes. The lines L of crystal growth, if any, extend inwardly from the four corners of the cross section at angles of approximately 45 from the surfaces 41 and 42, indicating a symmetrical cast structure. Usually, the crystal structure produced is equiaxial because of the quench effect provided by the good cooling action achieved.
The side dams 16 and 18 are each constructed by sliding the slotted damblocks 26 onto the strap 28. A predetermined small portion X of each end of the strap, for example approximately 50 millimeters of each end, remain exposed. Two exposed strap ends are welded together at a joint 44 which is smoothed by grinding to form an endless strap loop of accurately predetermined length. The yet uncovered portion of the strap loop 28, for example of approximately mm in length, is covered by applying a plurality of special damblocks 26A and 26B each formed by fixing two mating interlocking half blocks 46-1 and 46-2 (FIG. 6) together with a machine screw 48. The blocks 26 may, for example, have a length and width of 40 mm. The height of the damblocks is equal to the height of the cast product, as seen in FIG. 4. When thicker or thinner cast product is desired to be produced, then other side dams having other sizes of dam blocks are used. Two special blocks 26A are of the same cross section as blocks 26 and may, for example, each be approximately 30 mm in length. A plurality of narrower special blocks 26B may be inserted as required to complete filling up the available space on the endless strap loop 28.
The interlocking halfblocks 46-1 and 46-2 are joined along a longidudinal vertical joint 50, extending perpendicular to the plane of the strap 28. The joint 50 is offset from the center of the composite damblock to be positioned as far away as possible from the hot face, i.e. away from the face toward the casting zone C. A channel or keyway 52 extends longitudinally of the joint surface of one block 46-1 intermediate the slot for strap 28 and the top surface of the block, and a longitudinal ridge or key 53 on the other block 46-2 mates into this keyway. The screw 48 passes horizontally through the key 53 and threads into a socket in one half block, while its head 54 seats in a recess 55 located onthe side of the other half block away from the cast product, i.e.. away from the hot face.
In order to force the damblocks 26 of both side dams l6 and 13 to be tight together in end-to-end abuting relationship along the casting zone C, the curved tension roller apparatus 32 is provided. This apparatus 32 is located intermediate the cooling apparatus 30 and the input end of the casting zone and serves as deflecting means to deflect the travelling side dams along a smoothly curved path section S (HO. 3) which is convex in a direction toward the interior of the loop travelled by the side dams. This path section S has sufficient convexity to force wedge-shaped spaces 56 to occur between adjacent damblocks along the convex curve above the tension apparatus 32. The endless strap loop 28 permits all of the damblocks to slide on it. Thus, any available slack among all of the damblocks is accumulated by the spaces 56 along the curve S.
Also, the strap 28 is positioned toward the interior of the side dam loop with respect to the longitudinal centerline of each block. Accordingly, the strap loop is near the widest part of the wedge-shaped spaces 56, and so a relatively short convex inward curve S effectively cumulatively absorbs the available slack space along the remainder of the entire side dam loop forcing blocks tightly together along the casting zone. The rectangular bar product P is thereby cast without burrs. The resulting product is advantageous for use in subsequent rolling to form quality copper rod.
