US3861888A - Use of CO{HD 2 {B in argon-oxygen refining of molten metal - Google Patents

Use of CO{HD 2 {B in argon-oxygen refining of molten metal Download PDF

Info

Publication number
US3861888A
US3861888A US374635A US37463573A US3861888A US 3861888 A US3861888 A US 3861888A US 374635 A US374635 A US 374635A US 37463573 A US37463573 A US 37463573A US 3861888 A US3861888 A US 3861888A
Authority
US
United States
Prior art keywords
decarburization
carbon
flow rate
argon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US374635A
Inventor
Barrett Henry Heise
Roger Nels Dokken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Industrial Gases Technology Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Priority to US374635A priority Critical patent/US3861888A/en
Priority to AU69443/74A priority patent/AU6944374A/en
Priority to NO742347A priority patent/NO742347L/no
Priority to DD179518A priority patent/DD112468A5/xx
Priority to DE19742430975 priority patent/DE2430975C3/en
Priority to FR7422449A priority patent/FR2235198B1/fr
Priority to PL1974172235A priority patent/PL88825B1/pl
Priority to JP49072891A priority patent/JPS5037611A/ja
Priority to FI1978/74A priority patent/FI197874A/fi
Priority to SE7408502A priority patent/SE7408502L/
Priority to BR5267/74A priority patent/BR7405267A/en
Priority to BE145977A priority patent/BE816970A/en
Priority to IL45137A priority patent/IL45137A/en
Application granted granted Critical
Publication of US3861888A publication Critical patent/US3861888A/en
Priority to US05/760,841 priority patent/USRE29584E/en
Assigned to MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. reassignment MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MORGAN BANK ( DELAWARE ) AS COLLATERAL ( AGENTS ) SEE RECORD FOR THE REMAINING ASSIGNEES. MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: STP CORPORATION, A CORP. OF DE.,, UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,, UNION CARBIDE CORPORATION, A CORP.,, UNION CARBIDE EUROPE S.A., A SWISS CORP.
Assigned to UNION CARBIDE CORPORATION, reassignment UNION CARBIDE CORPORATION, RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MORGAN BANK (DELAWARE) AS COLLATERAL AGENT
Assigned to UNION CARBIDE INDUSTRIAL GASES TECHNOLOGY CORPORATION, A CORP. OF DE. reassignment UNION CARBIDE INDUSTRIAL GASES TECHNOLOGY CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: UNION CARBIDE INDUSTRIAL GASES INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel

