US3858088A - D. c. flasher - Google Patents

D. c. flasher Download PDF

Info

Publication number
US3858088A
US3858088A US00370529A US37052973A US3858088A US 3858088 A US3858088 A US 3858088A US 00370529 A US00370529 A US 00370529A US 37052973 A US37052973 A US 37052973A US 3858088 A US3858088 A US 3858088A
Authority
US
United States
Prior art keywords
voltage
transistor
circuit
output transistor
flasher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00370529A
Inventor
J Scarpino
J Greig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hope Tronics Ltd
Original Assignee
Hope Tronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hope Tronics Ltd filed Critical Hope Tronics Ltd
Priority to US00370529A priority Critical patent/US3858088A/en
Application granted granted Critical
Publication of US3858088A publication Critical patent/US3858088A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B39/00Circuit arrangements or apparatus for operating incandescent light sources
    • H05B39/09Circuit arrangements or apparatus for operating incandescent light sources in which the lamp is fed by pulses

Definitions

  • ABSTRACT A groundless two-wire D.C. flasher with overcurrent and overvoltage protective features.
  • a positive and a negative terminal connect the flasher into a DC. circuit to be repeatedly interrupted.
  • Control transistors drive output transistors into and out of conduction between the terminals at a frequency set by a multivibrator.
  • the interrupted circuit can be a negative or a positive ground system.
  • Supplied by a diode a capacitor stores sufficient energy to maintain the bias to the flashers transistors as the flasher makes and breaks the circuit.
  • a sampling resistor detects high currents and controls a transistor that, when it begins to conduct, reduces the base drive to the transistor output stage.
  • Transient overcurrents like incandescent lamp start-up currents, are permitted. Substantial, continuing overcurrents produce overvoltages across the partially conductive output stage. A Zener diode voltage sensor detects these, and after a short delay, shuts down the flasher.
  • This invention relates to DC. flashers and more particularly to a flasher circuit that continually interrupts a DC. circuit to cause a pulsing or flashing D.C. output.
  • Transistorized D.C. flashers commonly suffer from several basic defects.
  • Transistor overcurrent sensitivity is a second well known defect.
  • the effect of overcurrents on a simple transistor flashing arrangement ordinarily is loss of the current controlling transistor or transistors.
  • the flasher must, then, be replaced as a result of short circuits or even transient overcurrents.
  • Such a characteristic is intolerable in, for example, truck circuitry where hard driving, constant vibrations, and constant vehicle operation results in many intermittent short circuits.
  • ordinary solid state flashers may give no indication of an inappropriate circuit condition in the flashed circuit.
  • transistor flasher controls and flashes incandescent lamps.
  • the current characteristics of incandescent lamps are such that extreme currents occur with each cold filament lamp starting condition. if the flashing transistors are to be protected against the over-currents, they must somehow be permitted to operatc during the high-current lamp starting period. Providing current protection in transistorized flashers for lamp circuits has, therefor, presented significant difficulties.
  • any transistor or mechanical flasher is completely separate and apart from circuit protectors for the flashed circuit.
  • the common separate circuit protection arrangements have their own shortcomings. Fuse protection is widespread in automotive applications. Particularly in trucking and other heavy duty automotive applications, intermittent shorting is a recurrent problem. An operator faced with repetitive fuse failures and who wants to continue to drive can replace rated fuses with fuses rated much above safe current levels, or he can substitute a makeshift shorting wire for the fuse. The resulting dangers are apparent.
  • the DC. flasher of this invention overcomes the problems noted above in relation to both mechanical flasher switches and known transistorized flashers. It provides a two wire, groundless flasher, one that is not destroyed by short circuits, and in addition protects itself and the circuit it interrupts.
  • All of the circuitry of the flasher according to this invention relies, not on a fixed circuit ground, but on intracircuit voltage values that are independent of the ground of the electrical system.
  • This flasher therefor, can be connected into either a positive or a negative ground system.
  • a capacitor Supplied by a diode, a capacitor stores sufficient energy to maintain the appropriate transistor bias voltages during conduction of an output stage that is one or more transistors connected between two terminals connecting the flasher into the flashed D.C. circuit. Zener diodes measure appropriate voltages at important circuit points.
  • the flasher is current sensitive, responding to high currents first by increasingly reducing conduction in the output stage transistor or transistors.
  • a very carefully adjusted sensing resistor in series in the output current path, detects currents passed by the flasher and controls a transistor that reduces, via intermediate control transistors, the base drive to the output stage transistors when currents approach an unacceptable level.
  • This current sensitivity coupled with voltage sensing protective features permits the flashers use with and control of incandescent lamps.
  • the usual high lamp starting current may be sufficient to indicate an overcurrent, thereby reducing conduction in theflashers output transistors by increasing the voltage across the current sensing resistor as just mentioned.
  • a voltage sensing section of the circuit prevents further conduction only if an overcurrent continues.
  • Starting currents for incandescent lamps drop to acceptable levels soon after initial energization and the restraint on the output stage transistors is removed.
  • the circuit can, therefore, be current sensitive and yet be used to control or flash incandescent lamps.
  • the flasher actually alters the characteristic curve of an incandescent lamp circuit by refusing to supply the current levels ordinarily demanded with each lamp flash.
  • this reduction in starting current permits the use of transistors that carry lower currents and places less of a demand on the electrical system supply.
  • the voltage across the conducting output stage will increase as the output stage transistor drive is decreased to limit the load current.
  • This voltage is detected and compared, by a sampling Zener diode. After a small time delay sufficient to permit a return to ordinary circuit operation, the Zener diode drives a series of control transistors to completely deprive the output transistor stage of base drive. By doing this, the flasher stops all conduction and protects the electrical system it flashes as well as protecting the otherwise vulnerable output transistor or transistors.
