US3861918A - Synthetic silver halide emulsion binder - Google Patents

Synthetic silver halide emulsion binder Download PDF

Info

Publication number
US3861918A
US3861918A US339825A US33982573A US3861918A US 3861918 A US3861918 A US 3861918A US 339825 A US339825 A US 339825A US 33982573 A US33982573 A US 33982573A US 3861918 A US3861918 A US 3861918A
Authority
US
United States
Prior art keywords
monomer
product
silver halide
emulsion
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US339825A
Inventor
Maurice J Fitzgerald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Priority to US339825A priority Critical patent/US3861918A/en
Application granted granted Critical
Publication of US3861918A publication Critical patent/US3861918A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • G03C1/053Polymers obtained by reactions involving only carbon-to-carbon unsaturated bonds, e.g. vinyl polymers

Definitions

  • the present invention is directed to photosensitive silver halide emulsions wherein photosensitive silver halide crystals are disposed in a watersoluble synthetic binder comprising a film-forming halogenated styrene polymer having in its structure repeating units represented by the formula set forth above.
  • film-forming is intended to designate a molecular weight sufficiently high to form a film
  • hydrosols for example, a molecular weight comparable to that of acrylic acid itself. and including a halogenated styrene hardening component.
  • These hydrosols are claimed to be useful for addition to photographic gelatin solutions in order to impart flexibility and other advantageous properties to the hydrophilic colloid. However, they are not described as having the properties necessary to serve as a binder for photographic silver halide emulsions in the absence of gelatin.
  • cit-J gelatin i.e., around 15,000.
  • Such'polymers have been found to substantially meet all the basic requirements for a gelatin substitute, as delineated above.
  • the emulsions of the present invention are more stable against degradation than gelatin; particularly against hydrolysis in acidic or basic media of the polymeric backbone. This stability is due, in large part, to the carbon-carbon linkages in the polymeric.
  • R R and X have the above-indicated definitions and which are contemplated as being suitable for providing the halogenated styrene polymers, mention may be made of the following:
  • the instant polymers are interpolymers or copolymers having, in addition to the repeating units defined above, any compatible repeating unit or various repeating units which are not detrimental to photographic silver halide emulsions and which allow the resultant polymer to he soluble in water.
  • Examples of'typical comonomers which may be employed in forming the polymers suitable for use in the present invention include the following ethylenically-unsaturated monomers:
  • CH CH-COOH acrylic acid 4 12.
  • cH c--cooa methacrylic acid 13.
  • CH - C--COOH V chloroacrylic acid,
  • CH CHCOOCH,', 4 methyl acrylate e cH ':-coo-ctt cH ethyl methacrylate f1 22
  • BrCH: CHCOO-CH(-CH 2 isopropyl-B-bromoacrylate n 24.
  • CH CH-COOCH CH OH ,B-hydroxyethyl acrylate 26.
  • CH;-CHCOOCH CH CH OH y-hydroxypropyl acrylate 2 7 CH CCOO-CH CI'K28 I OH Z-hydroxy-n-propyl methacry labe- 28.
  • CH2 CHCO--NHCH2CH,
  • EXAMPLE 1 17.2 copolymer of acrylamide/p-fluorostyrene 7.11 g. of acrylamide, 1.22 g. of p-ifluorostyrene (commercially available from PCR, lnc., Gainesville, Fla. under the designation! 1280) and 0.01 g. of 2,2-
  • azobi s-I2-rnethyl propionitrile] catalyst were dissolved in 80 ml. of dimethylformamide. This solution was polymerized in a sealed tube at 65 C. for .12 hours under N The result was a white paste which was filtered and dried under vacuum at 45 C. for 12 hours.
  • EXAMPLE lll 27:2 copolymer of acrylamide/p-chlorostyrene The procedure of Example 1 was followed, except that 2.77 g. of p-chlorostyrene (commercially available from Polysciences, lnc., Warrington, Pa. was employed as the halogenated styrene monomer.
  • EXAMPLE IV 13 copolymer of acrylamide/ododostyrene
  • o-iodostyrene commercially available from Polysciences, lnc., Warrington, Pa. was employed as the halogenated styrene monomer.
  • EXAMPLE V 15:1 copolymer of acrylamide/pentafluorostyrene
  • the procedure of Example 1 was followed, except that 1.94 g.of 2,3,4,5,o-pentafluorostyrene (commercially available from Aldrich Chemical Company, Inc., Milwaukee, Wis. under the designation 10,396-9) was employed as the halogenated styrene monomer.
  • EXAMPLE Vl 22:1 copolymer of acrylamide/2-(pentafluorophenyl)-1-propene The procedure of Example 1 was followed except that 2.08 g. of 2-(pentafluorophenyl)-l-propene (commercially available from Aldrich Chemical Company, Inc., Milwaukee, Wis., under the designation 10,338-1) was employed as the halogenated styrene monomer.
  • a water-soluble silver salt such as silver nitrate, may be reacted with at least one water-soluble halide, such as potassium, sodium, or ammonium bromide, preferably together with potassium, sodium or ammonium iodide, in an aqueous solution of the polymer.
  • the emulsion of silver halide thus-formed contains water-soluble salts, as a by-product of the double decomposition reaction, in addition to any unreacted excess of the initial salts.
  • the emulsion may be centrifuged and washed with distilled water to a low conductance. The emulsion may then be redispersed in distilled water.
  • a solution of bodying or thickening polymer such as polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. l. duPont deNemours & Company, Wilmington, Del., designated Type 72-60).
  • a surfactant such as dioctyl ester of sodium sulfosuccinic acid, designated Aerosol OT, (commercially available from American Cyanamid Company, New York, N.Y.), may be added and the emulsion coated onto a film base of cellulose triacetate sheet having a coating of hardened gelatin.
  • the soluble salts may be removed by adding to the emulsion a solution of polyacid, such as 1:1 ethylene: maleic acid copolymer, and lowering the pH to below 5, thereby bringing about precipitation of the polyacid carrying the silver halide grains along with the precipitate.