Definitions

  • This invention relates, in general, to a method for decarburizing metals and alloys, and more specifically, to an improvement in the argon-oxygen decarburization of stainless steels.
  • the AOD process is a duplex process, particularly useful for refining stainless steels without substantial loss of chromium.
  • the basic AOD process is disclosed in Krivsky, US. Pat. No. 3,252,790 and an improvement thereon relating to programmed blowing is disclosed in Nelson et al., US. Pat. No. 3,046,107.
  • the process comprises melting the alloy (substantially at the desired composition with respect to metallics) in an arc furnace, and transferring the molten metal, after it has been deslagged, to a refining vessel wherein it is decarburized by subsurface blowing with an inert gasoxygen mixture (in commerical practice most frequently an argon-oxygen mixture), the argon being present in order to reduce the partial pressure of carbon monoxide in the gas in contact with the melt.
  • the molten metal is thereafter reduced, finished and tapped into a teeming ladle.
  • a suitable refining vessel is disclosed by Saccomano and Ellis in US. Pat. No. 3,724,830.
  • AOD practice relates to shortening the overall process time.
  • the chemical reactions of steel refining are, for the most part, oxidation reactions which generate heat; the metal bath temperature being established at the point where the heat generated in the bath equals the heat lost by the refining vessel through radiation and convection.
  • the faster heat is generated the higher the bath temperature at the point of thermal equilibrium.
  • the speed of decarburization can be increased by increasing the process gas flow rates, but only at the expense of higher bath temperature and increased refractory wear of the furnace lining. Consequently, there is a need for increasing the speed of decarburization in an AOD process without exceeding a predetermined temperature limit beyond which the effective life of the furnace refractory is considerably shortened, generally about 3,100F.
  • Periodic addition of scrap as a coolant is a commonly accepted procedure for maintaining the bath temperature within the desired operating range.
  • the logistics of supplying scrap at the furnace at the exact time it is needed and the difficulty of keeping stainless scrap segregated by type often precludes its use.
  • scrap cools the metal bath discontinuously, such that the addition of scrap with its attendant sudden drop in bath temperature frequently causes exccssive metallic oxidation for the period of time during which the bath is cooled below an efficient decarburization temperature.
  • the present invention comprises: in a process for decarburizing a mass of chromiumcontaining molten steel characterized by the subsurface injection of oxygen and at least one inert gas selected from the group consisting of helium, neon, krypton, argon, xenon and nitrogen, into said mass of said molten steel, wherein at least a portion of said oxygen reacts with the carbon in said molten steel to form a volatile carbon oxide, comprising a first phase of decarburization wherein the temperature of said molten steel is increased to the desired operating range; a second phase of decarburization wherein the carbon content of the molten steel is reduced to a predetermined value corresponding approximately to the carbon content of the melt in equilibrium with CO at a partial pressure of 1 atmosphere and at a temperature within said desired operating range; and a third phase of decarburization wherein the carbon content of the melt is reduced from said predetermined value
  • decarburization refers to the lowering of the carbon content of the molten steel from any given level to any desired lower level by the injection of oxygen into the melt.
  • mass is intended to mean a batch or heat of molten metal, as well as a changing mass as in a continuous process.
  • chromium-containing molten steel as used herein is intended to comprise ferrous alloys containing about 340% chromium.
  • the invention is predicated on the discovery that the injection of CO along with oxygen and an inert gas into the molten steel increases the carbon removal efficiency during decarburization.
  • the caron removal efficiency is known to decrease as well.
  • the carbon removal efficiency is increased and consequently, the absolute rate of carbon removal (i.e. the speed of decarburization) is also increased.
  • the primary function of the inert gas in the inert gas-oxygen mixture is to lower the partial pressure of carbon monoxide in contact with the melt and thereby enhance carbon removal. Therefore, inasmuch as carbon monoxide is one of the decomposition products of CO in the melt, the increase in the carbon removal efficiency resulting from the present invention is truly surprising.
  • the flow rate of CO in accordance with the relationship set forth above, is defined in terms of an upper limit in order to prevent an excess of CO from being injected into the melt and recarburizing the bath. It is calculated as follows: the maximum flow rate of carbon monoxide out of the vessel is related to the flow rate of argon by the following relationship:
  • FCO maX FIP/l P
  • P can be calculated from literature data (Electric Furnace Steelmaking, Vol. 11, Chapter 16, p. 95; Chipman, J., J.I.S.I., pp. 97-106, June, 1955; Schenck, I-I., et al., Stahleisen Sonderberichte, Special Report No. 7, Stahleisen mbh, Dusseldorf, 1966).
  • the actual flow of carbon monoxide is F ZXF
  • the difference between F and F must accommodate the additional carbon monoxide from the improved decarburization as well as that from dissociation'of carbon dioxide. The flow rate of carbon dioxide must therefore be less than the following amount in order to benefit the carbon removal efficiency.
  • (cfm) t blowing time, (minutes) C,- carbon content of the melt at the start of the blow, (percent) C, carbon content of the melt at the end of the blow, (percent) T, metal bath temperature at the start of the blow,
  • T; metal bath temperature at the end of the blow
  • a three component gas mixture containing oxygen, CO and an inert gas may optionally be injected during said first and/or second phases of decarburization.
  • the three component gas mixture may be effectively used during all three phases of decarburization, during the second or third phases of decarburization or only during said third phase.
  • the preferred flow rates for each of the gases in the three phase mixture and the corresponding blow time are defined by the identical relationship previously set forth for phase 3 of decarburization. That is, equations (1), (2) and (3) define the preferred gas flow and blow time for both the second and third phases of decarburization.
  • the flow rates of oxygen, argon and C0 are generally set at a fixed predetermined ratio and consequently the variables to be determined are the carbon content at the end of the blow and the blow time required. It is preferred that CO be used during said first phase to the exclusion of argon because it improves process control. Accordingly, mixtures of O and CO may be effectively used in ratios varying from 4:1 to 1:1.
  • the remaining variables of time, temperature, flow and carbon content are preferably related by the following equations:
  • the second blow period begins during which the ratio of argon to oxygen in the blowing gas mixture is increased to prevent the bath from overheating, and the carbon content of the melt is reduced to approximately the point where further decarburization can only be achieved at the expense of substantial chromium oxidation in the melt.
  • the termination During the third phase of decarburization the furnace operator may wish to decarburize to C 0.05% while attaining a temperature 3,100F preparatory to finish the heat. The given conditions are thus changed to accomodate the additional argon which will be required to decarburize the melt to a level below 0.25% carbon.
  • X 322 (Ci pi Cf)/V where V volume of oxygen (ft )/ton of metal Since X will vary depending upon carbon content of the melt, bath temperature and vessel characteristics, it must be determined empirically under the operating conditions of interest.
  • an improvement in carbon removal efficiency is generally most desirable during the period when the steel is to be decarburized to a carbon level below that which is in equilibrium with CO at a partial pressure of one atmosphere; namely, during the third phase of decarburization.
  • 6 beats of stainless steel were made in an 18 ton AOD vessel 4 heats being run as in conventional AOD practice with a 2 component (argon-oxygen) blowing mixture; the remaining 2 heats using a 3 component mixture including CO in accordance with the present invention.
  • the measured gas flow rates, initial and final carbon contents and bath temperatures, and the resulting carbon removal efficiency are indicated in Table III.
  • F total gas flow rate for the particular system 1.
  • a process for decarburizing a chromiumcontaining molten steel characterized by the subhlOWlhg tlme, (mlhutes) surface injection of oxygen and at least one inert gas C1 Carbon Content of the melt at the Start Of the selected from the group consisting of helium, neon, ,(P
  • a first phase of decarburization wherein the temperature of said molten steel is adjusted to the desired operating range
  • a second phase of decarburization wherein the carbon content of the molten steel is reduced to a predetermined value corresponding approximately to the carbon content of the melt in equilibrium with CO at a partial pressure of 1 atmosphere and at a temperature within said desired operating range
  • a third phase of decarburization wherein the carbon content of the melt is reduced from said predetermined value to approximately the desired carbon content of the molten steel
  • T; metal bath temperature at the end of the blow
  • T metal bath temperature at the end of the blow

Abstract

An improved argon-oxygen decarburization process for refining stainless steel comprising injecting a three component gas mixture consisting of oxygen, argon and carbon dioxide into the molten steel during decarburization. The critical upper limit of CO2 injection into the melt is defined, below which the carbon removal efficiency is improved. The preferred flow rate of CO2 during each of the three principal phases of decarburization is set forth as a function of the flow rate of oxygen and argon, bath temperature and carbon content of the melt.