  • An operator can install a fuse with a higher current rating, or short the fuse terminals, and still the flasher will interrupt the circuit if it detects a sustained overcurrent. Thanks to the current limiting feature, the flasher will not permit currents sufficient to weld portions of the protected electrical system even during that short portion of the conduction cycle before voltage response occurs. The flasher, if used to flash emergency lamps, prevents welding and therefore destruction of the emergency circuit.
  • the flasher circuit according to the invention is a two wire device, it can be connected in series in the circuit it is to interrupt and can be turned on by a series switch, for example the turn signal actuating switch. No part of the flasher circuit needs to continue running when the flasher is not in use.
  • the flasher is resetting. During each new current conducting operation or half cycle, the current is sensed, as well as the voltage, and flashing is resumed if the objectionable condition has ceased or is only transient.
  • One flasher feature gives good temperature stability, important where transistor operating voltages are used to detect and control circuit conditions.
  • FIG. 1 is a schematic illustration, in block form, showing a flasher according to the invention and connected into an automotive turn signal circuit.
  • FIG. 2 is a circuit diagram of a preferred flasher circuit.
  • FIG. 1 shows a flasher connected in series with a battery 12, an ignition switch 13, a directional signal switch 15, and alternate lamp loads 16 and 17.
  • the battery 12 has a first terminal 19 connected to ground 20 and a second terminal 21 which may be either positive or negative depending on whether the automotive electrical system is a positive or negative ground system.
  • FIG. 1 shows only a very simple system to illustrate the connection of the flasher 10 into an exemplary D.C. circuit.
  • FIG. 2 illustrates a preferred circuit for the flasher 10 of FIG. 1.
  • a pair of terminals or connectors 25 and 26 are the connections of the flasher circuit in series in the D.C. circuit, for example between the ignition switch 13 and the turn signal actuation switch of FIG. 1.
  • the connector 25 need only be connected positive relative to the connector 26. If, for example, the FIG. 1 circuit is a positive ground system, connector 26, the negative connector connects with the ignition switch 13, and connector 25, the positive connector, connects with the turn signal actuating switch 15. Of course, if FIG. 1 shows a negative ground system, these connections are reversed.
  • Three parallel output transistors 01, Q2 and 03 conduct load current between output connections 25 and 26 in a load current path that includes three parallel current dividing resistors 27, 28, and 29, and a current sensing resistor 30, described in detail below.
  • the diode 31 protects the circuit in the event of mistaken reverse polarity connection of the flasher 10.
  • the diode 31 bypasses the remaining circuitry and gives continuous load energization if a positive voltage is mistakenly applied to the connector 26.
  • the diode 31 also provides an important measure of transient protection.
  • the diode serves as an inductive clamp in one direction of current flow, passing any transient inductive current spike flowing opposite ordinary load current.
  • the three output transistors Q1, Q2, and Q3 are driven together into and out of conduction. Flashing conduction of the output transistors is timed by a freerunning multivibrator or flip-flop 35.
  • the multivibrator 35 is a conventional circuit configuration with a pair of transistors Q4 and Q4 arranged in differential amplifier relation and with appropriately chosen resistive and capacitive circuit elements selected in the ordinary way to give the desired output frequency.
  • a current amplifier that includes transistor Q5, its base-collector resistor 36, and a constant voltage base drive Zener diode 37 supplies substantially constant current to the multivibrator 35.
  • a Zener diode 37 maintains a substantially constant voltage thereacross to provide a constant bias to the current amplifier transistor Q5, assuring frequency stability of the flip-flop 35.
  • a diode 39 charges a capacitor 40 during the intervals of nonconduction of the output transistors Q1, Q2 and Q3. The capacitor 40, of course, maintains adequate voltage across the circuit when the output transistors do conduct.
  • One multivibrator output that is taken from the junction of a pair of voltage divider resistors 43 and 44 is delivered, via a line 45, as a base drive to a transistor Q6 that is connected in series with a resistor 48.
  • the transistor Q6 is the first of a set of control transistors Q6, Q7, and Q8 that control or drive the output transistors, Conduction by the transistor Q6, when a positive multivibrator output is applied by line 45, draws current from the base of the transistor Q7, bringing that transistor into conduction.
  • the conduction of the transistor Q7 applies the appropriate base drive to a final output stage control transistor Q8, which has its base connected to the junction of the collector of the transistor Q7 and a series resistor 49.
  • the transistor O8 is in series with a resistor 51.
  • the bases of output transistors Q1, Q2, and Q3 connect with the junction of the resistor 51 and the collector of the transistor Q8. Conduction by the transistor Q8 thus triggers the output transistors into conduction.
  • a second output from the multivibrator 35 occurs at the junction of a pair of voltage divider resistors 53 and 54 and is delivered by a line 55 to a transistor Q9.
  • the output delivered to the base of the transistor Q9 goes positive when the first multivibrator output on the line 65 drops to zero.
  • Conduction by the transistor Q9 establishes a base drive for a further transistor Q whose base connects with the junction of a pair of voltage divider resistors 57 and 58 connected in series with the transistor Q9.
  • the transistor QM is in series with a resistor 60, and a parallel branch of series resistors 63, 64 and 65.
  • the transistor conducts to bring the voltage at the junction 61 of the transistor Q10 and resistor 60 near that at line 32.
  • This charges a capacitor 62, in parallel with the resistor 63, and supplies base drive to a clamping or turn off control transistor Qlli.
  • the base of the transistor Qitl connects with the junction of the resistors 64 and 65. The bias thus applied to the base of the transistor Ollll assures that no base drive at line 65 will be supplied to the base of the transistor Q6.
