US3859048A - Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis - Google Patents

Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis Download PDF

Info

Publication number
US3859048A
US3859048A US367834A US36783473A US3859048A US 3859048 A US3859048 A US 3859048A US 367834 A US367834 A US 367834A US 36783473 A US36783473 A US 36783473A US 3859048 A US3859048 A US 3859048A
Authority
US
United States
Prior art keywords
deuterated
derivatives
carboxylic acids
mixture
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US367834A
Inventor
Paul K Smith
Larry R Schewe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierce Chemical Co
Original Assignee
Pierce Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierce Chemical Co filed Critical Pierce Chemical Co
Priority to US367834A priority Critical patent/US3859048A/en
Priority to BE150361A priority patent/BE822024A/en
Application granted granted Critical
Publication of US3859048A publication Critical patent/US3859048A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/200833Carbonyl, ether, aldehyde or ketone containing
    • Y10T436/201666Carboxylic acid

Definitions

  • ABSTRACT Deuterated derivatives of carboxylic acids, e.g., fatty acids for gas phase analysis, can be prepared by reacting the acid with a deuterated alcohol having up to about 4 carbon atoms in the presence of dimethylformamide dineopentyl acetal.
  • the present invention relates to the identification of fatty acids. And, more particularly, to the formation of deuterated esters of fatty acids especially suitable for separation, detection and identification by gas chromatographic mass spectral techniques.
  • dimethylformamide dineopentyl acetal has not been found to successfully esterify carboxylic acids in the same manner.
  • alkylation of mercapto derivatives and esterification of fatty acids with alcohols can be accomplished in the presence of dimethylformamide dineopentyl acetal.
  • a presently practiced method for the preparation of volatile deuterated derivatives involves the use of deuterated diazomethane which, under normal circumstances, will react with carboxylic acids to yield a dideuterated methyl ester.
  • deuterated diazomethane is itself toxic and explosive presents obvious disadvantages in respect to its use in preparing deuterated derivatives.
  • deuterated diazomethane is an unstable, gaseous substance, it must be independently generated prior to use in special, expensive apparatus to minimize explosion hazards.
  • Deuterated diazomethane can be generated by adding an ether solution of a deuterated precursor to a solution of aqueous ethyl alcohol and potassium hydroxide over a period of time at about 65 C. The deuterated diazomethane can be recovered as an ethereal solution which is distilled from the generating apparatus. The necessity for independently preparing the reactive compound prior to its use in the esterification reaction is, of course, expensive and bothersome.
  • An additional object resides in providing a method for preparing deuterated derivatives for gas phase analysis with the use of available, stable and safe reagents so that the expenses and hazards associated with using explosive and toxic materials are avoided.
  • a still further object resides in providing a technique for preparing deuterated derivatives of carboxylic acids for gas phase analysis which can be simply accomplished in a single step without the necessity for either carrying out initial preparatory reactions or subsequent recovery operations.
  • a specific object is to provide a single, stable reactive solution which can be used for the preparation of deuterated derivatives for gas phase analysis in a manner such that the attributes identified in the foregoing objects are realized.
  • the preparation of deuterated esters of carboxylic acids for gas phase analysis can be simply and economically accomplished by reacting under anhydrous conditions the carboxylic acid, or mixtures thereof, to be derivatized with a deuterated alcohol in the presence of N-dimethylformamide dineopentyl acetal.
  • the reaction occurs over a wide temperature range so long as acid solubility is achieved.
  • a slightly elevated temperature e.g. 50 65 C., is preferably used.
  • the following example illustrates the present invention.
  • Mixture D contains myristic, palmitic, palmitoleic, stearic and oleic acids.
  • the reaction mixture so formed is then gently heated in a closed vial for about 30 min. at about 50 60 C. Aliquots are taken directly from the reaction mixture and introduced into a gas chromatographic column for analysis. The results therefrom indicate that the fatty acids in Mixture D are quantitatively converted to their tri-deutero methyl esters.
  • reaction mechanism involved in the preparation of deuterated derivatives according to the present invention is not completely understood, it is believed that in order to effect substantially complete derivatization of the acids present, at least an equal molar amount of deuterated alcohol must be present. Similarly, at least an equal molar amount of the dineopentyl acetal should be used.
  • a particular advantage of the present invention is that use of the deuterated alcohol or acetal in excess of that required for the reaction is accompanied by no particular disadvantages. Under customary gas analysis conditions, these compounds as well as their reaction by-products are sufficiently volatile with accompanying low retention times such that they do not interfere with the desired analysis.
  • the mixture of the deuterated alcohol and the dimethylformamide dineopentyl acetal can be preformulated and stored, shipped or the like for use at a future time. So long as the presence of moisture is avoided, the mixture is stable for extended periods of time. Accordingly, storage is usually effected in a closed vessel under nitrogen or similarly anhydrous conditions.
  • the reaction with a carboxylic acid or mixtures thereof can conveniently be accomplished in a solvent. It is believed that solvents aid in the solution of the carboxylic acids and thereby enhance the apparent reaction rates.
  • solvents aid in the solution of the carboxylic acids and thereby enhance the apparent reaction rates.
  • other inert solvents such as dimethylformamide, pyridine, benzene, methylene chloride, THF, as well as other aprotic solvents, can be used.
  • the mixture of deuterated alcohol and dineopentyl acetal is preformulated, it may be desirable to include in the formulation an appropriate solvent thereby minimizing the ingredients which the ultimate user need handle in accomplishing the desired reaction.
  • a particularly desirable feature of the Example illustrated previously is that tri-deuterated methyl esters of carboxylic acids are produced thus permitting greater analytical sensitivity.
  • the normal reaction product is a dideuterated ester.
  • deuterated alcohols other than the completely deuterated specie specifically illustrated though, as a practical matter, there is little incentive for using other alcohols.
  • the principal requirement is that the non-hydroxyl moiety of the alcohol contain at least one deuterium atom and that the alcohol be sufficiently volatile so as not to interfere with gas phase analysis.
  • alcohols useful in the present invention are partially or completely deuterated alcohols having up to about four carbon atoms such as ethanol, propanol, n-butanol, t-butanol, as well as others.
  • the present invention fully satisfies the aims and objectives heretofore recited.
  • the disclosed method is safe, efficient, economical and uses available reagents.
  • the method of the present invention requires considerably less labor and has associated with it significantly reduced material and equipment costs.
  • deuterated derivatives of said acids prior to analysis thereof, the improvement wherein the deuterated derivatives are prepared by reacting the carboxylic acids with a mixture consisting essentially of a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
  • deuterated derivatives of said acids comprising forming deuterated derivatives of said acids prior to analysis thereof, the improvement wherein the deuterated derivatives are prepared by forming a solution comprising the acids, a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
  • a mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis comprising a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
  • Anhydrous mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis consisting essentially of deuterated methanol and dimethylformamide dineopentyl acetal.
  • the mixture of claim 10 including an aprotic solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Deuterated derivatives of carboxylic acids, e.g., fatty acids for gas phase analysis, can be prepared by reacting the acid with a deuterated alcohol having up to about 4 carbon atoms in the presence of dimethylformamide dineopentyl acetal.