Description

United States Patent Heise et al.
USE or co IN ARGON-OXYGEN REFINING or MOLTEN METAL Inventors: Barrett Henry l-leise, Valley Cottage; Roger Nels Dokken, Katonah, N.Y.
Union Carbide Corporation, New York, NY.
Filed: June 28, 1973 Appl. No.: 374,635
Assignee:
US. Cl. 75/60 Int. Cl C2lc 5/30 Field of Search 75/60 References Cited UNITED STATES PATENTS 10/1958 Savard .,75/60 7/l962 Nelson ..75/6O Krivsky 75/60 Knuppel 75/60 Primary ExaminerL. Dewayne Rutledge Assistant ExaminerPeter D. Rosenberg Attorney, Agent, or Firm-Bernard Lieberman [57] ABSTRACT An improved argon-oxygen decarburization process for refining stainless steel comprising injecting a three component gas mixture consisting of oxygen, argon and carbon dioxide into the molten steel during decarburization. The critical upper limit of CO injection into the melt is defined, below which the carbon removal efficiency is improved. The preferred flow rate of CO during each of the three principal phases of decarburization is set forth as a function of the flow rate of oxygen and argon, bath temperature and carbon content of the melt.
4 Claims, No Drawings USE OF CO2 IN ARGON-OXYGEN REFINING OF MOLTEN METAL This invention relates, in general, to a method for decarburizing metals and alloys, and more specifically, to an improvement in the argon-oxygen decarburization of stainless steels.
Prior to the invention of the argon-oxygen decarburization (hereinafter referred to as AOD) process, the customary practice in the manufacture of stainless steels had been to melt an alloy containing a much lower chromium percentage than specified in the finished steel, decarburize, and then increase the chromium content to the desired level by the addition of chromium, generally, in the form of low-carbon ferrochrome. This procedure had been followed because molten stainless steels containing the specified chromium content were unable to be decarburized without severe oxidation of chromium.
The AOD process is a duplex process, particularly useful for refining stainless steels without substantial loss of chromium. The basic AOD process is disclosed in Krivsky, US. Pat. No. 3,252,790 and an improvement thereon relating to programmed blowing is disclosed in Nelson et al., US. Pat. No. 3,046,107. The process comprises melting the alloy (substantially at the desired composition with respect to metallics) in an arc furnace, and transferring the molten metal, after it has been deslagged, to a refining vessel wherein it is decarburized by subsurface blowing with an inert gasoxygen mixture (in commerical practice most frequently an argon-oxygen mixture), the argon being present in order to reduce the partial pressure of carbon monoxide in the gas in contact with the melt. The molten metal is thereafter reduced, finished and tapped into a teeming ladle. A suitable refining vessel, is disclosed by Saccomano and Ellis in US. Pat. No. 3,724,830.
Although the introduction of an inert gas-oxygen mixture into a molten stainless steel favors decarburization relative to the oxidation of metallic elements in the melt, it does not, however, suppress metallic oxidation entirely. That is, the continued presence of metal oxides in the slag reflects the fact that a substantial proportion of oxygen reacts with materials in the melt other than carbon. Indeed, during a typical AOD run, the carbon removal efficiency, namely, the percentage of total oxygen introduced into the melt which combines with carbon, may vary from 75% to less than depending on operating conditions. Moreover, the resulting metallic loss is recoverable only at the expense of adding reducing agents, such as, silicon or aluminum metals to the slag after decarburization of the melt is completed.
Another area of improvement is existing AOD practice relates to shortening the overall process time. The chemical reactions of steel refining are, for the most part, oxidation reactions which generate heat; the metal bath temperature being established at the point where the heat generated in the bath equals the heat lost by the refining vessel through radiation and convection. Thus, the faster heat is generated, the higher the bath temperature at the point of thermal equilibrium. Accordingly, the speed of decarburization can be increased by increasing the process gas flow rates, but only at the expense of higher bath temperature and increased refractory wear of the furnace lining. Consequently, there is a need for increasing the speed of decarburization in an AOD process without exceeding a predetermined temperature limit beyond which the effective life of the furnace refractory is considerably shortened, generally about 3,100F.
Periodic addition of scrap as a coolant is a commonly accepted procedure for maintaining the bath temperature within the desired operating range. However, the logistics of supplying scrap at the furnace at the exact time it is needed and the difficulty of keeping stainless scrap segregated by type often precludes its use. Furthermore, scrap cools the metal bath discontinuously, such that the addition of scrap with its attendant sudden drop in bath temperature frequently causes exccssive metallic oxidation for the period of time during which the bath is cooled below an efficient decarburization temperature.
It is therefore apparent that an AOD refining process which would shorten the time required for decarburization by increasing the process gas flow rates as well as the carbon removal efficiency while continuously controlling the bath temperature within prescribed limits is a desirable improvement on conventional AOD practice.
OBJECTS Accordingly, it is an object of the invention to improve the carbon removal efficiency in argon-oxygen decarburization of stainless steel.
It is a further object of this invention to increase the speed of argon-oxygen decarburization by permitting higher process gas flow rates without increasing refractory wear.
It is still another object of this invention to provide a process for continuously cooling a stainless steel bath during argon-oxygen refining such that the metal bath temperature is readily maintained within the desired operating range.
SUMMARY The above objects and others which will readily be apparent to those skilled in the art. are achieved by the present invention one embodiment of which comprises: in a process for decarburizing a mass of chromiumcontaining molten steel characterized by the subsurface injection of oxygen and at least one inert gas selected from the group consisting of helium, neon, krypton, argon, xenon and nitrogen, into said mass of said molten steel, wherein at least a portion of said oxygen reacts with the carbon in said molten steel to form a volatile carbon oxide, comprising a first phase of decarburization wherein the temperature of said molten steel is increased to the desired operating range; a second phase of decarburization wherein the carbon content of the molten steel is reduced to a predetermined value corresponding approximately to the carbon content of the melt in equilibrium with CO at a partial pressure of 1 atmosphere and at a temperature within said desired operating range; and a third phase of decarburization wherein the carbon content of the melt is reduced from said predetermined value to approximately the desired carbon content of the molten steel, the improvement comprising:
Injecting a gas consisting essentially of CO into said mass of molten steel during said third phase of decarburization in an amount less than that defined by the formula:
F002 [F] 2XFO2] where:
CD flow rate of C02, F, flow rate of said inert gas, (cfm) t 322 [0.40x 1.29 (l-X) 1.24] T T 1.24 (F F1) 2 F1 K F flow rate of O (cfm) (All volumes are measured at 70F and one atmosphere pressure).
P equilibrium partial pressure of CO for the particular bath temperature and carbon content of the molten steel, (atmospheres), and
X carbon removal efficiency in the absence of C The term decarburization as used herein refers to the lowering of the carbon content of the molten steel from any given level to any desired lower level by the injection of oxygen into the melt. The term mass" is intended to mean a batch or heat of molten metal, as well as a changing mass as in a continuous process.
The term chromium-containing molten steel as used herein is intended to comprise ferrous alloys containing about 340% chromium.
The invention is predicated on the discovery that the injection of CO along with oxygen and an inert gas into the molten steel increases the carbon removal efficiency during decarburization. In ordinary AOD practice, as the carbon level of the steel decreases, the caron removal efficiency is known to decrease as well. Unexpectedly, by substituting CO for some of the oxygen and/or argon, the carbon removal efficiency is increased and consequently, the absolute rate of carbon removal (i.e. the speed of decarburization) is also increased. Furthermore, the primary function of the inert gas in the inert gas-oxygen mixture is to lower the partial pressure of carbon monoxide in contact with the melt and thereby enhance carbon removal. Therefore, inasmuch as carbon monoxide is one of the decomposition products of CO in the melt, the increase in the carbon removal efficiency resulting from the present invention is truly surprising.
The flow rate of CO in accordance with the relationship set forth above, is defined in terms of an upper limit in order to prevent an excess of CO from being injected into the melt and recarburizing the bath. It is calculated as follows: the maximum flow rate of carbon monoxide out of the vessel is related to the flow rate of argon by the following relationship:
P FCO MHI/FCOMGI F where the system pressure is 1 atmosphere.
Stated otherwise:
FCO maX=FIP/l P The value of P can be calculated from literature data (Electric Furnace Steelmaking, Vol. 11, Chapter 16, p. 95; Chipman, J., J.I.S.I., pp. 97-106, June, 1955; Schenck, I-I., et al., Stahleisen Sonderberichte, Special Report No. 7, Stahleisen mbh, Dusseldorf, 1966). The actual flow of carbon monoxide is F ZXF The difference between F and F must accommodate the additional carbon monoxide from the improved decarburization as well as that from dissociation'of carbon dioxide. The flow rate of carbon dioxide must therefore be less than the following amount in order to benefit the carbon removal efficiency.
Fco [F1 2XFO2] v F flow rate of CO (cfm) E0, flow rate of O (cfm) F, flow rate of inert gas, (cfm) F, total gas flow rate for the particular system,
(cfm) t= blowing time, (minutes) C,- carbon content of the melt at the start of the blow, (percent) C, carbon content of the melt at the end of the blow, (percent) T, metal bath temperature at the start of the blow,
T;= metal bath temperature at the end of the blow,
W total weight of molten metal, (tons) K, measured heat loss coefficient of the vessel,
(F/min).
X carbon removal efficiency in the absence of CO and Z, enthalpy of the inert gas at the operating temperature of the bath (For argon Z, 0.06).
According to another embodiment of the invention, a three component gas mixture containing oxygen, CO and an inert gas (preferably argon) may optionally be injected during said first and/or second phases of decarburization. Thus, the three component gas mixture may be effectively used during all three phases of decarburization, during the second or third phases of decarburization or only during said third phase. When used during the second phase of decarburization the preferred flow rates for each of the gases in the three phase mixture and the corresponding blow time are defined by the identical relationship previously set forth for phase 3 of decarburization. That is, equations (1), (2) and (3) define the preferred gas flow and blow time for both the second and third phases of decarburization.
For the first phase of decarburization during which the bath temperature is increased to the desired operating range, the flow rates of oxygen, argon and C0, are generally set at a fixed predetermined ratio and consequently the variables to be determined are the carbon content at the end of the blow and the blow time required. It is preferred that CO be used during said first phase to the exclusion of argon because it improves process control. Accordingly, mixtures of O and CO may be effectively used in ratios varying from 4:1 to 1:1. The remaining variables of time, temperature, flow and carbon content are preferably related by the following equations:
t= W(T, T,)/[0.40X+ 1.35 (l-X)] [1 16 F DETAILED DESCRIPTION OF THE INVENTION Steel refining in accordance with conventional AOD practice can be conveniently characterized by three phases of decarburization corresponding to three distinct blow periods. In the first phase, the molten metal is blown with a gas mixture containing predominantly oxygen so as to raise the bath temperature to the desired operating range (generally about 3,000-3,l00F) as quickly as possible. Once the desired bath temperature is reached, the second blow period begins during which the ratio of argon to oxygen in the blowing gas mixture is increased to prevent the bath from overheating, and the carbon content of the melt is reduced to approximately the point where further decarburization can only be achieved at the expense of substantial chromium oxidation in the melt. Hence, the termination During the third phase of decarburization the furnace operator may wish to decarburize to C 0.05% while attaining a temperature 3,100F preparatory to finish the heat. The given conditions are thus changed to accomodate the additional argon which will be required to decarburize the melt to a level below 0.25% carbon. The given conditions are C, (0.25%), C, (0.05%), T, (3,050F), T, (3,lF), F ('75 F for example) and X. Solution of equations (1), (2) and (3) yields values for the variables t, F and F The numeric solutions of equations (1) (5) in the sample problem cited above are shown in Table I below. The calculated values are underlined. For a 100 ton vessel and a total gas flow rate of 2,000 cfm, W 100, K l.0F/min. and
point of the second phase of decarburization is gov- FT: 2,000
TABLE 1 Blow T, T, ci c, r F F,r t- Period F F (cfm) (cfm) (cfm) X (min) erned by the chromium-carbon equilibrium at the temperature and pressure of the melt. Further reduction in the carbon content of the melt to approximately the desired level is achieved during the third phase of decarburization by further increasing the argon/oxygen ratio of the gas mixture in order to decrease the partial pres sure of carbon monoxide in contact with the melt, thereby favoring the oxidation of carbon relative to chromium. I