  • the transistor QM acts to clamp the base drive line 45 with the negative line 33 of the circuit, and assures that the transistors Q6, Q7, and Q8, and the output transistors Q1, Q2, and 03 are clamped off during the positive output occurring at the line 55 from the multivibrator 35.
  • the output transistors Qll, Q2, and Q3 will again conduct. In ordinary operation, this sequence occurs over and over, alternately to flash connected lamps or other loads on and off.
  • the resistor 30 is a current sensing resistor that has a resistance precisely selected to begin signaling a high current at a chosen load current level. in a lamp circuit, that current may be reached by the lamp starting current, the high current that ordinarily occurs upon the energization of a darkened incandescent lamp.
  • the current sensitive protective circuitry includes, in addition to the sensing resistor 36, a current control transistor 0112 connected in parallel with the transistor QM.
  • a pair of resistors 68 and 69 connect in series voltage divider relation between the Zener diode 3'7 and the negative connector 26 at the negative side of the sensing resistor 36.
  • conduction by the transistor O6 is decreased, during the early part of the on cycle, conduction by the transistor is decreased, and in turn, the transistor 03 conducts less thereby reducing the base drive current drawn from the base of the three output transistors.
  • These three transistors, Qll, Q2 and O3 begin to resist increasing current conduction.
  • the three output transistors minimize the starting current, and little or no voltage increase occurs across the sensing resistor.
  • the controlled loads then begin to conduct at their much lower, stable current levels.
  • the flasher l0 effectively revises the typical incandescent lamp circuit operating curve by prohibiting the ordinary extreme starting currents.
  • Resistors 65, 64, 63 and a further voltage sampling Zener diode '72 connected in series across the circuit, act as a voltage sensing arrangement. Normally, when the output transistors are conducting and the transistor Q10 is non-conductive, the voltage across the Zener diode 72 is a low value, below its rated voltage of about 5 volts, because the voltage difference between the lines 32 and 33 is small.
  • the Zener With a higher voltage across the circuit, the Zener begins to conduct, and first offsets the normal discharging of the capacitor 62, recharging that capacitor. As the capacitor 62 approaches its fully charged condition, the current through the Zener diode 72 provides base drive for the clamping transistor 01 ll, to clamp the line 45 to ground and shut down the output stage. The time delay provided by capacitor 62 permits sufficient time at the beginning of each on cycle to permit a return to normal operating current. An intermittent short can, therefore, be treated by the current limiting arrangement, the resistor 30 and the transistor 012, without interrupting the flashing function completely.
  • the resistor 36 is a Monel strip with the connector 26 connected at one end and the collectors of the output transistors Q1, Q2, 03 connected at the other end.
  • the resistance 30 can be determined empirically for proper operating conditions by affixing the line 33 to the body of the Monel strip and affixing a line 75 at a point on the strip that gives exactly that resistance required for proper current sensing. It will be appreciated that the resistance value of the Monel strip is extremely low, the currents sensed are high, and any loss at the point of connection to the strip would produce a voltage error. For that reason connections to the strip at the lines 33 and 75 and at the collectors of the output transistors should be direct welds to the Monel strip or some othr suitable lossless connection.
  • Transistors Q4, Q4, and 05 can be provided by a single, commercially available integrated circuit. So too, transistors Q6, O9, 010, Q11, and Q12 can be a single integrated circuit. Use of an NPN transistor as Q6 and a PNP transistor as Q12 adds temperature stability to the current sensing and limiting function insofar as temperature dependent variations in operation of the transistor O6 is offset substantially by opposing current dependent variations in transistor Qll2s operating conditions. This effect is further enhanced by the use of a single integrated circuit for both transistors to as sure that both transistors are exposed to substantially identical temperatures.
  • a DC. Flasher circuit for connection in series into a series connected circuit path of electrical conduction including a load and a source of DC. potential to cause alternate opening and closing of the circuit path; the flasher circuit having first and second connectors for connecting the flasher in series connection only into said circuit path of electrical conduction, said connectors defining the only means for electrical connection of said flasher circuit into said circuit path of electrical conduction, output transistor means having a current conduction path connected in series between the connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, timing circuit means connected with the controlling means for timing the rate of conduction and nonconduction of the output transistor means, circuit voltage supply means for deriving a stabilized voltage from voltage present across the connectors when the output transistor means is nonconductive, and means connected with the voltage supply means for establishing a substantially stable voltage of a predetermined value between circuit points in the flasher circuit to provide transistor operating potentials independent of ground, whereby the flasher circuit is operable upon connection between two ungrounded points in
  • the means for stabilizing is a diode-capacitor combination having a capacitor connected to establish a voltage across the circuit and a diode connected to supply the capacitor from one of said connectors and to block capacitor discharge by conduction of the output transistor means.
  • said means for establishing a substantially stable voltage of a predetermined value includes at least one voltage establishing semiconductor means for fixing a transistor bias reference voltage.
  • timing circuit means is a transistor multivibrator and a transistor current amplifier supplying the multivibrator
  • the voltage establishing semiconductor means is a Zener diode connected to and establishing base drive for the transistor current amplifier.
  • the flasher circuit according to claim 1 further including means for detecting an overcurrent when the output transistor means conducts, and means responsive to the overcurrent detecting means for reducing the conduction of the output transistor means.
  • the flasher circuit according to claim 5 further including means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the conduction reducing means, and means connected with said means for detecting a voltage increase for halting conduction by the output transistor means.
  • a DC. flasher circuit for connection to a circuit including a DC. potential source and a load; the flasher circuit having an output transistor means alternately for conducting and blocking load current between two connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, overcurrent sensing means for sensing the current during the conducting periods, first control means connected with the overcurrent sensing means to alter a bias applied to the output transistor means to reduce conduction of the output transistor means in response to overcurrents, means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the first control means, and a second control means connected with the increased voltage detecting means to stop conduction by the output transistor means in response to detected voltage increase.