Description

United States Patent Smith et al.
Jan. 7, 1975 l l l Assignee: Pierce Chemical Company,
Rockford, Ill.
Filed: June 7, 1973 Appl. No.: 367,834
US. Cl. 23/230 M, 23/230 R, 23/232 C, 252/408, 260/410.9 R Int. Cl. G0ln 31/08, Cl 1c 3/08 Field of Search 23/230, 232, 232 C; 260/4109 R; 252/408 References Cited OTHER PUBLICATIONS Thenot et al., Anal. Letters, 5 (4), 217-233 (1972).
Holy, Tetrahedron Letters 7, 585-588 (1972). Buche et al., Agnew Chem. Int. Ed. 3, 62 (I964).
Primary Examiner-R. E. Serwin Attorney, Agent, or FirmWolfe, Hubbard, Leydig, Voit & Osann, Ltd.
[57] ABSTRACT Deuterated derivatives of carboxylic acids, e.g., fatty acids for gas phase analysis, can be prepared by reacting the acid with a deuterated alcohol having up to about 4 carbon atoms in the presence of dimethylformamide dineopentyl acetal.
15 Claims, No Drawings COMPOSITION AND METHOD FOR THE PREPARATION OF DEUTERATED ESTERS OF CARBOXYLIC ACIDS FOR GAS PHASE ANALYSIS The present invention relates to the identification of fatty acids. And, more particularly, to the formation of deuterated esters of fatty acids especially suitable for separation, detection and identification by gas chromatographic mass spectral techniques.
It is well known that natural fatty acids play a key roll in normal metabolism and in an abnormal metabolism responsible for certain circulatory and heart disorders. Accordingly, techniques for easily identifying fatty acids are important in biological and other types of research work.
One method of identifying fatty acids involves esterification of the fatty acids followed by gas phase analysis of the esterified derivatives. Recently Thenot et al. have demonstrated the advantageous analytical application of esterifying fatty acids with dimethylformamide dialkylacetals to form derivatives particularly useful in gas phase analysis. J. P. Thenot et al., ANAL. Letters, 5(4), 217 a 233 (1972). Dimethylformamide dialkyl acetals were first described in the mid-1950's and in the area of analytical chemistry involving fatty acid identification the methyl, ethyl, propyl, n-butyl and t-butyl dialkyls are presently being exploited.
As opposed to the dialkyl acetals identified above, dimethylformamide dineopentyl acetal has not been found to successfully esterify carboxylic acids in the same manner. However, it has been reported that alkylation of mercapto derivatives and esterification of fatty acids with alcohols can be accomplished in the presence of dimethylformamide dineopentyl acetal. A.
Holy, Tetrahedron Letters, 7, 585-588 (1972); G.
Buche et al., Agnew Chem. Int. Ed. 3, 62 (1964). The preparation of esterified fatty acid derivatives by this technique has apparently not become commercially attractiveo Referring still to gas phase analysis of fatty acids, it is recognized that the incorporation of the deuterium atom (heavy hydrogen) in fatty acid derivatives facilitates analysis and identification. For example, volatile derivatives such as deuterated methyl esters of carboxylic acids are especially suitable for inspection by gas chromatographic-mass spectral techniques. Heretofore, however, the preparation of volatile deuterated derivatives of fatty acids for analytical inspection has been difficult and expensive.
A presently practiced method for the preparation of volatile deuterated derivatives involves the use of deuterated diazomethane which, under normal circumstances, will react with carboxylic acids to yield a dideuterated methyl ester. The fact that the deuterated diazomethane is itself toxic and explosive presents obvious disadvantages in respect to its use in preparing deuterated derivatives.
Also, since deuterated diazomethane is an unstable, gaseous substance, it must be independently generated prior to use in special, expensive apparatus to minimize explosion hazards. Deuterated diazomethane can be generated by adding an ether solution of a deuterated precursor to a solution of aqueous ethyl alcohol and potassium hydroxide over a period of time at about 65 C. The deuterated diazomethane can be recovered as an ethereal solution which is distilled from the generating apparatus. The necessity for independently preparing the reactive compound prior to its use in the esterification reaction is, of course, expensive and bothersome.