The manner in which the flow equations defined herein are used in practice of the AOD process may be illustrated by the following example. For a given vessel To illustrate the effectiveness of controlling melt temperature with the use of C0 in the blowing mixture, three heats of stainless steel were made in an AOD vessel in which CO was blown as one of the process gases in accordance with equations (1), (2) and (3). The refining vessel had a factor K, 4F/min. The desired end point of the blow and the actual end point are compared in Table II. The very small differences between the actual and desired carbon content and final temperature are indicative of the effective temperature control which can be achieved by using CO as a process gas in accordance with the invention.
TABLE II Heat Sheet Data, Calculated Practices. and Results of Three Test Heats Starting Conditions Aim End-Point Calculated Values Actual End-Point Run C, T, F,, W X C, T, t AvgF Avg.F,, C, T,
A 0.44 3110 215 19 0.50 0.10 3145 20 82 170 0.11 3133 B 0.08 3145 265 18 0.12 0.04 3175 14 53 115 0.038 3170 C 0.10 3075 275 17 0.20 0.05 3100 9.6 47 120 0.045 3100 and heat of steel, W, K,, and P, will be known. The value of X, the carbon removal efficiency, is calculated from the relationship:
X= 322 (Ci pi Cf)/V where V volume of oxygen (ft )/ton of metal Since X will vary depending upon carbon content of the melt, bath temperature and vessel characteristics, it must be determined empirically under the operating conditions of interest.
For the blow period corresponding to the first phase of decarburization, the following variables are generally fixed: T, ,3,050F, for example), F and F (in the ratio of 3:1, for example). The time (t) required to heat the bath during this first phase and the carbon content resulting from the blow (C,) are calculated from equations (4) and (5).
During the second phase of decarburization the known conditions differ from those in the first phase. Thus, the following variables are fixed: C, (the former C,), C, 0.25%, for example), T,, T, (3,050F, for example) and X (previously calculated). The variables t, F and P can then be calculated in accordance with equations (1), (2) and (3).
The most surprising effect of using CO in the blowing gas mixture relates to carbon removal efficiency.
' Generally, the lower the carbon content of the melt,
the lower the carbon removal efficiency. Thus, an improvement in carbon removal efficiency is generally most desirable during the period when the steel is to be decarburized to a carbon level below that which is in equilibrium with CO at a partial pressure of one atmosphere; namely, during the third phase of decarburization. To illustrate the improvement in carbon removal efficiency at low carbon levels, 6 beats of stainless steel were made in an 18 ton AOD vessel 4 heats being run as in conventional AOD practice with a 2 component (argon-oxygen) blowing mixture; the remaining 2 heats using a 3 component mixture including CO in accordance with the present invention. The measured gas flow rates, initial and final carbon contents and bath temperatures, and the resulting carbon removal efficiency are indicated in Table III. The values for carbon removal efficiency (X) were calculated based upon the total oxygen introduced into the melt including that resulting from the decomposition of CO That is, the total oxygen in the melt was assumed to be F 22 F the combined flow being indicated in Table III as F The improvement in carbon removal efficiency during the runs B and C wherein CO was used in the blowing mixture is appreciable.
where:
F flow rate of C0 (cfm) F flow rate of O (cfm) F, flow rate of inert gas, (cfm) TABLE III RUN F0 FA, C0 T T, 0. CF x B 113 cfm 267 Yes 3145F 3l75F 0.079% 0.038% 12.3% C 117 267 Yes 3075 3100 0.100 0.045 22.0 1) 133 250 No 3150 3220 0.061 0.032 10.2 E 150 267 No 3200 3250 0.062 0.031 10.0 F 133 183 No 3135 3188 0.042 0.023 5.2 G 133 183 No 3115 3180 0.052 0.023 10.0
What is claimed is: F total gas flow rate for the particular system, 1. In a process for decarburizing a chromiumcontaining molten steel characterized by the subhlOWlhg tlme, (mlhutes) surface injection of oxygen and at least one inert gas C1 Carbon Content of the melt at the Start Of the selected from the group consisting of helium, neon, ,(P
krypton, argon, xenon and nitrogen, into a mass of said molten steel, wherein at least a portion of said oxygen reacts with the carbon in said molten steel to form a volatile carbon oxide, comprising a first phase of decarburization wherein the temperature of said molten steel is adjusted to the desired operating range; a second phase of decarburization wherein the carbon content of the molten steel is reduced to a predetermined value corresponding approximately to the carbon content of the melt in equilibrium with CO at a partial pressure of 1 atmosphere and at a temperature within said desired operating range; and a third phase of decarburization wherein the carbon content of the melt is reduced from said predetermined value to approximately the desired carbon content of the molten steel, the improvement comprising:
carbon content of the melt at the end of the blow. (percent) T, metal bath temperature at the start of the blow,
T; =metal bath temperature at the end of the blow,
W total weight of molten metal, (tons) K measured heat loss coefficient of the vessel (F/min) X carbon removal efficiency in the absence of CO and Z, enthalpy of the inert gas at the operating temperature of the bath.
3. The improvement as in claim 1 further including the step of injecting a gas consisting essentially of CO into the molten steel during said second phase of decarburization approximately as defined by the formulae:
322 c c 10.40x 1.29 (l-X) 1.2 t]-T T 1.24 (F F1) "l' Z F injecting a gas consisting essentially of CO into the molten steel during said third phase of decarburization in an amount less than that defined by the formula: F002 [F 2XFO,] where:
F flow rate of CO (cfm) flow rate of mid Inert 0011. (cm) P equilibrium partial pressure of CO for the particular bath temperature and carbon content of the molten steel, (atmospheres), and
X carbon removal efficiency in the absence of CO 55 2.- The improvement as in claim 1 wherein the flow rate of CO injected into the melt is defined approximately by the formulae:
1.- 322 c c [0.4ox 1.29 1-x 1.241-r T 1.24 (F F Z1 F W Kr T, metal bath temperature at the end of the blow,
W total weight of molten metal, (tons) K, measured heat loss coefficient of the vessel (F/min) X carbon removal efficiency in the absence of CO and Z, enthalpy of the inert gas at the operating temperature of the bath.
4. The improvement as in claim 1 further including the step of injecting a gas consisting essentially of CO into the molten steel during said first phase of decarburization for a period of time defined approximately by the formula:
]O.62 F KrW-Z, F, where:
F flow rate of CO (cfm) F flow rate of O (cfm) FI flow rate of inert ans. (cfm) t blowing time, (minutes) T metal bath temperature at the start of the blow,
T,= metal bath temperature at the end of the blow,
W total weight of molten metal, (tons) K, measured heat loss coefficient of the vessel (F/min.)
X carbon removal efficiency in the absence of CO and Z, enthalpy of the inert gas at the operating temperature of the bath.