  • the resulting precipitate may then be washed and resuspended by redissolving the polyacid at pH 6-7.
  • the emulsions may be chemically sensitized with sulfur compounds such as sodium thiosulfate or thiourea, with reducing substances such stannous chloride; with salts of noble metals such as gold, rhodium and platinum; with amines and polyamines; with quaternary ammonium compounds such as alkyl a-picolinium bromide; and with polyethylene glycols and derivatives thereof.
  • sulfur compounds such as sodium thiosulfate or thiourea
  • reducing substances such stannous chloride
  • salts of noble metals such as gold, rhodium and platinum
  • with amines and polyamines with quaternary ammonium compounds such as alkyl a-picolinium bromide
  • polyethylene glycols and derivatives thereof may be chemically sensitized with sulfur compounds such as sodium thiosulfate or thiourea, with reducing substances such stannous chloride; with salts of noble metals such as gold, rh
  • the emulsions of the present invention may also be optically sensitized with cyanine and merocyanine dyes.
  • suitable antifoggants, toners, restrainers, developers, accelerators, preservatives, coating aids, plasticizers, hardeners and/or stabilizers may be included in the composition of the emulsion.
  • the emulsions of this invention may be coated and processed according to conventional procedures of the art. They may be coated, for example, onto various types of rigid or flexible supports, such as glass, paper, metal, and polymeric films of both the synthetic type and those derived from naturally occurring products.
  • Suitable subcoats may be provided on the supports, for example a layer of gelatin, if necessary or desirable for adherence, as is well known in the art.
  • the polymers employed in the practice of the instant invention preferably contain from l-80 mole percent of the above-indicated repeating units.
  • the specific amount employed may be selected by the operator depending upon the grain particle size and habit desired.
  • the instant copolymers may be made to be compatible with all watersoluble bodying polymers. Emulsions made from these novel polymers, may be bodied with any water-soluble polymers, overcoming the disadvantage encountered with gelatin which is only compatible with a very few polymers in a most limited pH range.
  • gelatin polyvinyl alcohol, polyacrylamide, polyalkylacrylamides, polyvinyl pyrrolidone, polymethacrylamidoacetamide, vinyl alcohol/N-vinylpyrrolidne copolymers, poly-N-ethylaziridine, poly-N-(2- hydroxyethyl) aziridine, poly-N-(2-cyanoethyl) aziridine, poly(B-hydroxyethyl acrylate), polyethylene imine and cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and methyl cellulose. It has been found that using only a small amount of one or more of the instant polymers, large amounts of photosensitive silver halide grains may be obtained.
  • An emulsion made from one of these polymers of the instant invention may therefore be bodied with a watersoluble polymer such that the polymeric constitution of the resulting emulsion comprises a relatively large percentage of the bodying polymer.
  • copolymers with selected diffusion characteristics may be prepared.
  • the rate of diffusion of alkali ion or a dye-developer through an emulsion comprising one of the polymers of this invention may be modified by varying the composition of the polymer.
  • the instant polymers containing acidic comonomers may be pH flocculated in order to remove the soluble salts formed as a byproduct of the double decomposition reaction between the water-soluble silver salt and the water-soluble halide, in addition to any unreacted excess of the initial salts.
  • an acid copolymer may be precipitated by lowering the pH below 5 and then washed and resuspended by raising the pH to above 7.
  • EXAMPLE Vll A solution of 4.15 g. of a dry l7:2 copolymer of acrylamide/p-fluorostyrene as prepared in Example l above, in 266 ml. of distilled water was adjusted to pH 3.0 with dilute nitric acid and maintained at a temperature of 55 C. To this solution, 88.0 g. of dry potassium bromide and 1.0 g of dry potassium iodide were added.
  • a solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, ml. was rapidly added with continuous agitation to the polymer-halide solution and the remainder was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 60 minutes at 55 C., and then rapidly cooled to below 20 C.
  • control emulsion employing gelatin as the emulsion binder was prepared by the following procedure:
  • a solution of 4.15 g. of the dry gelatin in 266 ml. of distilled water was adjusted to pH 6.3 with dilute nitric acid and maintained at a temperature of 55 C.
  • 44.0 g. of dry potassium bromide and 0.50 g. of dry potassium iodide were added.
  • a solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, 100 ml. was rapidly added with continuous agitation to the gelatin-halide solution and the remainder was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 30 minutes at 55 C., and then rapidly cooled to below 20 C.
  • photosensitive and other terms of similar import are herein employed in the generic sense to describe materials possessing physical and chemical properties which enable them to form usable images when photoexposed by radiation actinic to silver halide.
  • L-A photosensitive silver halide emulsion wherein the emulsion binder consists essentially of a watersoluble film-forming copolymer consisting of repeating units of a first monomer of the formula:
  • R is hydrogen, a lower alkyl group or a halogen
  • R is hydrogen, a lower alkyl group, halogen or cyano group
  • at least one X is a halogen with each remaining X being hydrogen or halogen; and repeating units of an acrylamide monomer.
  • R is hydrogen, a lower alkyl group or a halogen
  • R is hydrogen, a lower alkyl group, halogen, or cyano group
  • at least one X is a halogen with each remaining X being hydrogen or halogen; and repeating units of an acrylamide monomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A photosensitive silver halide emulsion wherein the emulsion binder comprises a halogenated styrene polymer.