The side tension apparatus 32 includes a plurality of rollers 58 engaging each of the side dams 16 and 18, with means for individually guiding the dams. For example, this guiding means may be flanges 59 on the rollers. A plurality of rollers 58 are mounted at spaced positions along a curve 61 convex upwards on a member 60 having a support pedestal 62 which is free to slide up and down in a bore 65 in a base 64. Springs 66 surrounding the pedestals 62 urge the mounting member 60 upwardly. The base 64 is adjustably secured to framework 68 in the machine by set screws 70. Raising the base 64 applies greater upward spring force on the rollers 58 for adjusting the tension appparatus 32 to press the damblocks more tightly together along the casting zone C. Keying means 72 may be provided to prevent the pedestals 62 from turning in the bores 65 while permitting the pedestals to slide freely up and down. As alternatives to spring actuation of the tension roller apparatus, it is also possible to incorporate counter weight actuation or fluid cylinder actuation into the design of the tension roller apparatus.
The leading and trailing ends of the curve 61 may be curved along a shorter radius than the central portion of this curve, as seen in FIG. 3, to accommodate sub stantial yet smooth curvature of the side dams while travelling over the tension apparatus 32. Thus, a space 74 may often exist between the travelling side dams and the leading and trailing roller 58. If is normally advantageous to position the tension apparatus 32 closer to the output end of the machine than to the input end to ensure that the side dam loop will consistently hang in a smooth arcuate path between the tension apparatus and the input end. The resulting suspended side dam loops help to pull the damblocks over the tension apparatus and help to maintain a consistent path of travel for the side dams during their return trip from the output end to the input end.
As an example of the advantageous use of this invention, a rectangular copper bar product P is shown having a section 50 mm thick and 1 mm wide (about 2 inches by 4.3 inches) equivalent to 8.6 square inches in cross-sectional area and weighing 31.2 pounds per foot. A casting speed of approximately 36 feet per minute is provided, thus producing 30 metric tons of cast product per hour.
The relatively cool damblocks also serve as heat sinks to help provide a rapid cooling quenching of the cast product as well as serving to conduct heat into the casting belts, as explained further above. In order to control the temperature of these side dams, temperature sensing means 76 are provided connected by electrical leads 78 to a temperature control 80. The temperature sensing means 76 are shown as being radiation responsive and being spaced away from the respective side dams 16 and 118. It is to be understood that there are temperature sensing means for each side dam l6 and 18 for individually controlling their temperatures.
A cylindrical protector and shield 77 protects the infra red radiation responsive sensor 76 which is aimed upwardly at the respective side dam loop which is travelling toward the machine input. This tubular shield 77 may be tilted slightly away from vertical as shown to prevent dirt particles from dropping directly onto the sensor 76. In case any dirt enters the tube shield 77, it may be cleaned through a port 79.
The control 80 may include a gage 81 to indicate the damblock temperature which is maintained above 100C. but below 280C., the preferred range being 150C. to 200C. for the size of cast cooper product described above. Circuit means 82 connected the control 80 to an actuator 84 for controlling a valve 86 which regulates the amount of cooling spray 40 being applied to the respective side dams l6 and 18. Thus, the side dams are cooled to the desired temperature as they approach the input end of the machine. it is understood that there may be separate pipelines 43 and manifolds 39 for cooling each side dam, and a separate actuator 84 and valve 86 individually controls the temperature of each side dam l6 and 18. A manual actuator 88 may be provided so that the valve 86 can be controlled by hand, if desired.
The casting belts l0 and 20 may be coated with a carbonaceous material coating, and the inner faces of the damblocks. i.e. their faces toward the casting zone C, are liquid-spray coated with insulative material by means of a spray nozzle 90. A liquid thermally insulative material is fed through a pipe line 91 to the nozzle to provide a spray pattern 92 which is aimed at the inner faces of the damblocks in both of the side dams 16 and 18. The liquid-spray coating 92 being used in this embodiment is finely divided carbon, for instance lampblack or soot suspended in a quick-drying liquid vehicle, for instance such as trichlorethane. This liquidspray coating 92 preferably includes a small amount of silicone resin.