Claims (3)

  1. 2. The improvement as in claim 1 wherein the flow rate of CO2 injected into the melt is defined approximately by the formulae:
  2. 3. The improvement as in claim 1 further including the step of injecting a gas consisting essentially of CO2 into the molten steel during said second phase of decarburization approximately as defined by the formulae:
  3. 4. The improvement as in claim 1 further including the step of injecting a gas consisting essentially of CO2 into the molten steel during said first phase of decarburization for a period of time defined approximately by the formula: t W (Tf - Ti)/(0.40X + 1.35 (1-X)) (FO + 1/2 FCO )-0.62 FCO - KrW-Zi FI where: FCO flow rate of CO2(cfm) FO flow rate of O2, (cfm) FI flow rate of inert gas, (cfm) t blowing time, (minutes) Ti metal bath temperature at the start of the blow, (*F) Tf metAl bath temperature at the end of the blow, (*F) W total weight of molten metal, (tons) Kr measured heat loss coefficient of the vessel (*F/min.) X carbon removal efficiency in the absence of CO2, and ZI enthalpy of the inert gas at the operating temperature of the bath.
US374635A 1973-06-28 1973-06-28 Use of CO{HD 2 {B in argon-oxygen refining of molten metal Expired - Lifetime US3861888A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US374635A US3861888A (en) 1973-06-28 1973-06-28 Use of CO{HD 2 {B in argon-oxygen refining of molten metal
AU69443/74A AU6944374A (en) 1973-06-28 1974-05-28 Decarburisation of molten steel with o2, co2 and inert gases
BE145977A BE816970A (en) 1973-06-28 1974-06-27 IMPROVEMENT IN THE DECARBURATION OF A CHROME CAST IRON BY MEANS OF OXYGEN AND AN INERT GAS
DE19742430975 DE2430975C3 (en) 1973-06-28 1974-06-27 Process for decarburizing a molten steel containing chromium
FR7422449A FR2235198B1 (en) 1973-06-28 1974-06-27
PL1974172235A PL88825B1 (en) 1973-06-28 1974-06-27
JP49072891A JPS5037611A (en) 1973-06-28 1974-06-27
FI1978/74A FI197874A (en) 1973-06-28 1974-06-27
NO742347A NO742347L (en) 1973-06-28 1974-06-27
BR5267/74A BR7405267A (en) 1973-06-28 1974-06-27 IMPROVEMENT IN THE PROCESS FOR DISCHARGING STEEL IN MERGER
DD179518A DD112468A5 (en) 1973-06-28 1974-06-27
IL45137A IL45137A (en) 1973-06-28 1974-06-27 Argon-oxygen decarburization process for refining stainless steel by use of carbon dioxide
SE7408502A SE7408502L (en) 1973-06-28 1974-06-27
US05/760,841 USRE29584E (en) 1973-06-28 1977-01-21 Use of CO2 in argon-oxygen refining of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US374635A US3861888A (en) 1973-06-28 1973-06-28 Use of CO{HD 2 {B in argon-oxygen refining of molten metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/760,841 Reissue USRE29584E (en) 1973-06-28 1977-01-21 Use of CO2 in argon-oxygen refining of molten metal