Description

United States Patent 1191 Fitzgerald Jan. 21, 1975 SYNTHETIC SILVER HALIDE EMULSION 2,772,166 11/1956 Fowler 96/87 BINDER 2,831,767 4/l958 Dann et al. 96/114 2,852,382 9/1958 lllingsworth et al. 96/114 Inventor: Maurice J. Fitzgerald, Canton, 3,168,403 2/1965 Himmehmann et al. 96/114 Mass. 3,203,804 3/1965 Cohen et al. 96/l l4 3,5l2,985 5 I970 H 96 H4 1 Assgneei 3 CambYdge 3,516,830 6/1970 w iii izi e 96/114 ass.
[22] Filed: Mar. 9, 1973 Primary Examiner-Norman G. Torchin Assistant ExaminerJ. P. Brammer [2i] 339325 Attorney, Agent, or FirmMart C. Matthews [52] US. Cl. 96/1 14, 260/875 R, 260/897 R [51] 1111.01. 0036 1/04 [57] ABSTRACT [58] Field of Search....'. 96/87 A, 87 P, 114 A photosensitive silver halide emulsion wherein the I emulsion binder comprises a halogenated styrene [56] References Cited polymer.
UNITED STATES PATENTS 1 21 Claims, No Drawings 2,473,549 6/1949 Smith 9l/l 14 I SYNTHETIC SILVER HALIDE EMULSION BINDER BACKGROUND OF THE INVENTION This invention relates to photography and more particularly, to novel photosensitive photographic elements, particularly novel photosensitive emulsions.
As a result of the known disadvantages of gelatin, in particular, its variable photographic properties and its fixed physical properties, for example, its diffusion characteristics; much effort has been expended in the past in order to replace gelatin with a suitable synthetic colloid binder for photographic silver halideemulsions. Many synthetic polymeric materials have heretofore been suggested as peptizers for silver halide emulsions, however, these have generally not functioned satisfactorily and frequently have not fulfilled all of the basic requirements for a photosensitive silver halide emulsion binder listed following:
1. absent (or constant) photographic activity;
2. ability to form an adsorption layer on microcrystals silver siler halide permitting stable suspensions to be obtained;
3. ability to form adsorption layers as described in (2)) above which do not prevent growth of'silver halide microcrystals during physical ripening; and
4. solubility in water solution.
In addition, hithertofore, much emphasis has been placed on the ability of the synthetic polymeric material to mix with gelatin, as this property has been critical for employment in partial substitution reactions with gelatin. Consequently, many synthetic polymers of the prior art have been materials which allow for the growth of silver halide crystals only in the presence of gelatin. For example, Fowler, U.S. Pat. No. 2,772,166, describes hydrosols comprising a mixture of styrene or acrylonitrile with an alkyl ester of acrylic acid or constituting gelatin or a second synthetic polymer.
DETAILED DESCRIPTION OF THE INVENTION As indicated, the present invention is directed to photosensitive silver halide emulsions wherein photosensitive silver halide crystals are disposed in a watersoluble synthetic binder comprising a film-forming halogenated styrene polymer having in its structure repeating units represented by the formula set forth above. The term film-forming" is intended to designate a molecular weight sufficiently high to form a film,
' for example, a molecular weight comparable to that of acrylic acid itself. and including a halogenated styrene hardening component. These hydrosols are claimed to be useful for addition to photographic gelatin solutions in order to impart flexibility and other advantageous properties to the hydrophilic colloid. However, they are not described as having the properties necessary to serve as a binder for photographic silver halide emulsions in the absence of gelatin.
SUMMARY OF THE INVENTION The present invention is directed to a photosensitive silver halide emulsion wherein the silver halide crystals are disposed in a water-soluble synthetic binder comprising a film-forming polymer having in its structure repeating units represented by the formula:
cit-J gelatin (i.e., around 15,000).
Such'polymers have been found to substantially meet all the basic requirements for a gelatin substitute, as delineated above. The emulsions of the present invention are more stable against degradation than gelatin; particularly against hydrolysis in acidic or basic media of the polymeric backbone. This stability is due, in large part, to the carbon-carbon linkages in the polymeric.
backbone of the instant polymers, as opposed to the relatively easily hydrolyzable ester or amide linkages found in the backbone of gelatin. These polymers also show aresistance to the growth of microorganisms.
As examples of monomers represented by the formula:
CH=CH wherein R R and X have the above-indicated definitions and which are contemplated as being suitable for providing the halogenated styrene polymers, mention may be made of the following:
p -chloie ojs'tyr ene 4. CH2=CH o-iodostyrene 5. eH =cH--I p-iodostyrene 1|3r 6. CH CH=CBr lbromol (p-bromophenyl) propene Preferably, the instant polymers are interpolymers or copolymers having, in addition to the repeating units defined above, any compatible repeating unit or various repeating units which are not detrimental to photographic silver halide emulsions and which allow the resultant polymer to he soluble in water. Examples of'typical comonomers which may be employed in forming the polymers suitable for use in the present invention include the following ethylenically-unsaturated monomers:
ll. CH =CH-COOH acrylic acid 4 12. cH =c--cooa methacrylic acid 13. CH -=C--COOH V chloroacrylic acid,
l5. CH,,CH=CHCO()H crotonic acid In. CH;,CH=CH--C()()H isocrotonic acid B-chloroacrylic acid 18. BrCH=CH-COOH B-bromoacrylic acid 19. c1ca-=cjcooa n-chloromethac rylic acid 20. CH =CHCOOCH,', 4 methyl acrylate e cH ':-coo-ctt cH ethyl methacrylate f1 22 CH ==C-COO-CH CH CH n-prcpyl- & -chloroacrylate 2 3 BrCH:=CHCOO-CH(-CH 2 isopropyl-B-bromoacrylate n 24. ct-i ':c00cH cH-(-cH isobutyl methacrylate 25. CH =CH-COOCH CH OH ,B-hydroxyethyl acrylate 26. CH;-CHCOOCH CH CH OH y-hydroxypropyl acrylate 2 7 CH =CCOO-CH CI'K28 I OH Z-hydroxy-n-propyl methacry labe- 28. CH =CHCONH acrylamide (:1 29 CH ==CCO-NH A-chloroacrylamide IBr: 30 CH2==CCONH2 6Q -bromo ac rylamide 97 CH2CH COG! o-carboxyltyreno (Bi -08 I o u-vinyld-pyrmli'dono 99. CH2=CHCO--NHCH2CH,,
N-ethylacrylamide 10o. cn ==cn- 4::o --sun-trm-caq (c 32 1 coon N-acryloylvaline N-acryloylmothionind 102. ca -cn-co ua -ca cai ca molar ratio of monomers in the copolymer as -.determined by combustion analysis.
EXAMPLE 1 17.2 copolymer of acrylamide/p-fluorostyrene 7.11 g. of acrylamide, 1.22 g. of p-ifluorostyrene (commercially available from PCR, lnc., Gainesville, Fla. under the designation! 1280) and 0.01 g. of 2,2-
azobi s-I2-rnethyl propionitrile] catalyst were dissolved in 80 ml. of dimethylformamide. This solution was polymerized in a sealed tube at 65 C. for .12 hours under N The result was a white paste which was filtered and dried under vacuum at 45 C. for 12 hours.
EXAMPLE [1 1 1:2 copolymer of acrylamide/o-chlorostyrene The procedure of Example 1 was followed, except that 3.46 g. of o-chlorostyrene (commercially available from Dow Chemical Company, Midland, Mich. under the designation QX-2 l 84) was employed as the halogenated styrene monomer.
EXAMPLE lll 27:2 copolymer of acrylamide/p-chlorostyrene The procedure of Example 1 was followed, except that 2.77 g. of p-chlorostyrene (commercially available from Polysciences, lnc., Warrington, Pa. was employed as the halogenated styrene monomer.
EXAMPLE IV 13:] copolymer of acrylamide/ododostyrene The procedure of Example 1 was followed, except that 2.30 g. of o-iodostyrene (commercially available from Polysciences, lnc., Warrington, Pa. was employed as the halogenated styrene monomer.
EXAMPLE V 15:1 copolymer of acrylamide/pentafluorostyrene The procedure of Example 1 was followed, except that 1.94 g.of 2,3,4,5,o-pentafluorostyrene (commercially available from Aldrich Chemical Company, Inc., Milwaukee, Wis. under the designation 10,396-9) was employed as the halogenated styrene monomer.
EXAMPLE Vl 22:1 copolymer of acrylamide/2-(pentafluorophenyl)-1-propene The procedure of Example 1 was followed except that 2.08 g. of 2-(pentafluorophenyl)-l-propene (commercially available from Aldrich Chemical Company, Inc., Milwaukee, Wis., under the designation 10,338-1) was employed as the halogenated styrene monomer.
The following general procedure may be used for preparing photographic emulsions using the abovedescribed polymers of the instant invention as the colloid binders.
A water-soluble silver salt, such as silver nitrate, may be reacted with at least one water-soluble halide, such as potassium, sodium, or ammonium bromide, preferably together with potassium, sodium or ammonium iodide, in an aqueous solution of the polymer. The emulsion of silver halide thus-formed contains water-soluble salts, as a by-product of the double decomposition reaction, in addition to any unreacted excess of the initial salts. To remove these soluble materials, the emulsion may be centrifuged and washed with distilled water to a low conductance. The emulsion may then be redispersed in distilled water. To analiquot of this emulsion may be added a known quantity of a solution of bodying or thickening polymer, such as polyvinyl alcohol having an average molecular weight of about 100,000 (commercially available from E. l. duPont deNemours & Company, Wilmington, Del., designated Type 72-60). A surfactant, such as dioctyl ester of sodium sulfosuccinic acid, designated Aerosol OT, (commercially available from American Cyanamid Company, New York, N.Y.), may be added and the emulsion coated onto a film base of cellulose triacetate sheet having a coating of hardened gelatin.