The damblocks are above C. but below 280C. when they issue from the cooling chamber 34. Thus, they are dry of all liquid coolant, e.g., water, before they arrive in position for the spray coating 92. Moreover, fast drying of the damblocks at their controlled temperature permits the liquid-spray coating 92 to dry out and form a dry carbon containing coating on the inner faces of both side dams l6 and 18 before the side dams re-enter the input end of the casting zone.
It is noted that the sum of the cross-sectional areas of the copper alloy damblocks in the two side dams in this embodiment of the invention is approximately equal to the cross-sectional area of the copper product being cast. Thus, a highly effective cooling quenching action is provided. In this embodiment, the sum of the cross sections of the two damblocks is 50 square centimeters (about 7.8 square inches) and the cross section of the product is 55 square centimeters (about 8.6 square inches).
We claim:
1. The improved method of casting molten metal in a twin-belt metal casting machine wherein two side dams each revolve in a loop passing along a casting zone from its input end between a pair of revolving casting belts to define a moving mold and wherein the loop of the travelling side dams returns from the output end to the input end of the casting zone along a path which is located away from the casting zone, said improved method comprising the steps of constructing a pair of endless side dams each having a multiplicity of metal damblocks strung in end-to-end relationship on a flexible metal strap loop, allowing every damblock on each strap to be free to slide relative to its strap, and as both of the side dams are travelling from the output end to the input end deflecting them to travel along a smoothly curved path section which is convex toward the interior of the side dam loop, said convex curved path section having sufficient convexity for forcing wedge-shaped spaces to occur between adjacent damblocks on said curved path section for tightly pressing the damblocks together in end-to-end abutting relationship along both sides of the casting zone, thereby ensuring that the molten metal is cast in the moving mold without burrs.
2. The improved method of casting molten metal as claimed in claim 1, in which the strap is positioned toward the interior of the side dam loop with respect to the longitudinal centerline of each block so that the strap is near the widest part of the wedge-shaped spaces on said convex curved path section for effectively absorbing any available slack along the entire remainder of the side dam loop.
3. The improved method of casting molten metal as claimed in claim 1, comprising the additional step of liquid spray cooling the damblocks in both side dams before their re-entry into the casting zone.
4. The improved method of casting molten metal as claimed in claim 3, comrpising the further steps of forming the damblocks from bronze alloy and liquid spray cooling them to a temperature of approximately C. to 200C before their re-entry into the casting zone.
5. The improved method of casting molten metal as claimed in claim 1, in which said pair of side dams are constructed by stringing slotted damblocks along the entire length of each flexible metal strap except for relatively short end portions of the strap, welding the exposed end portions of the strap together end-to-end, and then applying vertically split damblocks onto the resulting strap loop to fill up the available space provided by the exposed strap.
6. The improved method of casting molten metal as claimed in claim 1, in which the travelling side dams are resiliently deflected along said convex curved path section.
7. The improved method of casting molten metal as claimed in claim 3, in which said bronze alloy has the composition 1.5 to 2.5 percent Ni, 0.4 to 0.9 percent Si, 0.1 to 0.3 percent Fe, 0.1 to 0.5 percent Cr, balance Cu.