Publications (1)

Publication Number Publication Date
US3861888A true US3861888A (en) 1975-01-21

Family

ID=23477618

Family Applications (2)

Application Number Title Priority Date Filing Date
US374635A Expired - Lifetime US3861888A (en) 1973-06-28 1973-06-28 Use of CO{HD 2 {B in argon-oxygen refining of molten metal
US05/760,841 Expired - Lifetime USRE29584E (en) 1973-06-28 1977-01-21 Use of CO2 in argon-oxygen refining of molten metal

Family Applications After (1)

Application Number Title Priority Date Filing Date
US05/760,841 Expired - Lifetime USRE29584E (en) 1973-06-28 1977-01-21 Use of CO2 in argon-oxygen refining of molten metal

Country Status (12)

Country Link
US (2) US3861888A (en)
JP (1) JPS5037611A (en)
AU (1) AU6944374A (en)
BE (1) BE816970A (en)
BR (1) BR7405267A (en)
DD (1) DD112468A5 (en)
FI (1) FI197874A (en)
FR (1) FR2235198B1 (en)
IL (1) IL45137A (en)
NO (1) NO742347L (en)
PL (1) PL88825B1 (en)
SE (1) SE7408502L (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174212A (en) * 1978-03-10 1979-11-13 A. Finkl & Sons Co. Method for the refining of steel
US4260415A (en) * 1979-12-12 1981-04-07 Allegheny Ludlum Steel Corporation Decarburizing molten metal
US4321088A (en) * 1978-05-11 1982-03-23 Basf Aktiengesellschaft Process for treating pig iron melts and steel melts or alloys
US4409028A (en) * 1979-10-24 1983-10-11 Moore William H Process for producing cast iron
US4490172A (en) * 1979-06-29 1984-12-25 Moore William H Method of melting and refining steel and other ferrous alloys
US4746361A (en) * 1987-04-03 1988-05-24 Inland Steel Company Controlling dissolved oxygen content in molten steel
US5343491A (en) * 1991-11-28 1994-08-30 Carbagas And Von Roll Ag Method of suppressing dust and fumes during electric steel production
US5417739A (en) * 1993-12-30 1995-05-23 Ltv Steel Company, Inc. Method of making high nitrogen content steel
US5830259A (en) * 1996-06-25 1998-11-03 Ltv Steel Company, Inc. Preventing skull accumulation on a steelmaking lance
US5865876A (en) * 1995-06-07 1999-02-02 Ltv Steel Company, Inc. Multipurpose lance
US5885323A (en) * 1997-04-25 1999-03-23 Ltv Steel Company, Inc. Foamy slag process using multi-circuit lance
CN102146499A (en) * 2010-02-05 2011-08-10 鞍钢股份有限公司 Smelting method for making stainless steel by blowing CO2 in argon oxygen decarburization (AOD)
US9045805B2 (en) 2013-03-12 2015-06-02 Ati Properties, Inc. Alloy refining methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA781814B (en) * 1977-03-31 1979-03-28 Union Carbide Corp Method for producing improved metal castings by pneumatically refining the melt
US4436553A (en) 1982-01-22 1984-03-13 Union Carbide Corporation Process to produce low hydrogen steel
FR2560891B1 (en) * 1984-03-09 1989-10-20 Air Liquide CAST REFINING PROCESS
US4615730A (en) 1985-04-30 1986-10-07 Allegheny Ludlum Steel Corporation Method for refining molten metal bath to control nitrogen
DE3912061A1 (en) * 1989-04-13 1990-10-18 Messer Griesheim Gmbh METHOD FOR PRODUCING ALLOY STEEL BRANDS
US5139569A (en) * 1989-04-13 1992-08-18 Messer Griesheim Process for the production of alloy steel grades using treatment gas consisting of CO2
US5190577A (en) * 1990-12-11 1993-03-02 Liquid Air Corporation Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855293A (en) * 1955-03-21 1958-10-07 Air Liquide Method and apparatus for treating molten metal with oxygen
US3046107A (en) * 1960-11-18 1962-07-24 Union Carbide Corp Decarburization process for highchromium steel
US3252790A (en) * 1956-06-27 1966-05-24 Union Carbide Corp Preparation of metals and alloys
US3706549A (en) * 1968-02-24 1972-12-19 Maximilianshuette Eisenwerk Method for refining pig-iron into steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003865A (en) * 1959-09-10 1961-10-10 Cameron Iron Works Inc Decarburizing process for alloy steels containing chromium
US3397878A (en) * 1965-11-19 1968-08-20 Union Carbide Corp Under-bath tuyere
BE755456A (en) * 1969-08-29 1971-03-01 Allegheny Ludlum Ind Inc DECARBURATION OF MELT STEEL
US3728101A (en) * 1970-11-09 1973-04-17 Armco Steel Corp Process for making stainless steel
FR2186974A5 (en) * 1972-05-31 1974-01-11 Air Liquide Decarburisation of iron and steel alloys - contg chromium by blowing with oxygen, carbon dioxide and a rare gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2855293A (en) * 1955-03-21 1958-10-07 Air Liquide Method and apparatus for treating molten metal with oxygen
US3252790A (en) * 1956-06-27 1966-05-24 Union Carbide Corp Preparation of metals and alloys
US3046107A (en) * 1960-11-18 1962-07-24 Union Carbide Corp Decarburization process for highchromium steel
US3706549A (en) * 1968-02-24 1972-12-19 Maximilianshuette Eisenwerk Method for refining pig-iron into steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174212A (en) * 1978-03-10 1979-11-13 A. Finkl & Sons Co. Method for the refining of steel
US4321088A (en) * 1978-05-11 1982-03-23 Basf Aktiengesellschaft Process for treating pig iron melts and steel melts or alloys
US4490172A (en) * 1979-06-29 1984-12-25 Moore William H Method of melting and refining steel and other ferrous alloys
US4409028A (en) * 1979-10-24 1983-10-11 Moore William H Process for producing cast iron
US4260415A (en) * 1979-12-12 1981-04-07 Allegheny Ludlum Steel Corporation Decarburizing molten metal
EP0030818A2 (en) * 1979-12-12 1981-06-24 Allegheny Ludlum Steel Corporation Improved method of decarburizing molten metal
EP0030818A3 (en) * 1979-12-12 1981-12-30 Allegheny Ludlum Steel Corporation Improved method of decarburizing molten metal
US4746361A (en) * 1987-04-03 1988-05-24 Inland Steel Company Controlling dissolved oxygen content in molten steel
US5343491A (en) * 1991-11-28 1994-08-30 Carbagas And Von Roll Ag Method of suppressing dust and fumes during electric steel production
US5417739A (en) * 1993-12-30 1995-05-23 Ltv Steel Company, Inc. Method of making high nitrogen content steel
US5865876A (en) * 1995-06-07 1999-02-02 Ltv Steel Company, Inc. Multipurpose lance
US5830259A (en) * 1996-06-25 1998-11-03 Ltv Steel Company, Inc. Preventing skull accumulation on a steelmaking lance
US5885323A (en) * 1997-04-25 1999-03-23 Ltv Steel Company, Inc. Foamy slag process using multi-circuit lance
CN102146499A (en) * 2010-02-05 2011-08-10 鞍钢股份有限公司 Smelting method for making stainless steel by blowing CO2 in argon oxygen decarburization (AOD)
US9045805B2 (en) 2013-03-12 2015-06-02 Ati Properties, Inc. Alloy refining methods
US9683273B2 (en) 2013-03-12 2017-06-20 Ati Properties Llc Alloy refining methods