Alternatively, the soluble salts may be removed by adding to the emulsion a solution of polyacid, such as 1:1 ethylene: maleic acid copolymer, and lowering the pH to below 5, thereby bringing about precipitation of the polyacid carrying the silver halide grains along with the precipitate. The resulting precipitate may then be washed and resuspended by redissolving the polyacid at pH 6-7.
The emulsions may be chemically sensitized with sulfur compounds such as sodium thiosulfate or thiourea, with reducing substances such stannous chloride; with salts of noble metals such as gold, rhodium and platinum; with amines and polyamines; with quaternary ammonium compounds such as alkyl a-picolinium bromide; and with polyethylene glycols and derivatives thereof.
The emulsions of the present invention may also be optically sensitized with cyanine and merocyanine dyes. Where desired, suitable antifoggants, toners, restrainers, developers, accelerators, preservatives, coating aids, plasticizers, hardeners and/or stabilizers may be included in the composition of the emulsion.
The emulsions of this invention may be coated and processed according to conventional procedures of the art. They may be coated, for example, onto various types of rigid or flexible supports, such as glass, paper, metal, and polymeric films of both the synthetic type and those derived from naturally occurring products. As examples of specific materials which may serve as supports,'mention may be made of paper, aluminum, polymethacrylic acid, methyl and ethyl esters, vinylchloride polymers, polyvinyl acetal, polyamides such as nylon, polyesters such as polymeric film derived from ethylene glycol-terephthalic acid, and cellulose derivatives such as cellulose acetate, triacetate, nitrate, propionate, butyrate, acetate propionate, and acetate butyrate. Suitable subcoats may be provided on the supports, for example a layer of gelatin, if necessary or desirable for adherence, as is well known in the art.
The polymers employed in the practice of the instant invention preferably contain from l-80 mole percent of the above-indicated repeating units. The specific amount employed may be selected by the operator depending upon the grain particle size and habit desired.
By selecting appropriate comonomers, the instant copolymers may be made to be compatible with all watersoluble bodying polymers. Emulsions made from these novel polymers, may be bodied with any water-soluble polymers, overcoming the disadvantage encountered with gelatin which is only compatible with a very few polymers in a most limited pH range. As examples of specific materials which may serve as bodying polymers are gelatin, polyvinyl alcohol, polyacrylamide, polyalkylacrylamides, polyvinyl pyrrolidone, polymethacrylamidoacetamide, vinyl alcohol/N-vinylpyrrolidne copolymers, poly-N-ethylaziridine, poly-N-(2- hydroxyethyl) aziridine, poly-N-(2-cyanoethyl) aziridine, poly(B-hydroxyethyl acrylate), polyethylene imine and cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and methyl cellulose. It has been found that using only a small amount of one or more of the instant polymers, large amounts of photosensitive silver halide grains may be obtained.
An emulsion made from one of these polymers of the instant invention may therefore be bodied with a watersoluble polymer such that the polymeric constitution of the resulting emulsion comprises a relatively large percentage of the bodying polymer.
By selecting appropriate comonomers, copolymers with selected diffusion characteristics may be prepared. For example, the rate of diffusion of alkali ion or a dye-developer through an emulsion comprising one of the polymers of this invention may be modified by varying the composition of the polymer.
The instant polymers containing acidic comonomers may be pH flocculated in order to remove the soluble salts formed as a byproduct of the double decomposition reaction between the water-soluble silver salt and the water-soluble halide, in addition to any unreacted excess of the initial salts. As an example, an acid copolymer may be precipitated by lowering the pH below 5 and then washed and resuspended by raising the pH to above 7.
The instant invention will be further illustrated by reference to the following non-limiting examples.
EXAMPLE Vll A solution of 4.15 g. of a dry l7:2 copolymer of acrylamide/p-fluorostyrene as prepared in Example l above, in 266 ml. of distilled water was adjusted to pH 3.0 with dilute nitric acid and maintained at a temperature of 55 C. To this solution, 88.0 g. of dry potassium bromide and 1.0 g of dry potassium iodide were added.
A solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, ml. was rapidly added with continuous agitation to the polymer-halide solution and the remainder was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 60 minutes at 55 C., and then rapidly cooled to below 20 C.
EXAMPLES Vlll Xll Additional emulsions were also prepared according to the procedure of Example Vll employing the copolymers prepared in Examples ll VI as the emulsion binders.