Claims (7)

1. The improved method of casting molten metal in a twin-belt metal casting machine wherein two side dams each revolve in a loop passing along a casting zone from its input end between a pair of revolving casting belts to define a moving mold and wherein the loop of the travelling side dams returns from the output end to the input end of the casting zone along a path which is located away from the casting zone, said improved method comprising the steps of constructing a pair of endless side dams each having a multiplicity of metal damblocks strung in end-toend relationship on a flexible metal strap loop, allowing every damblock on each strap to be free to slide relative to its strap, and as both of the side dams are travelling from the output end to the input end deflecting them to travel along a smoothly curved Path section which is convex toward the interior of the side dam loop, said convex curved path section having sufficient convexity for forcing wedge-shaped spaces to occur between adjacent damblocks on said curved path section for tightly pressing the damblocks together in end-to-end abutting relationship along both sides of the casting zone, thereby ensuring that the molten metal is cast in the moving mold without burrs.
2. The improved method of casting molten metal as claimed in claim 1, in which the strap is positioned toward the interior of the side dam loop with respect to the longitudinal centerline of each block so that the strap is near the widest part of the wedge-shaped spaces on said convex curved path section for effectively absorbing any available slack along the entire remainder of the side dam loop.
3. The improved method of casting molten metal as claimed in claim 1, comprising the additional step of liquid spray cooling the damblocks in both side dams before their re-entry into the casting zone.
4. The improved method of casting molten metal as claimed in claim 3, comrpising the further steps of forming the damblocks from bronze alloy and liquid spray cooling them to a temperature of approximately 150*C. to 200*C before their re-entry into the casting zone.
5. The improved method of casting molten metal as claimed in claim 1, in which said pair of side dams are constructed by stringing slotted damblocks along the entire length of each flexible metal strap except for relatively short end portions of the strap, welding the exposed end portions of the strap together end-to-end, and then applying vertically split damblocks onto the resulting strap loop to fill up the available space provided by the exposed strap.
6. The improved method of casting molten metal as claimed in claim 1, in which the travelling side dams are resiliently deflected along said convex curved path section.
7. The improved method of casting molten metal as claimed in claim 3, in which said bronze alloy has the composition 1.5 to 2.5 percent Ni, 0.4 to 0.9 percent Si, 0.1 to 0.3 percent Fe, 0.1 to 0.5 percent Cr, balance Cu.
US401703A 1973-09-28 1973-09-28 Casting method for twin-belt continuous metal casting machines Expired - Lifetime US3865176A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US401703A US3865176A (en) 1973-09-28 1973-09-28 Casting method for twin-belt continuous metal casting machines
ZA00744880A ZA744880B (en) 1973-09-28 1974-07-30 Casting method and side dam apparatus for twin-belt continuous metal casting machines
CA206,178A CA1034737A (en) 1973-09-28 1974-08-02 Casting method and side dam apparatus for twin-belt continuous metal casting machines
AU72126/74A AU492668B2 (en) 1973-09-28 1974-08-08 Casting method and side dam apparatus for twin-belt continuous metal casting machines
ZM135/74A ZM13574A1 (en) 1973-09-28 1974-08-28 Method and apparatus for casting molten metal
GB40101/74A GB1487232A (en) 1973-09-28 1974-09-13 Casting method and twin-belt continuous metal casting machine
BR7819/74A BR7407819D0 (en) 1973-09-28 1974-09-20 PERFECT PROCESS FOR FUSING METAL MOLDING AND MOLDING APPLIANCE
CH1286974A CH591912A5 (en) 1973-09-28 1974-09-24
BE148828A BE820268A (en) 1973-09-28 1974-09-24 CONTINUOUS METAL MOLDING PROCESS AND APPARATUS
DE2445912A DE2445912C2 (en) 1973-09-28 1974-09-26 Device for guiding the side dams in a continuous casting machine
SE7412232A SE403261B (en) 1973-09-28 1974-09-27 KIT AND APPLIANCE FOR CONTINUOUS METAL CASTING
JP49111391A JPS5823181B2 (en) 1973-09-28 1974-09-27 Continuous metal casting equipment
FR7432728A FR2246333B1 (en) 1973-09-28 1974-09-27
IT27883/74A IT1022453B (en) 1973-09-28 1974-09-30 CASTING METHOD AND LATERAL EMBEDDING EQUIPMENT FOR DOUBLE BELT CONTINUOUS METAL CASTING MACHINES
US05/522,334 US3955615A (en) 1973-09-28 1974-11-11 Twin-belt continuous casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US401703A US3865176A (en) 1973-09-28 1973-09-28 Casting method for twin-belt continuous metal casting machines

