US3859059A - Erosion-corrosion resistant aluminum radiator clad tubing - Google Patents

Erosion-corrosion resistant aluminum radiator clad tubing Download PDF

Info

Publication number
US3859059A
US3859059A US439336A US43933674A US3859059A US 3859059 A US3859059 A US 3859059A US 439336 A US439336 A US 439336A US 43933674 A US43933674 A US 43933674A US 3859059 A US3859059 A US 3859059A
Authority
US
United States
Prior art keywords
aluminum
alloy
cladding
composite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US439336A
Inventor
William H Anthony
James M Popplewell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olin Corp
Original Assignee
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00222795A external-priority patent/US3809155A/en
Application filed by Olin Corp filed Critical Olin Corp
Priority to US439336A priority Critical patent/US3859059A/en
Application granted granted Critical
Publication of US3859059A publication Critical patent/US3859059A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/066Combating corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/454Heat exchange having side-by-side conduits structure or conduit section
    • Y10S165/471Plural parallel conduits joined by manifold
    • Y10S165/486Corrugated fins disposed between adjacent conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • ABSTRACT Related Application Data A composite aluminum article having increased resis- [62] Division of Ser No 222 795 Feb 2 1972 Pat No tance to erosion corrosion in aqueous environments 3 809 comprising an aluminum base alloy cladding consisting essentially of 0.8 to 1.3% zinc, 0.7% maximum sili- 52 U.S. c1 29/191 29/197.5 010% maximum COPPER 010% 51 Int.
  • aluminum tubing which is used in heat exchangers such as aluminum radiators should have high resistance to erosion corrosion damage by the aqueous heat exchange fluid.
  • Aluminum automobile radiators have been extensively tested. Unfortunately, however, materials which are suitable are often subject to corrosion damage and, hence, have a limited life expectancy due to the development of leaks in service.
  • the leaks may be developed due to the erosion corrosion channeling excavating the tube wall as the coolant stream passes around blockages in the tubes. Very high stream velocities which could occur in such channels can readily result in erosion corrosion damage unless the material is highly resistant to this type of damage.
  • Composite aluminum articles of the present invention have substantially improved resistance to erosion corrosion in an aqueous environment.
  • the composite comprises an aluminum alloy cladding consisting essentially of 0.8 to 1.3% zinc and 0.7% maximum silicon plus iron, 0.10% maximum copper, 0.10% maximum manganese, 0.10% maximum magnesium, balance essentially aluminum bonded to at least one side of an aluminum base alloy core consisting essentially of manganese from 1.0 to 1.5%, chromium from 0.1 to 0.4%, copper from 0.05 to 0.4%, and the balance essentially aluminum.
  • the present invention also contemplates a composite aluminum tubing and a high strength heat exchange assembly having improved resistance to erosion corrosion in an aqueous environment.
  • the assembly comprises at least one header connected by at least one tube and a secondary heat exchange surface connected to said tube.
  • the tube is the improved composite aluminum tubing of the present invention.
  • the preferred embodiment includes two parallel headers connected by a plurality of said tubes perpendicular therewith, with corrugated fin stock material being bonded to said tubes.
  • the present invention also contemplates an improved heat transfer system and a process for providing heat transfer with resistance to erosion corrosion in an aqueous environment.
  • the process comprises providing the metal tubing of the present invention having entrance and exits ends, affixing said entrance and exit ends to two tube sheets, passing a first aqueous liquid through said tubing and contacting the external surface of the tubing with a second fluid in heat exchange relationship with the first fluid.
  • FIG. I is a perspective view of the present invention.
  • FIG. II is a front view, with portions cut away, of an automobile radiator including the tubing of the present invention.
  • the composite aluminum articles of the present invention comprises an aluminum alloy cladding consisting essentially of 0.8 to 1.3% zinc and 0.7% maximum silicon plusiron, 0.10% maximum copper, 0.10% maximum manganese, 0.10% maximum magnesium, balance essentially aluminum bonded to at least one side of an aluminum base alloy core consisting essentially of manganese from 1.0 to 1.5%, chromium from 0.1 to 0.4%, copper from 0.05 to 0.4%, and the balance essentially aluminum.
  • the present invention is characterized by surprising resistance to erosion corrosion in an aqueous environment wherein the aluminum alloy cladding is exposed to the aqueous environment. It has also been found that this improved resistance can be accomplished with retention of excellent physical properties.
  • the composite of the present invention has improved resistance to pitting corrosion.
  • the excellent erosion corrosion resistance of the composite of the present invention is highly desirable commercially. This property admirably lends the tubing of the present invention to use in heat exchange assembly such as in an aluminum radiator and the tubing of the present invention would result in a substantially longer useful life.
  • the surprising properties achieved in accordance with the present invention would give the material of the present invention good utility in other applications using high speed fluids.
  • the cladding material is anodic to the core material in an aqueous environment such as an antifreeze solution in automotive radiators and should localized perforation of the cladding occur, as in impingement attack, the current generated by the relatively large anode and small cathode is such as to effectively inhibit penetration of the core and hence the core is cathodically protected from further attack.
  • the cladding material of the present invention may also contain impurities such as up to 0.7% silicon plus
  • the aluminum radiator may be prepared in a conventional manner utilizing brazing in a continuous aluminum radiator manufacturing line.
  • an aluminum radiator may be prepared from tubiron, up to 0.1% copper, up to 0.1% manganese, up to 5 ing of the present invention having a 17 mil thick wall 0.1% magnesium, others 0.05% each, total 015%, and fin stock which may be either the same alloy as the
  • the core material of the present inv tion may l core material or a conventional aluminum alloy of the contain impurities such as up to 0.6% silicon, up to 4XXX Series for p alumihum alloy 4043, 4343 0.7% iron, up to 0.1% zinc and others 0.05% each, total or 4045.