  • the overcurrent sensing means is a very low resistance resistor
  • the conduction reducing first control means is a current control transistor circuit having voltage sensitive bias connections connected across the sensing resistor for reducing a bias to the output transistor means in response to an increase in the voltage across the sensing resistor.
  • the overcurrent sensing means comprises means for establishing a substantially stable voltage including a Zener diode connected with a circuit path across the flasher circuit, and one of said voltage sensitive bias connections is a control transistor base driven connection connected into a circuit path extending from one terminal of the Zener diode to an end of the sensing resistor.
  • the increased voltage detecting means includes a voltage sampling Zener diode and a turn off control transistor, the Zener diode being connected in a circuit branch extending across the flasher circuit, the Zener diode being ordinarily biased to below its rated voltage, whereby increased voltage across the flasher circuit raises the voltage across the Zener diode, the control transistor having its base drive connected with the circuit path of the Zener diode to conduct and turn off the output transistor means after the rated Zener diode voltage is established.
  • the flasher circuit according to claim 10 further including a capacitor connected between said circuit branch including the Zener diode and a further point of connection in the flasher circuit, the capacitor initially diverting current to prevent immediate biasing into conduction of the turn off control transistor, thereby providing a slight time delay permitting initial overcurrents and voltage increases to diminish before the output transistor means is turned off.
  • the first control means comprises a first control transistor connected with at least one further control transistor, the further control transistor being connected to control the conduction of the output transistor means, one of the first and further control transistors being an NPN transistor and the remaining of the two control transistors being a PNP transistor to reduce temperature dependence of the combined transistor characteristics.
  • a DC. lamp flasher of the type including at least one output transistor for connection with an incandescent lamp circuit having a DC potential source and at least one lamp, and for alternately conducting and blocking conduction of current to the lamp; the lamp flasher including current sensitive and voltage sensitive protective means, the flasher including at least one output transistor connected alternately to conduct and to block current from one connector to another, means connected with the output transistor for controlling the output transistor to cause the conduction and nonconduction of the output transistor, a sensing resistor in series with the output transistor for providing a voltage drop indicative of the current through the output transistor, a first current control transistor connected with the sensing resistor and changing conductance in response to changes in the voltage across the sensing resistor, additional control transistor means connected with the first current control transistor and operatively connected with the output transistor to reduce base drive to the output transistor and to oppose increased conduction thereby when the current sensing resistor voltage increases, means for sampling the voltage across the output transistor to detect increased voltage thereacross resulting from decreased conduction in the output transistor, a turn off control transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A groundless two-wire D.C. flasher with overcurrent and overvoltage protective features. A positive and a negative terminal connect the flasher into a D.C. circuit to be repeatedly interrupted. Control transistors drive output transistors into and out of conduction between the terminals at a frequency set by a multivibrator. The interrupted circuit can be a negative or a positive ground system. Supplied by a diode, a capacitor stores sufficient energy to maintain the bias to the flasher''s transistors as the flasher makes and breaks the circuit. A sampling resistor detects high currents and controls a transistor that, when it begins to conduct, reduces the base drive to the transistor output stage. Transient overcurrents, like incandescent lamp start-up currents, are permitted. Substantial, continuing overcurrents produce overvoltages across the partially conductive output stage. A Zener diode voltage sensor detects these, and after a short delay, shuts down the flasher.

Description

United States Patent [191 Scarpino et al.
[4 1 Dec. 31, 1974 Assignee:
Filed:
D. C. FLASHER lnventors: John J. Scarpino, Garden City; John H. Greig, Wantagh, both of NY.
City, NY.
June 15, 1973 Appl. No.: 370,529
Hope-Tronics, Limited, Garden US. Cl. 315/200 A, 307/202, 315/77,
Int. Cl. H05b 37/02, HOSb 41/30 Field of Search 307/202, 237; 315/77, 173,
315/200 R, 200 A, 205, 209 R, 224, 225; 317/33 R, 33 C References Cited UNITED STATES PATENTS Rogers et al. 315/209 R Domann et al.
Phillips Bolinger 307/202 [57] ABSTRACT A groundless two-wire D.C. flasher with overcurrent and overvoltage protective features. A positive and a negative terminal connect the flasher into a DC. circuit to be repeatedly interrupted. Control transistors drive output transistors into and out of conduction between the terminals at a frequency set by a multivibrator. The interrupted circuit can be a negative or a positive ground system. Supplied by a diode, a capacitor stores sufficient energy to maintain the bias to the flashers transistors as the flasher makes and breaks the circuit. A sampling resistor detects high currents and controls a transistor that, when it begins to conduct, reduces the base drive to the transistor output stage. Transient overcurrents, like incandescent lamp start-up currents, are permitted. Substantial, continuing overcurrents produce overvoltages across the partially conductive output stage. A Zener diode voltage sensor detects these, and after a short delay, shuts down the flasher.
13 Claims, 2 Drawing Figures v 27 5| 3 29 as & Q0
sum 1 OF 2 D. c. FLASHER This invention relates to DC. flashers and more particularly to a flasher circuit that continually interrupts a DC. circuit to cause a pulsing or flashing D.C. output.
Many flashers presently used today, for example in automotive lamp flashing circuits, are mechanical switches that make and break physical contact alternately to complete and to interrupt circuits into which they are connected. These switches suffer from known defects such as contact pitting, dirtying, etc. Consequently they often need replacement. Moreover, the physical making and breaking of an electrical circuit can cause sparking, dangerous if an accident results in fuel spillage or if trucks for example transport volatile loads. Usually a mechanical flasher gives no indication of the condition of the circuit it controls.