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/522,334 Division US3955615A (en) 1973-09-28 1974-11-11 Twin-belt continuous casting apparatus
US54821075A Division 1975-02-10 1975-02-10

Publications (1)

Publication Number Publication Date
US3865176A true US3865176A (en) 1975-02-11

Family

ID=23588858

Family Applications (1)

Application Number Title Priority Date Filing Date
US401703A Expired - Lifetime US3865176A (en) 1973-09-28 1973-09-28 Casting method for twin-belt continuous metal casting machines

Country Status (13)

Country Link
US (1) US3865176A (en)
JP (1) JPS5823181B2 (en)
BE (1) BE820268A (en)
BR (1) BR7407819D0 (en)
CA (1) CA1034737A (en)
CH (1) CH591912A5 (en)
DE (1) DE2445912C2 (en)
FR (1) FR2246333B1 (en)
GB (1) GB1487232A (en)
IT (1) IT1022453B (en)
SE (1) SE403261B (en)
ZA (1) ZA744880B (en)
ZM (1) ZM13574A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276921A (en) * 1978-04-06 1981-07-07 Metallurgie Hoboken-Overpelt Process and apparatus for the continuous casting of metal
US4367783A (en) * 1980-10-27 1983-01-11 Hazelett Strip-Casting Corporation Method and apparatus for continuous casting of metal under controlled load conditions
US4537243A (en) * 1980-10-22 1985-08-27 Hazelett Strip-Casting Corporation Method of and apparatus for steam preheating endless flexible casting belt
EP0159215A2 (en) * 1984-02-28 1985-10-23 Sumitomo Metal Industries, Ltd. Loop type continuous metal casting machine
US4586559A (en) * 1981-07-09 1986-05-06 Hazelett Strip-Casting Corporation Process and apparatus for casting a strip with laterally extending lugs
EP0252008A2 (en) * 1986-07-01 1988-01-07 Larex Ag Side dam for the side closure of the casting space in a twin-belt continuous-casting machine, and process for the maintenance of the continuous-casting machine
US4934441A (en) * 1986-12-03 1990-06-19 Hazelett Strip-Casting Corporation Edge dam tensioning and sealing method and apparatus for twin-belt continuous casting machine
US5363902A (en) * 1992-12-31 1994-11-15 Kaiser Aluminum & Chemical Corporation Contained quench system for controlled cooling of continuous web
US5697423A (en) * 1994-03-30 1997-12-16 Lauener Engineering, Ltd. Apparatus for continuously casting
US5964276A (en) * 1998-07-24 1999-10-12 Hazelett Strip-Casting Corporation Edge-DAM blocks having abuttable upstream and downstream faces meshing with each other in mating relationship for continuous casting of molten metals--methods and apparatus
US20030159763A1 (en) * 2002-02-15 2003-08-28 Thomas Helmenkamp Age-hardenable copper alloy
US20110020972A1 (en) * 2009-07-21 2011-01-27 Sears Jr James B System And Method For Making A Photovoltaic Unit
US20110036530A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures
US20110036531A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU82346A1 (en) * 1980-04-08 1981-12-02 Liege Usines Cuivre Zinc IMPROVEMENTS ON SHORE BLOCKS FOR CONTINUOUS CASTING OF COPPER BARS
JPH0636965B2 (en) * 1987-01-27 1994-05-18 三菱重工業株式会社 Belt type continuous casting machine
DE19852275C2 (en) * 1998-11-13 2002-10-10 Sms Demag Ag Belt casting plant and method
JP2009262222A (en) * 2008-04-30 2009-11-12 Sumitomo Electric Ind Ltd Dam block for gap adjustment
JP5093675B2 (en) * 2008-05-07 2012-12-12 住友電気工業株式会社 Continuous casting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904860A (en) * 1955-12-27 1959-09-22 Hazelett Strip Casting Corp Metal casting method and apparatus
US3036348A (en) * 1958-03-17 1962-05-29 Hazelett Strip Casting Corp Metal casting methods and apparatus
US3509937A (en) * 1967-06-02 1970-05-05 Continental Oil Co Continuous horizontal casting
US3747666A (en) * 1970-05-08 1973-07-24 I Gyongyos Machine with articulated mold sets for continuous casting of non-ferrous metals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2904860A (en) * 1955-12-27 1959-09-22 Hazelett Strip Casting Corp Metal casting method and apparatus
US3036348A (en) * 1958-03-17 1962-05-29 Hazelett Strip Casting Corp Metal casting methods and apparatus
US3509937A (en) * 1967-06-02 1970-05-05 Continental Oil Co Continuous horizontal casting
US3747666A (en) * 1970-05-08 1973-07-24 I Gyongyos Machine with articulated mold sets for continuous casting of non-ferrous metals