  • An assembly is prepared having the configura- 0.l5%. tion of the desired aluminum radiator.
  • the fixtured as- Naturally the cladding may be bonded to the outside sembly is dip coated with a salt flux and then furnace f e f th core h ld h aqueous di flo brazed in a continuous manner on a production line. around the tubes rather than through them or the core
  • the radiators P through ah thrhaee Where the may advantageously be clad on both Sid wh r i a brazing filler metal melts and then solidifies resulting in first aqueous medium passes through the tubing and a the formation of a rigid assembly.
  • fluxsecond aqueous medium passes around the tubing.
  • leSS brazing P eS m y e used- Th bi of h present invention normally, but not As aforementioned an additional cladding of a braz necessarily has a wall thickness no-larger than 0.10 ihg alloy
  • a wall thickness no-larger than 0.10 ihg alloy such as an AA 4XXX Series alloy y be i h wh h bi of the present invention is used bonded to the exposed surface of the core material for in a high strength aluminum radiator, the tubing has a bonding to the fin Stock, if desiredwall thickness 0.030 inch or smaller and perferably has
  • the a wall thickness from 0.010 inch to 0.020 inch.
  • the tubing of the configuration Shown in H which represents ah present invention most advantageously has a wall thicklustl'ative heat exchanger embodhheht- Referring how ness f 1 i h d ll to FIG.
  • the radiator assembly includes a heat dissi-
  • the percentage thickness of the cladding of the tub- P g or core 6 having at pp ends a P tahk ing of the present invention is not critical but generally of inlet header 8 and bottom k of Outlet header t ranges from 5 to 25% of the total composite wall thickadapted eohheetloh; P Y y Wlth the e ness of the composite in order to insure a sufficient e and Intake eohdults e a eyhhder bloek eoehhg thickness of the core material for strength as well as Jacket for the flow of coohhg aqueous medum from sufficient thickness of the cladding in order to provide one tank t the Otheh
  • the eore 6 15 made p of a for a sufficiently long cladding life in service.
  • the tubing of the present invention may be Ieadlly ent mvention.
  • the tubes are spaced apart by fin str1ps prepared by conventional methods For example, 14.
  • the fins are folded or corrugated between tubes 12 mlnum ingots may be conventionally prepared and andextend between ad acent walls or ad oining tubes rolled to Strip in a conventional manner and then strlps to divide the space into a number of relatively small air of the clad and core material rolled together.
  • the matecells rial may then be welded or extruded into tubing having The present mvemlon be m ore readlly apparem the desired configuration.
  • the tubing may also be from a consideration of the following illustrative examformed by drawing of the core in tubular form over the 40 p165 cladding material in tubular form if desired.
  • EXAMPLE l If desired fins of an alloy such as the AA 4XXX series Y r a a or of the core material may be provided on an exposed Three alloys, Alloys A, Band C, were Durville cast surface of the core material and bonded thereto by, for and then homogenized at l,125 F for about 8 hours example a brazing filler metal or by providing an addiand air cooled.
  • Table I The composition of the resulting alloys tional cladding bondedto the core which is suitable for is shown in Table I below:
  • Rafhator tubmg generally seam welded inches and then wire brushed and vapor degreascd.
  • stantlally round tubmg and flattened into an oval or flat Ingot C was hot rolled at 00 F to 025 inch gage using cross sectlon.
  • bonding together of the clad and a 1 inch pass-with reheating to 00 F with each core material may be readily achieved y rolling of the 0nd pass.
  • the hot rolled material was then cold rolled composites together .before welding.
  • the smaller dito 0,050 i h g g Th 0,050 i h gage i l f mension is preferably from 0.05 to 0.2 inch.
  • the larger i t C was th n welded t ach of th A and B i t dimension is preferably from 0.3 to 1.2inches.
  • the tubing of the tively leaving 1 inch long openings in the weld across present invention may be advantageously used having an outside diameter (O.D.) up to several inches and preferably from )4 inch 0D. to 2 inches O.D.
  • the composites were then heated to 800 F for 5 minutes and given skin passes of about a 3% reduction each with the partially opened edge facing in a direction opposite to the travel of the composites.
  • the composites were then reheated to 800 F, hot rolled to 0.25 inch gage, and then control A composite.
  • EXAMPLE IV The present example illustrates the potential differcold rolled to @050 inch gage- 5 ence between the alloys of the composite of the present
  • the cladding thickness of the A and B composites invention. were then measured on mounted and polished sections Durville ingots of the following composition were and found to be 1.5 and 1.6 mils thick respectively. cast and homogenized and processed to .050 inch gage
  • the composites of Example I were then heated up as in Example I and then subjected to a simulated and cooled down using a pit furnace such a way to brazed condition as in Example II.
  • each pecimen was passed through a special composite difference between the compo t of h composite gasket of silicon rubber in the jet chamber of the jet tesduring the alumi m di t f t i Th h ter without making electrical contact with the flange or up and cool down cycle is as follows:
  • the composites laaklhg y ahtlffaele when the gasket was tlghtehed were heated to 1,150 P and cooled to 800 F within 2 ,25 Special rubber inserts were p y so that the p minutes at a constant cooling rate and then quenched mehs weta mounted Without incurring y electrical i water at 1 0 F leakage to the stainless steel jet tester chamber.
  • the antifreeze material was a comthe current flow between Alloy C of Example I and Alloy A of the present example and Alloy C of Example flashal, inhibited aqueous ethylene glycol containing I and Alloy B of the present example was monitored a 45% nominal by volume ethylene glycol whlch was wh1le the antifreeze impinged on the samples at 98 feet due cted onto the samples at a temperature of about 40 p Second The temperature was cycled p and down 200 a the veloclty 2 98 feet per from 40 to 105 C for three successive cycles.
  • Thlsdmvention h may be emblimdieddm other forms tor afforded to the B alloy by the C al 0y c a ing 0 t e carrie out in ot er ways wit out epartmg rom t e composite whereas the exposed core material of the A spirit or essential characteristics thereof.
  • a composite metal article according to claim 1 wherein said cladding contains up to 0.7% silicon plus iron, up to 0.1% copper, up to 0.1% manganese, up to 0.1% magnesium, others 0.05% each, total 0.15%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