EXAMPLE XlIl (control) A control emulsion employing gelatin as the emulsion binder was prepared by the following procedure:
A solution of 4.15 g. of the dry gelatin in 266 ml. of distilled water was adjusted to pH 6.3 with dilute nitric acid and maintained at a temperature of 55 C. To this solution, 44.0 g. of dry potassium bromide and 0.50 g. of dry potassium iodide were added.
A solution of 55 g. of silver nitrate in 500 ml. of distilled water was prepared. From this silver nitrate solution, 100 ml. was rapidly added with continuous agitation to the gelatin-halide solution and the remainder was added over a period of 22 minutes. Thereafter, the emulsion was ripened for 30 minutes at 55 C., and then rapidly cooled to below 20 C.
The following table summarizes the silver halide grain sizes obtained in the emulsions prepared above, all of which contained octahedral platelet crystals.
TABLE l-Continued Example Polymer fluorophenyl l -propene Xlll gelatin 0.2-l .8 H)
In certain photographic applications, it may be desirable to replace part, but not all, of the gelatin in the photosensitive emulsion. In view of the characteristics of these polymers described above, and further, in view of their compatability with gelatin in substantially all proportions, it will be obvious that these polymers are ideally suited for such use.
The term photosensitive and other terms of similar import are herein employed in the generic sense to describe materials possessing physical and chemical properties which enable them to form usable images when photoexposed by radiation actinic to silver halide.
Since certain changes may be made in the above products and processes without departing from the scope of the invention herein involved, it is intended that all matter contained in the above description shall be interpreted as illustrative only and not in a limiting sense.
What is claimed is:
L-A photosensitive silver halide emulsion wherein the emulsion binder consists essentially of a watersoluble film-forming copolymer consisting of repeating units of a first monomer of the formula:
wherein R is hydrogen, a lower alkyl group or a halogen; R is hydrogen, a lower alkyl group, halogen or cyano group; and at least one X is a halogen with each remaining X being hydrogen or halogen; and repeating units of an acrylamide monomer.
2. The product as defined in claim 1 wherein said polymer comprises l-80 mole percent of said repeating units.
3. The product as defined in claim 1 wherein said silver halide emulsion is a silver iodobromide emulsion.
4. The product as defined in claim 1 wherein said emulsion includes at least one chemical sensitizing agent.
5. The product as defined in claim 1 wherein said emulsion includes at least one optical sensitizing agent.
6. The product as defined in claim 1 wherein said first monomer is p-fluorostyrene.
7. The product as defined in claim 1 wherein said first monomer is o-chlorostyrene.
8. The product as defined in claim 1 wherein said first monomer is p-chlorostyrene.
9. The product as defined in claim 1 wherein said first monomer is o-iodostyrene.
10. The product as defined in claim 1 wherein said first monomer is 2.3.4.5,o-pentafluorostyrene.
11. The product as defined in claim I wherein said first monomer is Z-(pentafluorophenyH-l-propene.
12. In a method of preparing a photosensitive silver halide emulsion wherein a water-soluble silver salt is reacted with a water-soluble halide salt in an aqueous solution of a silver halide peptizer, the improvement which comprises:
peptizing said silver halide emulsion with a watersoluble, film-forming copolymer consisting of repeating units of a first monomer of the formula:
wherein R is hydrogen, a lower alkyl group or a halogen; R is hydrogen, a lower alkyl group, halogen, or cyano group; and at least one X is a halogen with each remaining X being hydrogen or halogen; and repeating units of an acrylamide monomer.
13. The method as defined in claim 12 wherein said first monomer is p-fluorostyrene.
14. The method as defined in claim l2 wherein said first monomer is o-chlorostyrene.
15. The method as defined in claim 12 wherein said first monomer is p-chlorostyrene.
16. The method as defined in claim 12 wherein said first monomer is o-iodostyrene.
17. The product as defined in claim 12 wherein said first monomer is 2,3,4,5,-pentafluorostyrene.
18. The product as defined in claim 12 wherein said first monomer is 2-(pentafluorophenyl)-l-propene.
19. The method as defined in claim 17 which further comprises:
precipitating silver halide from said emulsion;
removing soluble by-products from said silver halide;
and redispersing said silver halide in a solution containing a bodying polymer.
20. The method as defined in claim 19 wherein said bodying polymer is polyvinyl alcohol.
21. The method as defined in claim 19 wherein said bodying polymer is gelatin.