In addition to the above-mentioned disadvantages with respect to presently available methods for preparing deuterated derivatives of fatty acids, further disadvantages reside in the fact that an ethereal solution is used with the attendant necessity that it be carefully assayed prior to use where accuracy is required, and that reaction with the carboxylic acid is accomplished using an aqueous solution of the acid. This latter aspect requires that, after esterification, extraction with a solvent is necessary to recover the ester for subsequent analysis.
Accordingly, it is a principal object of the present invention to provide an improved method over those now available for the preparation of volatile deuterated derivatives of carboxylic acids for gas phase analysis. Related to this object is the complementary object of providing a safe, efficient and economical technique for preparing deuterated esters of carboxylic acids.
An additional object resides in providing a method for preparing deuterated derivatives for gas phase analysis with the use of available, stable and safe reagents so that the expenses and hazards associated with using explosive and toxic materials are avoided.
A still further object resides in providing a technique for preparing deuterated derivatives of carboxylic acids for gas phase analysis which can be simply accomplished in a single step without the necessity for either carrying out initial preparatory reactions or subsequent recovery operations.
A specific object is to provide a single, stable reactive solution which can be used for the preparation of deuterated derivatives for gas phase analysis in a manner such that the attributes identified in the foregoing objects are realized.
Other objects and advantages of the present invention will become apparent from the following description. And, in this respect, while there will be described herein in detail the preferred embodiments of the present invention, it should be appreciated that the invention is susceptible to various modifications and alternative embodiments. It is to be understood that it is not intended to limit the invention to the specific embodiments disclosed. On the contrary, it is intended to cover all modifications and alternatives falling within the spirit and scope of the invention as expressed in the appended claims. For example, while the invention is specifically illustrated in connection with long chain fatty carboxylic acids, it is applicable to many other carboxylic acids including short chain acids and substituted carboxylic acids such as amide acids.
In accordance with the present invention, the preparation of deuterated esters of carboxylic acids for gas phase analysis can be simply and economically accomplished by reacting under anhydrous conditions the carboxylic acid, or mixtures thereof, to be derivatized with a deuterated alcohol in the presence of N-dimethylformamide dineopentyl acetal. The reaction occurs over a wide temperature range so long as acid solubility is achieved. However, for practical reaction times, e.g. less than about 30 min., a slightly elevated temperature, e.g. 50 65 C., is preferably used. The following example illustrates the present invention.
EXAMPLE 300 microliters of a mixture consisting of 3 pts. by volume of dimethylformamide dineopentyl acetal (CD OD) are 0.5 pts. by volume of completely deuterated methanol are added to milligrams of standard National Heart Institute fatty acid Mixture D in chloroform. Mixture D contains myristic, palmitic, palmitoleic, stearic and oleic acids. The reaction mixture so formed is then gently heated in a closed vial for about 30 min. at about 50 60 C. Aliquots are taken directly from the reaction mixture and introduced into a gas chromatographic column for analysis. The results therefrom indicate that the fatty acids in Mixture D are quantitatively converted to their tri-deutero methyl esters.
While the reaction mechanism involved in the preparation of deuterated derivatives according to the present invention is not completely understood, it is believed that in order to effect substantially complete derivatization of the acids present, at least an equal molar amount of deuterated alcohol must be present. Similarly, at least an equal molar amount of the dineopentyl acetal should be used. A particular advantage of the present invention is that use of the deuterated alcohol or acetal in excess of that required for the reaction is accompanied by no particular disadvantages. Under customary gas analysis conditions, these compounds as well as their reaction by-products are sufficiently volatile with accompanying low retention times such that they do not interfere with the desired analysis.