Transistorized D.C. flashers commonly suffer from several basic defects. One is that the circuit is ordinarily usable with only either a positive ground or a negative ground system. This requires separate circuits for each ground system, and of course, a very large increase in the cost of manufacture results in comparison with that of a single, standard circuit.
Ordinary three-wire transistorized automobile circuitry, with its own circuit ground and transistor bias connections, commonly stays on, consuming power and decreasing its life expectancy whenever the ignition switch is on, and a final connection is often used to cause the circuit to function.
Transistor overcurrent sensitivity is a second well known defect. The effect of overcurrents on a simple transistor flashing arrangement ordinarily is loss of the current controlling transistor or transistors. The flasher must, then, be replaced as a result of short circuits or even transient overcurrents. Such a characteristic is intolerable in, for example, truck circuitry where hard driving, constant vibrations, and constant vehicle operation results in many intermittent short circuits. Like mechanical switches, ordinary solid state flashers may give no indication of an inappropriate circuit condition in the flashed circuit.
The susceptibility of transistors to overcurrent failure is compounded where a transistor flasher controls and flashes incandescent lamps. The current characteristics of incandescent lamps are such that extreme currents occur with each cold filament lamp starting condition. if the flashing transistors are to be protected against the over-currents, they must somehow be permitted to operatc during the high-current lamp starting period. Providing current protection in transistorized flashers for lamp circuits has, therefor, presented significant difficulties.
Ordinarily, any transistor or mechanical flasher is completely separate and apart from circuit protectors for the flashed circuit. The common separate circuit protection arrangements have their own shortcomings. Fuse protection is widespread in automotive applications. Particularly in trucking and other heavy duty automotive applications, intermittent shorting is a recurrent problem. An operator faced with repetitive fuse failures and who wants to continue to drive can replace rated fuses with fuses rated much above safe current levels, or he can substitute a makeshift shorting wire for the fuse. The resulting dangers are apparent.
Other fuse deficiencies are the inability of ordinary fuses to reset, and the possibility of fuse arc fires. If emergency flashers are operated from the vehicles electrical circuit, an extreme overcurrent, a short to ground, for example, can weld the circuitry and render the emergency lamps inoperative when they are most needed.
BRIEF SUMMARY OF THE INVENTION The DC. flasher of this invention overcomes the problems noted above in relation to both mechanical flasher switches and known transistorized flashers. It provides a two wire, groundless flasher, one that is not destroyed by short circuits, and in addition protects itself and the circuit it interrupts.
All of the circuitry of the flasher according to this invention relies, not on a fixed circuit ground, but on intracircuit voltage values that are independent of the ground of the electrical system. This flasher, therefor, can be connected into either a positive or a negative ground system. Supplied by a diode, a capacitor stores sufficient energy to maintain the appropriate transistor bias voltages during conduction of an output stage that is one or more transistors connected between two terminals connecting the flasher into the flashed D.C. circuit. Zener diodes measure appropriate voltages at important circuit points.
The flasher is current sensitive, responding to high currents first by increasingly reducing conduction in the output stage transistor or transistors. A very carefully adjusted sensing resistor, in series in the output current path, detects currents passed by the flasher and controls a transistor that reduces, via intermediate control transistors, the base drive to the output stage transistors when currents approach an unacceptable level.
This current sensitivity coupled with voltage sensing protective features permits the flashers use with and control of incandescent lamps. The usual high lamp starting current may be sufficient to indicate an overcurrent, thereby reducing conduction in theflashers output transistors by increasing the voltage across the current sensing resistor as just mentioned. A voltage sensing section of the circuit prevents further conduction only if an overcurrent continues. Starting currents for incandescent lamps drop to acceptable levels soon after initial energization and the restraint on the output stage transistors is removed. The circuit can, therefore, be current sensitive and yet be used to control or flash incandescent lamps. The flasher actually alters the characteristic curve of an incandescent lamp circuit by refusing to supply the current levels ordinarily demanded with each lamp flash. In addition to the convenience and safety benefits outlined above, this reduction in starting current permits the use of transistors that carry lower currents and places less of a demand on the electrical system supply.
Returning to the voltage increase sensitive part of the circuit, if an unacceptably high current is not transient, as in lamp starting, but is the result of, say, a short, the voltage across the conducting output stage will increase as the output stage transistor drive is decreased to limit the load current. This voltage is detected and compared, by a sampling Zener diode. After a small time delay sufficient to permit a return to ordinary circuit operation, the Zener diode drives a series of control transistors to completely deprive the output transistor stage of base drive. By doing this, the flasher stops all conduction and protects the electrical system it flashes as well as protecting the otherwise vulnerable output transistor or transistors.
An operator can install a fuse with a higher current rating, or short the fuse terminals, and still the flasher will interrupt the circuit if it detects a sustained overcurrent. Thanks to the current limiting feature, the flasher will not permit currents sufficient to weld portions of the protected electrical system even during that short portion of the conduction cycle before voltage response occurs. The flasher, if used to flash emergency lamps, prevents welding and therefore destruction of the emergency circuit.
Because the flasher circuit according to the invention is a two wire device, it can be connected in series in the circuit it is to interrupt and can be turned on by a series switch, for example the turn signal actuating switch. No part of the flasher circuit needs to continue running when the flasher is not in use.
The flasher is resetting. During each new current conducting operation or half cycle, the current is sensed, as well as the voltage, and flashing is resumed if the objectionable condition has ceased or is only transient.
If flashing does not occur this gives a clear indication to operating personnel that an unacceptible circuit condition has arisen. The flasher does not just continue to flash until a fuse interrupts the circuit or some part of the circuit is destroyed. If a substantial but intermittent short occurs, interrupted flashing operation will signal this, and yet, the flasher circuit will give all of the operation possible under the given condition.