Claims (20)

  1. 2. The product as defined in claim 1 wherein said polymer comprises 1-80 mole percent of said repeating units.
  2. 3. The product as defined in claim 1 wherein said silver halide emulsion is a silver iodobromide emulsion.
  3. 4. The product as defined in claim 1 wherein said emulsion includes at least one chemical sensitizing agent.
  4. 5. The product as defined in claim 1 wherein said emulsion includes at least one optical sensitizing agent.
  5. 6. The product as defined in claim 1 wherein said first monomer is p-fluorostyrene.
  6. 7. The product as defined in claim 1 wherein said first monomer is o-chlorostyrene.
  7. 8. The product as defined in claim 1 wherein said first monomer is p-chlorostyrene.
  8. 9. The product as defined in claim 1 wherein said first monomer is o-iodostyrene.
  9. 10. The product as defined in claim 1 wherein said first monomer is 2,3,4,5,6-pentafluorostyrene.
  10. 11. The product as defined in claim 1 wherein said first monomer is 2-(pentafluorophenyl)-1-propene.
  11. 12. In a method of preparing a photosensitive silver halide emulsion wherein a water-soluble silver salt is reacted with a water-soluble halide salt in an aqueous solution of a silver halide peptizer, the improvement which comprises: peptizing said silver halide emulsion with a water-soluble, film-forming copolymer consisting of repeating units of a first monomer of the formula:
  12. 13. The method as defined in claim 12 wherein said first monomer is p-fluorostyrene.
  13. 14. The method as defined in claim 12 wherein said first monomer is o-chlorostyrene.
  14. 15. The method as defined in claim 12 wherein said first monomer is p-chlorostyrene.
  15. 16. The method as defined in claim 12 wherein said first monomer is o-iodostyrene.
  16. 17. The product as defined in claim 12 wherein said first monomer is 2,3,4,5,6-pentafluorostyrene.
  17. 18. The product as defined in claim 12 wherein said first monomer is 2-(pentafluorophenyl)-1-propene.
  18. 19. The method as defined in claim 17 which further comprises: precipitating silver halide from said emulsion; removing soluble by-products from said silver halide; and redispersing said silver halide in a solution containing a bodying polymer.
  19. 20. The method as defined in claim 19 wherein said bodying polymer is polyvinyl alcohol.
  20. 21. The method as defined in claim 19 wherein said bodying polymer is gelatin.
US339825A 1973-03-09 1973-03-09 Synthetic silver halide emulsion binder Expired - Lifetime US3861918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US339825A US3861918A (en) 1973-03-09 1973-03-09 Synthetic silver halide emulsion binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US339825A US3861918A (en) 1973-03-09 1973-03-09 Synthetic silver halide emulsion binder

Publications (1)

Publication Number Publication Date
US3861918A true US3861918A (en) 1975-01-21

Family

ID=23330775

Family Applications (1)

Application Number Title Priority Date Filing Date
US339825A Expired - Lifetime US3861918A (en) 1973-03-09 1973-03-09 Synthetic silver halide emulsion binder

Country Status (1)