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276921A (en) * 1978-04-06 1981-07-07 Metallurgie Hoboken-Overpelt Process and apparatus for the continuous casting of metal
US4537243A (en) * 1980-10-22 1985-08-27 Hazelett Strip-Casting Corporation Method of and apparatus for steam preheating endless flexible casting belt
US4367783A (en) * 1980-10-27 1983-01-11 Hazelett Strip-Casting Corporation Method and apparatus for continuous casting of metal under controlled load conditions
US4586559A (en) * 1981-07-09 1986-05-06 Hazelett Strip-Casting Corporation Process and apparatus for casting a strip with laterally extending lugs
EP0159215A2 (en) * 1984-02-28 1985-10-23 Sumitomo Metal Industries, Ltd. Loop type continuous metal casting machine
EP0159215A3 (en) * 1984-02-28 1986-06-11 Sumitomo Metal Industries, Ltd. Loop type continuous metal casting machine
US4620583A (en) * 1984-02-28 1986-11-04 Sumitomo Metal Industries, Ltd. Loop type continuous metal casting machine
EP0252008A2 (en) * 1986-07-01 1988-01-07 Larex Ag Side dam for the side closure of the casting space in a twin-belt continuous-casting machine, and process for the maintenance of the continuous-casting machine
EP0252008A3 (en) * 1986-07-01 1988-10-05 Larex Ag Side dam for the side closure of the casting space in a twin-belt continuous-casting machine, and process for the maintenance of the continuous-casting machine
US4794978A (en) * 1986-07-01 1989-01-03 Larex Ag Side dam for a continuous casting machine
US4934441A (en) * 1986-12-03 1990-06-19 Hazelett Strip-Casting Corporation Edge dam tensioning and sealing method and apparatus for twin-belt continuous casting machine
US5363902A (en) * 1992-12-31 1994-11-15 Kaiser Aluminum & Chemical Corporation Contained quench system for controlled cooling of continuous web
US5697423A (en) * 1994-03-30 1997-12-16 Lauener Engineering, Ltd. Apparatus for continuously casting
US5839500A (en) * 1994-03-30 1998-11-24 Lauener Engineering, Ltd. Apparatus for improving the quality of continously cast metal
US6019159A (en) * 1994-03-30 2000-02-01 Golen Aluminum Company Method for improving the quality of continuously cast metal
US6089308A (en) * 1994-03-30 2000-07-18 Nichols Aluminum Method and apparatus for improving the quality of continuously cast metal
US5964276A (en) * 1998-07-24 1999-10-12 Hazelett Strip-Casting Corporation Edge-DAM blocks having abuttable upstream and downstream faces meshing with each other in mating relationship for continuous casting of molten metals--methods and apparatus
EP0974413A1 (en) * 1998-07-24 2000-01-26 Hazelett Strip-Casting Corporation Method and apparatus for twin belt casting, using keyed edge-dam blocks
US20030159763A1 (en) * 2002-02-15 2003-08-28 Thomas Helmenkamp Age-hardenable copper alloy
US20080240974A1 (en) * 2002-02-15 2008-10-02 Thomas Helmenkamp Age-hardenable copper alloy
US20110020972A1 (en) * 2009-07-21 2011-01-27 Sears Jr James B System And Method For Making A Photovoltaic Unit
US7888158B1 (en) 2009-07-21 2011-02-15 Sears Jr James B System and method for making a photovoltaic unit
US20110036530A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures
US20110036531A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures

Also Published As

Publication number Publication date
AU7212674A (en) 1976-02-12
FR2246333B1 (en) 1978-06-16
ZA744880B (en) 1975-08-27
GB1487232A (en) 1977-09-28
BE820268A (en) 1975-01-16
SE403261B (en) 1978-08-07
CH591912A5 (en) 1977-10-14
CA1034737A (en) 1978-07-18
JPS5823181B2 (en) 1983-05-13
JPS5061332A (en) 1975-05-26
DE2445912C2 (en) 1983-12-22
DE2445912A1 (en) 1975-04-17
SE7412232L (en) 1975-04-01
IT1022453B (en) 1978-03-20
ZM13574A1 (en) 1975-05-21
BR7407819D0 (en) 1975-07-29
FR2246333A1 (en) 1975-05-02

Similar Documents

Publication Publication Date Title
US3865176A (en) Casting method for twin-belt continuous metal casting machines
US3955615A (en) Twin-belt continuous casting apparatus
JP4423238B2 (en) Method and apparatus for casting metal strip and injector technology used therefor
US2904860A (en) Metal casting method and apparatus
US3511305A (en) Method for cooling a continuous casting
KR100533125B1 (en) Ferrous strip strip casting method and casting device
US2978761A (en) Continuous casting apparatus
ES422534A1 (en) Apparatus for cooling a continuously cast strand incorporating coolant spray nozzles providing controlled spray pattern
US4155396A (en) Method and apparatus for continuously casting copper bar product
KR101557907B1 (en) Adjustable side dam for continuous casting apparatus
WO1995013889A1 (en) Casting stainless steel strip on surface with specified roughness
US4239081A (en) Side dam apparatus for use in twin-belt continuous casting machines
US3399716A (en) Method for cooling hot metal, especially continuously cast metal
US5238050A (en) Strip casting
US4260008A (en) Side dam apparatus for use in twin-belt continuous casting machines
US3989093A (en) Continuous casting plant for slabs
US3572423A (en) Cooling device for castings in continuous casting installations for heavy metals or alloys thereof,particularly steel
US3823762A (en) Roll-couple, continuous-strip caster
US4751960A (en) Apparatus and method for cooling a continuously cast metal product
JPS62174326A (en) Flange cooler for shape material
CA1148718A (en) Side dam apparatus for use in twin-belt continuous casting machines
GB2070479A (en) Apparatus for casting accumulator grids
JPH0310407B2 (en)
US4664174A (en) Twin-belt continuous caster
CA1148717A (en) Side dam apparatus for use in twin-belt continuous casting machines