One flasher feature gives good temperature stability, important where transistor operating voltages are used to detect and control circuit conditions. The use of offsetting PNP and NPN transistors preferably on a single integrated circuit chip, prevents the temperature dependence that might be expected.
The foregoing and other advantages of the invention will appear more fully in relation to the following detailed description of a preferred embodiment of the invention, as illustrated in the accompanying drawings.
IN THE DRAWINGS FIG. 1 is a schematic illustration, in block form, showing a flasher according to the invention and connected into an automotive turn signal circuit.
FIG. 2 is a circuit diagram of a preferred flasher circuit.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT Turning to the drawings in detail, FIG. 1 shows a flasher connected in series with a battery 12, an ignition switch 13, a directional signal switch 15, and alternate lamp loads 16 and 17. The battery 12 has a first terminal 19 connected to ground 20 and a second terminal 21 which may be either positive or negative depending on whether the automotive electrical system is a positive or negative ground system. FIG. 1 shows only a very simple system to illustrate the connection of the flasher 10 into an exemplary D.C. circuit.
FIG. 2 illustrates a preferred circuit for the flasher 10 of FIG. 1. A pair of terminals or connectors 25 and 26 are the connections of the flasher circuit in series in the D.C. circuit, for example between the ignition switch 13 and the turn signal actuation switch of FIG. 1.
Whether the flashed circuit is positive or negative ground, the connector 25 need only be connected positive relative to the connector 26. If, for example, the FIG. 1 circuit is a positive ground system, connector 26, the negative connector connects with the ignition switch 13, and connector 25, the positive connector, connects with the turn signal actuating switch 15. Of course, if FIG. 1 shows a negative ground system, these connections are reversed.
Three parallel output transistors 01, Q2 and 03 conduct load current between output connections 25 and 26 in a load current path that includes three parallel current dividing resistors 27, 28, and 29, and a current sensing resistor 30, described in detail below. A diode 31, in parallel with the load current path, between the output connectors, completes the output stage. The diode 31 protects the circuit in the event of mistaken reverse polarity connection of the flasher 10. The diode 31 bypasses the remaining circuitry and gives continuous load energization if a positive voltage is mistakenly applied to the connector 26. The diode 31 also provides an important measure of transient protection. The diode serves as an inductive clamp in one direction of current flow, passing any transient inductive current spike flowing opposite ordinary load current.
The three output transistors Q1, Q2, and Q3 are driven together into and out of conduction. Flashing conduction of the output transistors is timed by a freerunning multivibrator or flip-flop 35. The multivibrator 35 is a conventional circuit configuration with a pair of transistors Q4 and Q4 arranged in differential amplifier relation and with appropriately chosen resistive and capacitive circuit elements selected in the ordinary way to give the desired output frequency. A current amplifier that includes transistor Q5, its base-collector resistor 36, and a constant voltage base drive Zener diode 37 supplies substantially constant current to the multivibrator 35.
A Zener diode 37 maintains a substantially constant voltage thereacross to provide a constant bias to the current amplifier transistor Q5, assuring frequency stability of the flip-flop 35.
Because the transistor circuit of the flasher is not a three wire system, but is groundless, and because the transistor bias must be taken from the very energy source controlled by the circuit, some means must assure consistant transistor operation. To this end, a diode 39 charges a capacitor 40 during the intervals of nonconduction of the output transistors Q1, Q2 and Q3. The capacitor 40, of course, maintains adequate voltage across the circuit when the output transistors do conduct.
One multivibrator output that is taken from the junction of a pair of voltage divider resistors 43 and 44 is delivered, via a line 45, as a base drive to a transistor Q6 that is connected in series with a resistor 48. The transistor Q6 is the first of a set of control transistors Q6, Q7, and Q8 that control or drive the output transistors, Conduction by the transistor Q6, when a positive multivibrator output is applied by line 45, draws current from the base of the transistor Q7, bringing that transistor into conduction. In turn, the conduction of the transistor Q7 applies the appropriate base drive to a final output stage control transistor Q8, which has its base connected to the junction of the collector of the transistor Q7 and a series resistor 49. The transistor O8 is in series with a resistor 51. The bases of output transistors Q1, Q2, and Q3 connect with the junction of the resistor 51 and the collector of the transistor Q8. Conduction by the transistor Q8 thus triggers the output transistors into conduction.
A second output from the multivibrator 35 occurs at the junction of a pair of voltage divider resistors 53 and 54 and is delivered by a line 55 to a transistor Q9. The output delivered to the base of the transistor Q9 goes positive when the first multivibrator output on the line 65 drops to zero. Conduction by the transistor Q9 establishes a base drive for a further transistor Q whose base connects with the junction of a pair of voltage divider resistors 57 and 58 connected in series with the transistor Q9.
The transistor QM is in series with a resistor 60, and a parallel branch of series resistors 63, 64 and 65. The transistor conducts to bring the voltage at the junction 61 of the transistor Q10 and resistor 60 near that at line 32. This charges a capacitor 62, in parallel with the resistor 63, and supplies base drive to a clamping or turn off control transistor Qlli. The base of the transistor Qitl connects with the junction of the resistors 64 and 65. The bias thus applied to the base of the transistor Ollll assures that no base drive at line 65 will be supplied to the base of the transistor Q6. The transistor QM, then, acts to clamp the base drive line 45 with the negative line 33 of the circuit, and assures that the transistors Q6, Q7, and Q8, and the output transistors Q1, Q2, and 03 are clamped off during the positive output occurring at the line 55 from the multivibrator 35. Of course each time the second multivibrator output occurring on the line 55 ends, and the first output on the line i5 begins, the output transistors Qll, Q2, and Q3 will again conduct. In ordinary operation, this sequence occurs over and over, alternately to flash connected lamps or other loads on and off.