A composite aluminum article having increased resistance to erosion corrosion in aqueous environments comprising an aluminum base alloy cladding consisting essentially of 0.8 to 1.3% zinc, 0.7% maximum silicon plus iron, 0.10% maximum copper, 0.10% maximum manganese, 0.10% maximum magnesium, balance essentially aluminum, bonded to at least one side of an aluminum base alloy core consisting essentially of manganese from 1.0 to 1.5% chromium from 0.1 to 0.4% copper from 0.05 to 0.4%, balance essentially aluminum.

Description

United States Patent Anthony et al. 1 Jan. 7, 1975 EROSION-CORROSION RESISTANT 3,480,411 11/1969 Pryor 29/191 LUMI RADIATOR CLAD TUBING 3,649,227 3/1972 Fetzer et aL. 29/197.5
[75] Inventors: William H. Anthony; James M. FOREIGN PATENTS 0R APPLICATIONS Popplewell, both of Guilford, Conn. 1,390,907 1/1965 France 29/1975 73 Assi nee: Olin Cor oratio N H 1 g Corm p ew aven Primary Examiner-A. B. Curtls Attorney, Agent, or FirmRobert H. Bachman [22] F1led: Feb. 4, 1974 [21] Appl. N0.: 439,336 [57] ABSTRACT Related Application Data A composite aluminum article having increased resis- [62] Division of Ser No 222 795 Feb 2 1972 Pat No tance to erosion corrosion in aqueous environments 3 809 comprising an aluminum base alloy cladding consisting essentially of 0.8 to 1.3% zinc, 0.7% maximum sili- 52 U.S. c1 29/191 29/197.5 010% maximum COPPER 010% 51 Int. Cl 13321 15/00 mum manganese 010% maximum magnesium [581 Field of Search 29/191 197.5 essentia'ly aluminum bonded to at 63810116 Side of an aluminum base alloy core consisting essentially [56] References Cited of manganese from 1.0 to 1.5% chromium from 0.1 to 0.4% copper from 0.05 to 0.4%, balance essentially UNITED STATES PATENTS aluminum. 2,726,436 12/1955 Champion 29/197.s 3,133,796 5/1964 Craig, Jr. 29/197.5 4 Claims, 2 Drawing gures EROSION-CORROSION RESISTANT ALUMINUM RADIATOR CLAD TUBING This is a division of application Ser. No. 222,795, filed Feb. 2, 1972, now US. Pat. No. 3,809,155.
BACKGROUND OF THE INVENTION It is highly desirable to develop composite aluminum articles having improved resistance to erosion corrosion in aqueous environments due to the wide use of aluminum commercially in aqueous environments.
For example, aluminum tubing which is used in heat exchangers such as aluminum radiators should have high resistance to erosion corrosion damage by the aqueous heat exchange fluid.
Aluminum automobile radiators have been extensively tested. Unfortunately, however, materials which are suitable are often subject to corrosion damage and, hence, have a limited life expectancy due to the development of leaks in service. The leaks may be developed due to the erosion corrosion channeling excavating the tube wall as the coolant stream passes around blockages in the tubes. Very high stream velocities which could occur in such channels can readily result in erosion corrosion damage unless the material is highly resistant to this type of damage.
Accordingly, it is an object of the present invention to provide composite aluminum articles having improved resistance to erosion corrosion in aqueous environments.
It is a further object of the present invention to provide composite aluminum tubing having improved resistance to erosion corrosion in aqueous environments.
It is a still further object of the present invention to provide an improved heat exchange assembly utilizing said tubing, a process for improving heat transfer with resistance to erosion corrosion in an aqueous environment and an improved heat transfer system.
Further objects and advantages of the present invention will appear from the ensuing specification.
SUMMARY OF THE INVENTION In accordance with the present invention it has now been found that the foregoing objects and advantages may be readily achieved.
Composite aluminum articles of the present invention have substantially improved resistance to erosion corrosion in an aqueous environment. The composite comprises an aluminum alloy cladding consisting essentially of 0.8 to 1.3% zinc and 0.7% maximum silicon plus iron, 0.10% maximum copper, 0.10% maximum manganese, 0.10% maximum magnesium, balance essentially aluminum bonded to at least one side of an aluminum base alloy core consisting essentially of manganese from 1.0 to 1.5%, chromium from 0.1 to 0.4%, copper from 0.05 to 0.4%, and the balance essentially aluminum.
The present invention also contemplates a composite aluminum tubing and a high strength heat exchange assembly having improved resistance to erosion corrosion in an aqueous environment. The assembly comprises at least one header connected by at least one tube and a secondary heat exchange surface connected to said tube. The tube is the improved composite aluminum tubing of the present invention. The preferred embodiment includes two parallel headers connected by a plurality of said tubes perpendicular therewith, with corrugated fin stock material being bonded to said tubes.