Country Link
US (1) US3861918A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904418A (en) * 1974-08-15 1975-09-09 Eastman Kodak Co Hardenable vehicles for silver halide emulsions
US4315072A (en) * 1980-03-11 1982-02-09 Polymicro Artificial gelatins of high methionine content for photographic film
US4315071A (en) * 1981-03-30 1982-02-09 Polaroid Corporation Polystyryl amine polymeric binders for photographic emulsions
US4350759A (en) * 1981-03-30 1982-09-21 Polaroid Corporation Allyl amine polymeric binders for photographic emulsions
US4468454A (en) * 1983-06-10 1984-08-28 E. I. Du Pont De Nemours And Company Antifoggant process
US4485170A (en) * 1982-02-10 1984-11-27 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material
US5478715A (en) * 1992-07-24 1995-12-26 Fuji Photo Film Co., Ltd. Silver halide photographic material
CN105189583A (en) * 2013-03-14 2015-12-23 Nvs技术股份有限公司 Surface oxidation for sequestering biomolecules and related methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473549A (en) * 1947-10-11 1949-06-21 Goodrich Co B F Method of polymerizing vinylidene compounds in aqueous medium in the presence of silver ion and oxalate ion
US2772166A (en) * 1953-02-11 1956-11-27 Eastman Kodak Co Hydrophilic compositions and their preparation
US2831767A (en) * 1954-04-29 1958-04-22 Eastman Kodak Co Water-dispersible protein polymer compositions and silver halide emulsions containing same
US2852382A (en) * 1955-08-11 1958-09-16 Eastman Kodak Co Coupler dispersions for color photography containing protein polymers
US3168403A (en) * 1961-01-10 1965-02-02 Agfa Ag Flocculated gelatine emulsions containing sulphonated copolymers of styrene
US3203804A (en) * 1962-02-27 1965-08-31 Du Pont Photographic emulsions
US3512985A (en) * 1965-11-08 1970-05-19 Eastman Kodak Co Direct positive photographic silver halide emulsions and elements containing water insoluble polymers
US3516830A (en) * 1965-09-17 1970-06-23 Eastman Kodak Co Photographic silver halide emulsions and elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473549A (en) * 1947-10-11 1949-06-21 Goodrich Co B F Method of polymerizing vinylidene compounds in aqueous medium in the presence of silver ion and oxalate ion
US2772166A (en) * 1953-02-11 1956-11-27 Eastman Kodak Co Hydrophilic compositions and their preparation
US2831767A (en) * 1954-04-29 1958-04-22 Eastman Kodak Co Water-dispersible protein polymer compositions and silver halide emulsions containing same
US2852382A (en) * 1955-08-11 1958-09-16 Eastman Kodak Co Coupler dispersions for color photography containing protein polymers
US3168403A (en) * 1961-01-10 1965-02-02 Agfa Ag Flocculated gelatine emulsions containing sulphonated copolymers of styrene
US3203804A (en) * 1962-02-27 1965-08-31 Du Pont Photographic emulsions
US3516830A (en) * 1965-09-17 1970-06-23 Eastman Kodak Co Photographic silver halide emulsions and elements
US3512985A (en) * 1965-11-08 1970-05-19 Eastman Kodak Co Direct positive photographic silver halide emulsions and elements containing water insoluble polymers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904418A (en) * 1974-08-15 1975-09-09 Eastman Kodak Co Hardenable vehicles for silver halide emulsions
US4315072A (en) * 1980-03-11 1982-02-09 Polymicro Artificial gelatins of high methionine content for photographic film
US4315071A (en) * 1981-03-30 1982-02-09 Polaroid Corporation Polystyryl amine polymeric binders for photographic emulsions
US4350759A (en) * 1981-03-30 1982-09-21 Polaroid Corporation Allyl amine polymeric binders for photographic emulsions
US4485170A (en) * 1982-02-10 1984-11-27 Fuji Photo Film Co., Ltd. Photographic silver halide light-sensitive material
US4468454A (en) * 1983-06-10 1984-08-28 E. I. Du Pont De Nemours And Company Antifoggant process
US5478715A (en) * 1992-07-24 1995-12-26 Fuji Photo Film Co., Ltd. Silver halide photographic material
CN105189583A (en) * 2013-03-14 2015-12-23 Nvs技术股份有限公司 Surface oxidation for sequestering biomolecules and related methods

Similar Documents

Publication Publication Date Title
US3713834A (en) Polymeric binders for photographic emulsions
US3459790A (en) Polymerizable acrylic acid esters containing active methylene groups
US3879205A (en) Method of preparing photosensitive silver halide emulsions
US3658878A (en) Ethylenically unsaturated cyano group containing compounds
US3554987A (en) Novel compounds and photographic materials containing said compounds
US3861918A (en) Synthetic silver halide emulsion binder
US3852073A (en) Silver halide emulsions comprising polymeric peptizers
US3396030A (en) Photographic silver halide emulsions
US4120727A (en) Polymeric cyanoalkyl acrylate silver halide peptizer
US3721565A (en) Polymeric binders for photographic emulsions
US4350759A (en) Allyl amine polymeric binders for photographic emulsions
DE3329746A1 (en) PHOTOGRAPHIC LIGHT-SENSITIVE SILVER HALOGENIDE MATERIAL AND METHOD FOR WEAKENING THE MATERIAL
US3681079A (en) Photosensitive emulsion comprising graft copolymer of amino alkyl acrylate
US3536491A (en) Photographic materials containing polymers
US3816129A (en) Synthetic silver halide emulsion binder
US3512985A (en) Direct positive photographic silver halide emulsions and elements containing water insoluble polymers
US4022623A (en) Photosensitive emulsion containing polyvinyl aminimide polymers
US3811897A (en) Method for increasing the viscosity of dilute photographic emulsions and elements prepared thereby
US3576628A (en) Photographic diffusion transfer process
US3925083A (en) Synthetic silver halide emulsion binder
US4131471A (en) Synthetic polymeric silver halide peptizer
US3877942A (en) Method of forming photographic images
US3746548A (en) Silver halide emulsion with graft copolymer binders
US4089688A (en) Polymeric N-alkenyl carbamate silver halide peptizer
US3867152A (en) Photographic silver halide material