Also Published As

Publication number Publication date
DD112468A5 (en) 1975-04-12
DE2430975B2 (en) 1975-09-04
BE816970A (en) 1974-12-27
FR2235198B1 (en) 1978-01-20
FR2235198A1 (en) 1975-01-24
FI197874A (en) 1974-12-29
PL88825B1 (en) 1976-09-30
USRE29584E (en) 1978-03-21
SE7408502L (en) 1974-12-30
IL45137A0 (en) 1974-09-10
AU6944374A (en) 1975-12-04
DE2430975A1 (en) 1975-01-09
NO742347L (en) 1975-01-27
BR7405267A (en) 1976-02-24
JPS5037611A (en) 1975-04-08
IL45137A (en) 1976-09-30

Similar Documents

Publication Publication Date Title
US3861888A (en) Use of CO{HD 2 {B in argon-oxygen refining of molten metal
US3252790A (en) Preparation of metals and alloys
US3046107A (en) Decarburization process for highchromium steel
US3754894A (en) Nitrogen control in argon oxygen refining of molten metal
US3695946A (en) Method of manufacturing oriented grain magnetic steel sheets
US5190577A (en) Replacement of argon with carbon dioxide in a reactor containing molten metal for the purpose of refining molten metal
US4474605A (en) Process for refining high-chromium steels
US3850617A (en) Refining of stainless steel
US4165234A (en) Process for producing ferrovanadium alloys
US4174212A (en) Method for the refining of steel
US3930843A (en) Method for increasing metallic yield in bottom blown processes
KR850000927B1 (en) Method for preventing slopping during subsurface pneumatic refining steel
US3305352A (en) Process of producing alloys
JPH0776715A (en) Decarburization of carbon-containing metallic melt
Heise et al. Use of CO 2 in argon-oxygen refining of molten metal
JPS5579821A (en) Manufacture of low-carbon high-chromium alloy steel by heat-insulated furnace for molten steel
US3929458A (en) Process for the elaboration of chrome steels
CA1115963A (en) Method for the refining of steel
US4022613A (en) Metallurgical material and process for treating iron or steel therewith
US4436553A (en) Process to produce low hydrogen steel
US3860418A (en) Method of refining iron melts containing chromium
SU1250582A1 (en) Method of steel melting in multiple-bath electric furnace
US4141723A (en) Process for producing stainless steel
US4066442A (en) Method of making chrome steel in an electric arc furnace
SU379633A1 (en) METHOD OF MANUFACTURE OF LOW-CARBON ALLOYED STEEL

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR

Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001

Effective date: 19860106

AS Assignment

Owner name: UNION CARBIDE CORPORATION,

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131

Effective date: 19860925

AS Assignment

Owner name: UNION CARBIDE INDUSTRIAL GASES TECHNOLOGY CORPORAT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE INDUSTRIAL GASES INC.;REEL/FRAME:005271/0177

Effective date: 19891220