The present invention also contemplates an improved heat transfer system and a process for providing heat transfer with resistance to erosion corrosion in an aqueous environment. The process comprises providing the metal tubing of the present invention having entrance and exits ends, affixing said entrance and exit ends to two tube sheets, passing a first aqueous liquid through said tubing and contacting the external surface of the tubing with a second fluid in heat exchange relationship with the first fluid.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view of the present invention.
FIG. II is a front view, with portions cut away, of an automobile radiator including the tubing of the present invention.
DETAILED DESCRIPTION The composite aluminum articles of the present invention comprises an aluminum alloy cladding consisting essentially of 0.8 to 1.3% zinc and 0.7% maximum silicon plusiron, 0.10% maximum copper, 0.10% maximum manganese, 0.10% maximum magnesium, balance essentially aluminum bonded to at least one side of an aluminum base alloy core consisting essentially of manganese from 1.0 to 1.5%, chromium from 0.1 to 0.4%, copper from 0.05 to 0.4%, and the balance essentially aluminum.
As indicated hereinabove, the present invention is characterized by surprising resistance to erosion corrosion in an aqueous environment wherein the aluminum alloy cladding is exposed to the aqueous environment. It has also been found that this improved resistance can be accomplished with retention of excellent physical properties.
In addition to the foregoing, the composite of the present invention has improved resistance to pitting corrosion.
The excellent erosion corrosion resistance of the composite of the present invention is highly desirable commercially. This property admirably lends the tubing of the present invention to use in heat exchange assembly such as in an aluminum radiator and the tubing of the present invention would result in a substantially longer useful life. The surprising properties achieved in accordance with the present invention would give the material of the present invention good utility in other applications using high speed fluids.
It has been found that in aqueous environments wherein erosion corrosion or impingement attack occurs, as for example, upon the inside wall or cladding 2, as shown in FIG. I of the tubing carrying the aqueous solution, that the aluminum composite of the present invention has surprising resistance to this destructive attack. This resistance is obtained since, should perforation of the aluminum alloy cladding 2, as shown in FIG. 1, occur, further localized corrosion is retarded or eliminated by the cathodic protection afforded to the exposed alloy core 4. More specifically the cladding material is anodic to the core material in an aqueous environment such as an antifreeze solution in automotive radiators and should localized perforation of the cladding occur, as in impingement attack, the current generated by the relatively large anode and small cathode is such as to effectively inhibit penetration of the core and hence the core is cathodically protected from further attack.
The cladding material of the present invention may also contain impurities such as up to 0.7% silicon plus The aluminum radiator may be prepared in a conventional manner utilizing brazing in a continuous aluminum radiator manufacturing line. As a specific example, an aluminum radiator may be prepared from tubiron, up to 0.1% copper, up to 0.1% manganese, up to 5 ing of the present invention having a 17 mil thick wall 0.1% magnesium, others 0.05% each, total 015%, and fin stock which may be either the same alloy as the The core material of the present inv tion may l core material or a conventional aluminum alloy of the contain impurities such as up to 0.6% silicon, up to 4XXX Series for p alumihum alloy 4043, 4343 0.7% iron, up to 0.1% zinc and others 0.05% each, total or 4045. An assembly is prepared having the configura- 0.l5%. tion of the desired aluminum radiator. The fixtured as- Naturally the cladding may be bonded to the outside sembly is dip coated with a salt flux and then furnace f e f th core h ld h aqueous di flo brazed in a continuous manner on a production line. around the tubes rather than through them or the core The radiators P through ah thrhaee ,Where the may advantageously be clad on both Sid wh r i a brazing filler metal melts and then solidifies resulting in first aqueous medium passes through the tubing and a the formation of a rigid assembly. Alternatively, fluxsecond aqueous medium passes around the tubing. leSS brazing P eS m y e used- Th bi of h present invention normally, but not As aforementioned an additional cladding of a braz necessarily has a wall thickness no-larger than 0.10 ihg alloy Such as an AA 4XXX Series alloy y be i h wh h bi of the present invention is used bonded to the exposed surface of the core material for in a high strength aluminum radiator, the tubing has a bonding to the fin Stock, if desiredwall thickness 0.030 inch or smaller and perferably has Thus, in accordance with the present invention the a wall thickness from 0.010 inch to 0.020 inch. For g strength heat exchange assembly y have