In further keeping with the advantages of the present invention, it will be appreciated that the mixture of the deuterated alcohol and the dimethylformamide dineopentyl acetal can be preformulated and stored, shipped or the like for use at a future time. So long as the presence of moisture is avoided, the mixture is stable for extended periods of time. Accordingly, storage is usually effected in a closed vessel under nitrogen or similarly anhydrous conditions.
Furthermore, as illustrated in the Example, the reaction with a carboxylic acid or mixtures thereof can conveniently be accomplished in a solvent. It is believed that solvents aid in the solution of the carboxylic acids and thereby enhance the apparent reaction rates. In addition to chloroform, other inert solvents such as dimethylformamide, pyridine, benzene, methylene chloride, THF, as well as other aprotic solvents, can be used. Where the mixture of deuterated alcohol and dineopentyl acetal is preformulated, it may be desirable to include in the formulation an appropriate solvent thereby minimizing the ingredients which the ultimate user need handle in accomplishing the desired reaction.
A particularly desirable feature of the Example illustrated previously is that tri-deuterated methyl esters of carboxylic acids are produced thus permitting greater analytical sensitivity. With the use of deuterated diazomethane, the normal reaction product is a dideuterated ester. However, as will be appreciated, many of the advantages of the present invention are realized with the use of deuterated alcohols other than the completely deuterated specie specifically illustrated though, as a practical matter, there is little incentive for using other alcohols. The principal requirement is that the non-hydroxyl moiety of the alcohol contain at least one deuterium atom and that the alcohol be sufficiently volatile so as not to interfere with gas phase analysis. Among other alcohols useful in the present invention are partially or completely deuterated alcohols having up to about four carbon atoms such as ethanol, propanol, n-butanol, t-butanol, as well as others.
As will be apparent from the foregoing description, the present invention fully satisfies the aims and objectives heretofore recited. The disclosed method is safe, efficient, economical and uses available reagents. As compared with prior methods for the preparation of deuterated derivatives, the method of the present invention requires considerably less labor and has associated with it significantly reduced material and equipment costs.
We claim as our invention:
1. In a process for the gas phase analysis of carboxylic acids comprising forming deuterated derivatives of said acids prior to analysis thereof, the improvement wherein the deuterated derivatives are prepared by reacting the carboxylic acids with a mixture consisting essentially of a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
2. The process of claim 1 wherein a mixture of long chain fatty acids are reacted to form their deuterated derivatives.
3. The process of claim 2 wherein the reaction is accomplished in the presence of an aprotic solvent.
4. The process of claim 3 wherein the deuterated alcohol is partially or completely deuterated methanol.
5. The process of claim 4 wherein the deuterated alcohol is completely deuterated methanol.
6. In a process for the gas phase analysis of carboxylic acids comprising forming deuterated derivatives of said acids prior to analysis thereof, the improvement wherein the deuterated derivatives are prepared by forming a solution comprising the acids, a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
7. A mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis comprising a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
8. The mixture of claim 7 wherein the deuterated alcohol is completely deuterated methanol.
9. An anhydrous mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis consisting essentially of deuterated methanol and dimethylformamide dineopentyl acetal.
10. The mixture of claim 9 wherein the deuterated alcohol is completely deuterated methanol.
11. The mixture of claim 10 including an aprotic solvent.
12. The process of claim 6 wherein the deuterated derivatives are prepared at about 50 C. 65 C.
13. The process of claim 12 wherein the deuterated alcohol is partially or completely deuterated methanol.
14. The process of claim 13 wherein the deuterated alcohol is completely deuterated methanol.
15. The mixture of claim 8 including an aprotic sol-