As briefly mentioned above, a resistor oflow resistance, plays an important part in the protection of both the flasher circuit and the circuit into which the flasher 116 is series-connected. The resistor 30 is a current sensing resistor that has a resistance precisely selected to begin signaling a high current at a chosen load current level. in a lamp circuit, that current may be reached by the lamp starting current, the high current that ordinarily occurs upon the energization of a darkened incandescent lamp.
The current sensitive protective circuitry includes, in addition to the sensing resistor 36, a current control transistor 0112 connected in parallel with the transistor QM. A pair of resistors 68 and 69 connect in series voltage divider relation between the Zener diode 3'7 and the negative connector 26 at the negative side of the sensing resistor 36. As the current through the resistor 30 increases, under ordinary lamp starting conditions for example, the voltage across the sensing resistor 30 increases, the voltage at the base of the transistor @112 begins to be pulled down from the voltage applied by the Zener diodes 37. This transistor, then, begins to conduct and to starve the transistor Q6 of base drive, but Q12 does not necessarily come on sufficiently to clamp transistor Q6s base drive on line 45 to the negative line 33. Rather, conduction by the transistor O6 is decreased, during the early part of the on cycle, conduction by the transistor is decreased, and in turn, the transistor 03 conducts less thereby reducing the base drive current drawn from the base of the three output transistors. These three transistors, Qll, Q2 and O3 begin to resist increasing current conduction.
If the increased current sensed by the resistor 30 is just normal lamp starting current or other transient high current, the three output transistors minimize the starting current, and little or no voltage increase occurs across the sensing resistor. The controlled loads then begin to conduct at their much lower, stable current levels. In the case of lamp flashing, the flasher l0 effectively revises the typical incandescent lamp circuit operating curve by prohibiting the ordinary extreme starting currents. I
if the high current sensed by the resistor 30 is an overcurrent resulting from, for example, a short circuit, normal load operating conditions with attendent normal load currents do not ordinarily return. Rather, reduction of the base drive to the output transistors Q1, Q2, Q3 causes a continuing voltage increase across the transistors, from the positive line 32 to the negative line 33. Resistors 65, 64, 63 and a further voltage sampling Zener diode '72, connected in series across the circuit, act as a voltage sensing arrangement. Normally, when the output transistors are conducting and the transistor Q10 is non-conductive, the voltage across the Zener diode 72 is a low value, below its rated voltage of about 5 volts, because the voltage difference between the lines 32 and 33 is small. With a higher voltage across the circuit, the Zener begins to conduct, and first offsets the normal discharging of the capacitor 62, recharging that capacitor. As the capacitor 62 approaches its fully charged condition, the current through the Zener diode 72 provides base drive for the clamping transistor 01 ll, to clamp the line 45 to ground and shut down the output stage. The time delay provided by capacitor 62 permits sufficient time at the beginning of each on cycle to permit a return to normal operating current. An intermittent short can, therefore, be treated by the current limiting arrangement, the resistor 30 and the transistor 012, without interrupting the flashing function completely.
Because of the importance of the voltages established across the sensing resistor 30, a very accurate resistance and good connections are important. Preferably the resistor 36 is a Monel strip with the connector 26 connected at one end and the collectors of the output transistors Q1, Q2, 03 connected at the other end. The resistance 30 can be determined empirically for proper operating conditions by affixing the line 33 to the body of the Monel strip and affixing a line 75 at a point on the strip that gives exactly that resistance required for proper current sensing. It will be appreciated that the resistance value of the Monel strip is extremely low, the currents sensed are high, and any loss at the point of connection to the strip would produce a voltage error. For that reason connections to the strip at the lines 33 and 75 and at the collectors of the output transistors should be direct welds to the Monel strip or some othr suitable lossless connection.
Transistors Q4, Q4, and 05 can be provided by a single, commercially available integrated circuit. So too, transistors Q6, O9, 010, Q11, and Q12 can be a single integrated circuit. Use of an NPN transistor as Q6 and a PNP transistor as Q12 adds temperature stability to the current sensing and limiting function insofar as temperature dependent variations in operation of the transistor O6 is offset substantially by opposing current dependent variations in transistor Qll2s operating conditions. This effect is further enhanced by the use of a single integrated circuit for both transistors to as sure that both transistors are exposed to substantially identical temperatures.
Modifications of the preferred embodiment of the flasher circuit described above will be apparent to persons skilled in the art. For example, more than one output stage with current limiting and voltage sensing arrangements could be commonly driven from the outputs of the multivibrator. Two or more flashers or flasher output control sections can be locked together in phase and frequency or driven in alternately flashing, wig-wag flasher, manner. The current sensing and voltage sensitive shut off features of the invention are useful with three wire systems as well as the preferred two wire circuit described. Other modifications will appear in connection with particular uses of the flasher circuit. The above description of a preferred embodiment is, then, not intended to limit the scope of protection of the applicants invention, set forth in the appended claims.
We claim:
1. A DC. Flasher circuit for connection in series into a series connected circuit path of electrical conduction including a load and a source of DC. potential to cause alternate opening and closing of the circuit path; the flasher circuit having first and second connectors for connecting the flasher in series connection only into said circuit path of electrical conduction, said connectors defining the only means for electrical connection of said flasher circuit into said circuit path of electrical conduction, output transistor means having a current conduction path connected in series between the connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, timing circuit means connected with the controlling means for timing the rate of conduction and nonconduction of the output transistor means, circuit voltage supply means for deriving a stabilized voltage from voltage present across the connectors when the output transistor means is nonconductive, and means connected with the voltage supply means for establishing a substantially stable voltage of a predetermined value between circuit points in the flasher circuit to provide transistor operating potentials independent of ground, whereby the flasher circuit is operable upon connection between two ungrounded points in the path of electrical conduction to the exclusion of any other electrical connection.