the heat exchange applications in general, the tubing of the configuration Shown in H, which represents ah present invention most advantageously has a wall thicklustl'ative heat exchanger embodhheht- Referring how ness f 1 i h d ll to FIG. II, the radiator assembly includes a heat dissi- The percentage thickness of the cladding of the tub- P g or core 6 having at pp ends a P tahk ing of the present invention is not critical but generally of inlet header 8 and bottom k of Outlet header t ranges from 5 to 25% of the total composite wall thickadapted eohheetloh; P Y y Wlth the e ness of the composite in order to insure a sufficient e and Intake eohdults e a eyhhder bloek eoehhg thickness of the core material for strength as well as Jacket for the flow of coohhg aqueous medum from sufficient thickness of the cladding in order to provide one tank t the Otheh The eore 6 15 made p of a for a sufficiently long cladding life in service. ber of fluld passageways of water tubes 12 of the pres- The tubing of the present invention may be Ieadlly ent mvention. The tubes are spaced apart by fin str1ps prepared by conventional methods For example, 14. The fins are folded or corrugated between tubes 12 mlnum ingots may be conventionally prepared and andextend between ad acent walls or ad oining tubes rolled to Strip in a conventional manner and then strlps to divide the space into a number of relatively small air of the clad and core material rolled together. The matecells rial may then be welded or extruded into tubing having The present mvemlon be m ore readlly apparem the desired configuration. The tubing may also be from a consideration of the following illustrative examformed by drawing of the core in tubular form over the 40 p165 cladding material in tubular form if desired. EXAMPLE l If desired fins of an alloy such as the AA 4XXX series Y r a a or of the core material may be provided on an exposed Three alloys, Alloys A, Band C, were Durville cast surface of the core material and bonded thereto by, for and then homogenized at l,125 F for about 8 hours example a brazing filler metal or by providing an addiand air cooled. The composition of the resulting alloys tional cladding bondedto the core which is suitable for is shown in Table I below:
TABLE I Composition lngot Si Fe Cu Mn Mg Cr Zn Ti A .21 .41 .11 1.18 .11 .005 B .19 .35 .20 H8 .21 .11 .007 c .03 .24 1.03 .005
bonding to the fin material, such as an AA 4XXX series EXAMPLE H Y lngots A and B of Example I were scapled to 1.5
Rafhator tubmg generally seam welded inches and then wire brushed and vapor degreascd. stantlally round tubmg and flattened into an oval or flat Ingot C was hot rolled at 00 F to 025 inch gage using cross sectlon. Thus, bonding together of the clad and a 1 inch pass-with reheating to 00 F with each core material may be readily achieved y rolling of the 0nd pass. The hot rolled material was then cold rolled composites together .before welding. The smaller dito 0,050 i h g g Th 0,050 i h gage i l f mension is preferably from 0.05 to 0.2 inch. The larger i t C was th n welded t ach of th A and B i t dimension is preferably from 0.3 to 1.2inches. For heat slabs on four sides to form A and B composites'respecexchange applications in general, the tubing of the tively leaving 1 inch long openings in the weld across present invention may be advantageously used having an outside diameter (O.D.) up to several inches and preferably from )4 inch 0D. to 2 inches O.D.
one of the shorter edges so that air could be expelled during further rolling of the composites. The composites were then heated to 800 F for 5 minutes and given skin passes of about a 3% reduction each with the partially opened edge facing in a direction opposite to the travel of the composites. The composites were then reheated to 800 F, hot rolled to 0.25 inch gage, and then control A composite.
EXAMPLE IV The present example illustrates the potential differcold rolled to @050 inch gage- 5 ence between the alloys of the composite of the present The cladding thickness of the A and B composites invention. were then measured on mounted and polished sections Durville ingots of the following composition were and found to be 1.5 and 1.6 mils thick respectively. cast and homogenized and processed to .050 inch gage The composites of Example I were then heated up as in Example I and then subjected to a simulated and cooled down using a pit furnace such a way to brazed condition as in Example II.