Claims (15)

1. IN A PROCESS FOR THE GAS PHASE ANALYSIS OF CARBOXYLIC ACIDS COMPRISING FORMING DEUTERATED DERIVATIVES OF SAID ACIDS PRIOR TO ANALYSIS THEREOF, THE IMPROVEMENT, WHEREIN THE DEUTERATED DERIVATIVES ARE PREPARED BY REACTING THE CARBOXYLIC ACIDS WITH A MIXTURE CONSISTING ESSENTIALLY OF A DEUTERATED ALCOLHOL HAVING UP TO ABOUT FOUR CARBON ATOMS AND DIMETHYLFORMANIDE DINEOPENTYL ACETAL.
2. The process of claim 1 wherein a mixture of long chain fatty acids are reacted to form their deuterated derivatives.
3. The process of claim 2 wherein the reaction is accomplished in the presence of an aprotic solvent.
4. The process of claim 3 wherein the deuterated alcohol is partially or completely deuterated methanol.
5. The process of claim 4 wherein the deuterated alcohol is completely deuterated methanol.
6. In a process for the gas phase analysis of carboxylic acids comprising forming deuterated derivatives of said acids prior to analysis thereof, the improvement wherein the deuterated derivatives are prepared by forming a solution comprising the acids, a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
7. A mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis comprising a deuterated alcohol having up to about four carbon atoms and dimethylformamide dineopentyl acetal.
8. The mixture of claim 7 wherein the deuterated alcohol is completely deuterated methanol.
9. An anhydrous mixture useful for the preparation of deuterated derivatives of carboxylic acids for gas phase analysis consisting essentially of deuterated methanol and dimethylformamide dineopentyl acetal.
10. The mixture of claim 9 wherein the deuterated alcohol is completely deuterated methanol.
11. The mixture of claim 10 including an aprotic solvent.
12. The process of claim 6 wherein the deuterated derivatives are prepared at about 50* C. - 65* C.
13. The process of claim 12 wherein the deuterated alcohol is partially or completely deuterated methanol.
14. The process of claim 13 wherein the deuterated alcohol is completely deuterated methanol.
15. The mixture of claim 8 including an aprotic solvent.
US367834A 1973-06-07 1973-06-07 Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis Expired - Lifetime US3859048A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US367834A US3859048A (en) 1973-06-07 1973-06-07 Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis
BE150361A BE822024A (en) 1973-06-07 1974-11-08 CARBOXYLIC ACID DEUTERIC ESTERS AND THEIR PREPARATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US367834A US3859048A (en) 1973-06-07 1973-06-07 Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis

Publications (1)

Publication Number Publication Date
US3859048A true US3859048A (en) 1975-01-07

Family

ID=23448822

Family Applications (1)

Application Number Title Priority Date Filing Date
US367834A Expired - Lifetime US3859048A (en) 1973-06-07 1973-06-07 Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis

Country Status (2)

Country Link
US (1) US3859048A (en)
BE (1) BE822024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004167A1 (en) * 1984-03-19 1985-09-26 The Commonwealth Of Australia Labelling of organic molecules

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Buche et al., Angew. Chem. Int. Ed. 3, 62 (1964) *
Holy, Tetrahedron Letters, 7, 585-588 (1972) *
Thenot et al., Anal. Letters, 5 (4), 217-233 (1972) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004167A1 (en) * 1984-03-19 1985-09-26 The Commonwealth Of Australia Labelling of organic molecules

Also Published As

Publication number Publication date
BE822024A (en) 1975-03-03

Similar Documents

Publication Publication Date Title
Ree et al. Perpendicularly twisted cyclopropylcarbinyl and allyl cations. Acetolysis of some 2-substituted derivatives of 1-adamantyl tosylate
US5225173A (en) Methods and devices for the separation of radioactive rare earth metal isotopes from their alkaline earth metal precursors
Von Rudloff Periodate‐permanganate oxidations. IV. Determination of the position of double bonds in unsaturated fatty acids and esters
Brown et al. Hydroboration. IV. A study of the relative reactivities of representative functional groups toward diborane
Chaimovich et al. Rearrangement accompanying the photolysis of diazoacyl esters
Kaiser et al. GLC determination of ibuprofen [(±)-2-(p-isobutylphenyl) propionic acid] in plasma
Des Marteau Reaction of bis (fluoroxy) difluoromethane with cesium trifluoromethoxide
US3859048A (en) Composition and method for the preparation of deuterated esters of carboxylic acids for gas phase analysis
Sitko et al. Perdecanoic acid as a safe and stable medium-chain peracid for Baeyer–Villiger oxidation of cyclic ketones to lactones
Kemp et al. Peptide racemization mechanism. Kinetic isotope effect as a means of distinguishing enolization from oxazolone formation
Stock et al. Ruthenium tetroxide catalysed oxidation of Illinois No. 6 coal: The formation of volatile monocarboxylic acids
Yoshikawa et al. Synthesis of 3-Pyridinols. II. Reaction of 4-Methyloxzaole with Dienophiles
MORI et al. The carboxylation of organic compounds by carbon dioxide
Izawa et al. THE PARTIAL REDUCTION OF CARBOXYLIC ACIDS TO ALDEHYDES via 3-ACYLTHIAZOLIDINE-2-THIONES WITH DIISOBUTYLALUMINUM HYDRIDE
Freedlander et al. Neutral trichloroacetylations of alcohols by hexachloroacetone
Crimmins et al. Metalation of cumene with n-pentylsodium in the presence of N, N, N', N'-tetramethylethylenediamine. Preparation of. alpha.-cumylsodium
US3378416A (en) Novel high explosive compositions
MX2007006235A (en) Process for preparing halogenoalkylnitrates.
US2854454A (en) Rescennamine
Kevill et al. A comparison of decomposition and solvolysis reactions of 1-adamantyl chloroglyoxylate and 1-adamantyl chloroformate
Yamataka et al. Diastereoselectivity and Reaction Pathway of the Reactions of Benzaldehyde with Allylic Iodides in the Presence of Sn or Pb.
Babel et al. Preparation of 3H-labelled bongkrekate
US4208354A (en) Borane complexes
Yasaka et al. 2-(Phthalimino) ethyl trifluoromethanesulfonate as a highly reactive ultraviolet-labeling agent for carboxylic acids in high performance liquid chromatography
Novak et al. Synthesis and Diels-Alder reactivity of 2-ferrocenylbutadiene