TABLE II lngot Si Fe Cu Mn Mg Cr Zn Ti simulate the effect of a brazing step in a continuous alu- Specimens were cut from the A and B alloys and minum radiator manufacturing line. This was done in from .050 inch gage C cladding material of Example I order to allow for any possible interdiffusion effects for impingement testing as in Example III. A portion of which could result in reducing the electrode potential each pecimen was passed through a special composite difference between the compo t of h composite gasket of silicon rubber in the jet chamber of the jet tesduring the alumi m di t f t i Th h ter without making electrical contact with the flange or up and cool down cycle is as follows: The composites laaklhg y ahtlffaele when the gasket was tlghtehed were heated to 1,150 P and cooled to 800 F within 2 ,25 Special rubber inserts were p y so that the p minutes at a constant cooling rate and then quenched mehs weta mounted Without incurring y electrical i water at 1 0 F leakage to the stainless steel jet tester chamber. In this manner it was possible to mount dissimilar specimens EXAMPLE in jet test chambers and measure the current flow be- The Composites f Example I and I] were cut into tween them wh1le they were sub ected to antifreeze et propriate s ze specimens and subjected to impingement iPl l atflany temperature g g h by a plurality of ets of an aqueous ant freeze material 6 1 3 0W '5 l l f hf g g t j h fi g- 15 313 ,j;j 212 3336521352??? n; TaiEZ'ZFIJZ 55815531251282 tomo a t moste t r g g zz t? pgocgssing g 1 5 gi 2 than .5% of the total electrolytic resistance path in the thickness in'Example I and the composite A were antifreeze between the two test specimens. In this manployed as controls. The antifreeze material was a comthe current flow between Alloy C of Example I and Alloy A of the present example and Alloy C of Example mercial, inhibited aqueous ethylene glycol containing I and Alloy B of the present example was monitored a 45% nominal by volume ethylene glycol whlch was wh1le the antifreeze impinged on the samples at 98 feet due cted onto the samples at a temperature of about 40 p Second The temperature was cycled p and down 200 a the veloclty 2 98 feet per from 40 to 105 C for three successive cycles. The disecAon i g out d rection of current flow throughout the cycling was such t 6 6 test t e Speclmens were remiwe that the alloy C of Example I component remained anand rlnsed in distilled water followed by solvent rinses Odie for both.couples m mfathanol and benzjene sampl es were It was apparent that throughout the several cycles the chemlcany Cleaned by "nmerslhg h m aqueous current output of the Alloy BAlloy C was about five bath of P P Ph actds at 80 They times as great as the Alloy A-Alloy C. Thus a startling were then rinsed n distilled water, dried and the depths nd unexpectedly large difference to the protective caof the resultant lmplhgemeht ctatets h t The thodic current is provided by the Alloy C anode matedepth of attack the Control hompfislte comprlslhg the rial coupled to Alloy B and this is especially true within A P C material composlte A and the pq the temperature range of 90 to 105 C where automoited alloy A matenal was found to be about 3 "h biles normally operate. In particular the Alloy A-Alloy whereas the depth of attack in the composite compris- C couple id d 16 micmamps Current in the ing the B and C material Or composite B was fo I0 scending leg of the third cycle at a temperature of 93.3 be about 1.8 mils maximum. The exposed core of the C (or 200 F) while the Alloy B-Alloy C couple pro- B composite or the B alloy was found to be substanvided I00 microamps at the same point. ttally free of attack attesting to the lgaivflll'llgdpl'oteitlfin Thlsdmvention hmay be emblimdieddm other forms tor afforded to the B alloy by the C al 0y c a ing 0 t e carrie out in ot er ways wit out epartmg rom t e composite whereas the exposed core material of the A spirit or essential characteristics thereof. The present composite or the A alloy had numerous small pits indiembod ment is therefore to be considered as in all recating that the galvanic protection afforded to the alloy P a a Testrlatlve, the SCORC 0f the by the C alloy cladding is practically nonexistant. lnventloh belhg Indicated hy t PP a Claims, and
The cladding adjacent to the exposed core of the B f chahgtlts whlch i c i l a i d t l l range composite was found to be substantially consumed 0 eqthva are late 8 to e em race etelh' thereby indicating cathodic protection was provided to the B alloy core whereas there was substantially less consumption of the cladding in the crater rim of the What is claimed is: l. A composite metal article having improved resistance to erosion corrosion in aqueous environments said core.
3. A composite metal article according to claim 1 wherein said cladding contains up to 0.7% silicon plus iron, up to 0.1% copper, up to 0.1% manganese, up to 0.1% magnesium, others 0.05% each, total 0.15%.
4. A composite metal article according to claim 1 wherein said core contains up to 0.6% silicon, up to 0.7% iron, up to 0.1% zinc, and others 0.05% each, total 0.15%.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 59, 59 Dated January 7, 975
Inventor(s) William H. Anthony et a1,
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Page 1, in the heading, after the word "Assigneez" insert --Swiss Aluminium Ltd. Chippis, Sw1tzerland---.
Column 1, line 18, afterthe words "subject to" insert ---erosion---.
Column 6, line 33, the word "aross" should read ---across---.
Signed and sealed this 1st day of April 1975.
(SEAL) Attes-t: h C. MARSHALL DANN RUTH C. MASON Commissioner of Patents Arresting Officer and Trademarks

Claims (4)

1. A COMPOSITE METAL ARTICLE HAVING IMPROVED RESISTANCE TO EROSION CORROSION IN AQUIOUS ENVIROMENTS COMPRISING AN ALUMINUM.BASE ALLOY CLADDING CONSISTING ESSENTIALLY TO 0.8 TO 1.3% ZINC, 0.10% MAXIMUN SILICON PLUS IRON,0.10% MAXIMUN COPPER, 0.10% MAXIMUN MAGANESE, 0.10% MAXIMUN MAGNESIUM, BALANCE ESSENTIALLY ALUMINUN BONDED TO AT LEAST ONE SIDE OF AN ALUMINUM BASE ALLOY CORE CONSISTING ESENTIALLY OF MAGANESE FROM 1.0 TO 1.5% CHROMIUM FROM 0.1 TO 0.4% COPPER FROM 0.05 TO 0.4%, BALANCE ESSENTIALLY ALUMINIM.
2. A composite metal article according to claim 1 wherein said cladding is bonded to opposing sides of said core.
3. A composite metal article according to claim 1 wherein said cladding contains up to 0.7% silicon plus iron, up to 0.1% copper, up to 0.1% manganese, up to 0.1% magnesium, others 0.05% each, total 0.15%.
4. A composite metal article according to claim 1 wherein said core contains up to 0.6% silicon, up to 0.7% iron, up to 0.1% zinc, and others 0.05% each, total 0.15%.
US439336A 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing Expired - Lifetime US3859059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US439336A US3859059A (en) 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00222795A US3809155A (en) 1972-02-02 1972-02-02 Erosion-corrosion resistant aluminum radiator clad tubing
US439336A US3859059A (en) 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing

Publications (1)

Publication Number Publication Date
US3859059A true US3859059A (en) 1975-01-07

Family

ID=26917151

Family Applications (2)

Application Number Title Priority Date Filing Date
US439335A Expired - Lifetime US3872921A (en) 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing
US439336A Expired - Lifetime US3859059A (en) 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US439335A Expired - Lifetime US3872921A (en) 1972-02-02 1974-02-04 Erosion-corrosion resistant aluminum radiator clad tubing

Country Status (1)

Country Link
US (2) US3872921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039298A (en) * 1976-07-29 1977-08-02 Swiss Aluminium Ltd. Aluminum brazed composite
US5302342A (en) * 1989-11-17 1994-04-12 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy for heat exchangers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176205A (en) * 1991-06-27 1993-01-05 General Motors Corp. Corrosion resistant clad aluminum alloy brazing stock
CA2434826C (en) 2001-01-16 2011-03-29 Pechiney Rhenalu Brazing sheet and method
CN103115504A (en) * 2013-02-20 2013-05-22 安徽天祥空调科技有限公司 Efficient automobile all-aluminum heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726436A (en) * 1950-10-31 1955-12-13 British Aluminium Co Ltd Metal-clad aluminum alloys
US3133796A (en) * 1961-07-19 1964-05-19 Reynolds Metals Co Composite aluminum material
US3480411A (en) * 1967-01-23 1969-11-25 Olin Mathieson Composite fin stock material
US3649227A (en) * 1970-01-26 1972-03-14 Kaiser Aluminium Chem Corp Aluminum composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530932A (en) * 1967-01-23 1970-09-29 Olin Corp High strength heat exchange assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726436A (en) * 1950-10-31 1955-12-13 British Aluminium Co Ltd Metal-clad aluminum alloys
US3133796A (en) * 1961-07-19 1964-05-19 Reynolds Metals Co Composite aluminum material
US3480411A (en) * 1967-01-23 1969-11-25 Olin Mathieson Composite fin stock material
US3649227A (en) * 1970-01-26 1972-03-14 Kaiser Aluminium Chem Corp Aluminum composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039298A (en) * 1976-07-29 1977-08-02 Swiss Aluminium Ltd. Aluminum brazed composite
US5302342A (en) * 1989-11-17 1994-04-12 Honda Giken Kogyo Kabushiki Kaisha Aluminum alloy for heat exchangers

Also Published As

Publication number Publication date
US3872921A (en) 1975-03-25

Similar Documents

Publication Publication Date Title
US3960208A (en) Process for providing heat transfer with resistance to erosion-corrosion in aqueous environment
US3809155A (en) Erosion-corrosion resistant aluminum radiator clad tubing
US7135239B2 (en) Composite material made of high-strength aluminum alloy
US4357397A (en) Brazing fin stock for use in aluminum base alloy heat exchanger
JPS5846540B2 (en) Aluminum alloy laminate for heat exchangers assembled by non-oxidizing vacuum brazing
US20060035100A1 (en) Brazing sheet and method
MX2012006040A (en) Soldered aluminum heat exchanger.
US3859059A (en) Erosion-corrosion resistant aluminum radiator clad tubing
CA2080865A1 (en) Method of producing aluminum alloy heat-exchanger
US4674566A (en) Corrosion resistant modified Cu-Zn alloy for heat exchanger tubes
JPH08136183A (en) Laminated type heat exchanger
EP1569772A1 (en) Aluminum alloy brazing material, brazing member, brazed article and brazinh method therefor using said material, brazing heat exchanginh tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
JPH0261536B2 (en)
JPH09176767A (en) Al brazing sheet for vacuum brazing
CN111391430A (en) Aluminum alloy composite material, heat exchanger tube and automobile
JPS55123996A (en) Heat exchanger core made of aluminum alloy having good corrosion resistance and production thereof
JPH0256413B2 (en)
JP2010540882A (en) Heat exchanger material coating
JPH0822457B2 (en) Aluminum heat exchanger
JPS60187655A (en) Heat exchanger made of aluminum alloy
JPH1017967A (en) Composite material for heat exchanger made of aluminum alloy
JPS6311598B2 (en)
JPS5762858A (en) Composite brazing sheet for heat exchanger made of al alloy
JPH04314838A (en) Al alloy laminated material for uncoated radiator for two wheeler use
JPS58103958A (en) Heat exchanger made of aluminum