2. The flasher circuit according to claim 1 wherein the means for stabilizing is a diode-capacitor combination having a capacitor connected to establish a voltage across the circuit and a diode connected to supply the capacitor from one of said connectors and to block capacitor discharge by conduction of the output transistor means.
3. The flasher circuit according to claim 2 wherein said means for establishing a substantially stable voltage of a predetermined value includes at least one voltage establishing semiconductor means for fixing a transistor bias reference voltage.
4. The flasher circuit according to claim 3 wherein the timing circuit means is a transistor multivibrator and a transistor current amplifier supplying the multivibrator, the voltage establishing semiconductor means is a Zener diode connected to and establishing base drive for the transistor current amplifier.
5. The flasher circuit according to claim 1 further including means for detecting an overcurrent when the output transistor means conducts, and means responsive to the overcurrent detecting means for reducing the conduction of the output transistor means.
6. The flasher circuit according to claim 5 further including means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the conduction reducing means, and means connected with said means for detecting a voltage increase for halting conduction by the output transistor means.
7. A DC. flasher circuit for connection to a circuit including a DC. potential source and a load; the flasher circuit having an output transistor means alternately for conducting and blocking load current between two connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, overcurrent sensing means for sensing the current during the conducting periods, first control means connected with the overcurrent sensing means to alter a bias applied to the output transistor means to reduce conduction of the output transistor means in response to overcurrents, means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the first control means, and a second control means connected with the increased voltage detecting means to stop conduction by the output transistor means in response to detected voltage increase.
8. The flasher circuit according to claim 7 wherein the overcurrent sensing means is a very low resistance resistor, and the conduction reducing first control means is a current control transistor circuit having voltage sensitive bias connections connected across the sensing resistor for reducing a bias to the output transistor means in response to an increase in the voltage across the sensing resistor.
9. The flasher circuit according to claim 8 wherein the overcurrent sensing means comprises means for establishing a substantially stable voltage including a Zener diode connected with a circuit path across the flasher circuit, and one of said voltage sensitive bias connections is a control transistor base driven connection connected into a circuit path extending from one terminal of the Zener diode to an end of the sensing resistor.
it). The flasher circuit according to claim 7 wherein the increased voltage detecting means includes a voltage sampling Zener diode and a turn off control transistor, the Zener diode being connected in a circuit branch extending across the flasher circuit, the Zener diode being ordinarily biased to below its rated voltage, whereby increased voltage across the flasher circuit raises the voltage across the Zener diode, the control transistor having its base drive connected with the circuit path of the Zener diode to conduct and turn off the output transistor means after the rated Zener diode voltage is established.
11. The flasher circuit according to claim 10 further including a capacitor connected between said circuit branch including the Zener diode and a further point of connection in the flasher circuit, the capacitor initially diverting current to prevent immediate biasing into conduction of the turn off control transistor, thereby providing a slight time delay permitting initial overcurrents and voltage increases to diminish before the output transistor means is turned off.
12. The flasher circuit according to claim 8 whereby the first control means comprises a first control transistor connected with at least one further control transistor, the further control transistor being connected to control the conduction of the output transistor means, one of the first and further control transistors being an NPN transistor and the remaining of the two control transistors being a PNP transistor to reduce temperature dependence of the combined transistor characteristics.
l3. A DC. lamp flasher of the type including at least one output transistor for connection with an incandescent lamp circuit having a DC potential source and at least one lamp, and for alternately conducting and blocking conduction of current to the lamp; the lamp flasher including current sensitive and voltage sensitive protective means, the flasher including at least one output transistor connected alternately to conduct and to block current from one connector to another, means connected with the output transistor for controlling the output transistor to cause the conduction and nonconduction of the output transistor, a sensing resistor in series with the output transistor for providing a voltage drop indicative of the current through the output transistor, a first current control transistor connected with the sensing resistor and changing conductance in response to changes in the voltage across the sensing resistor, additional control transistor means connected with the first current control transistor and operatively connected with the output transistor to reduce base drive to the output transistor and to oppose increased conduction thereby when the current sensing resistor voltage increases, means for sampling the voltage across the output transistor to detect increased voltage thereacross resulting from decreased conduction in the output transistor, a turn off control transistor biased by the voltage sampling means and connected with said additional control transistor means to turn off the output transistor, and means for imparting a short time delay to the bias applied to the turn off control transistor to delay the turn off sufficiently to allow transient and incandescent lamp start up currents to be controlled by the current sensitive protective means of the circuit.

Claims (13)

1. A D.C. Flasher circuit for connection in series into a series connected circuit path of electrical conduction including a load and a source of D.C. potential to cause alternate opening and closing of the circuiT path; the flasher circuit having first and second connectors for connecting the flasher in series connection only into said circuit path of electrical conduction, said connectors defining the only means for electrical connection of said flasher circuit into said circuit path of electrical conduction, output transistor means having a current conduction path connected in series between the connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, timing circuit means connected with the controlling means for timing the rate of conduction and nonconduction of the output transistor means, circuit voltage supply means for deriving a stabilized voltage from voltage present across the connectors when the output transistor means is nonconductive, and means connected with the voltage supply means for establishing a substantially stable voltage of a predetermined value between circuit points in the flasher circuit to provide transistor operating potentials independent of ground, whereby the flasher circuit is operable upon connection between two ungrounded points in the path of electrical conduction to the exclusion of any other electrical connection.
2. The flasher circuit according to claim 1 wherein the means for stabilizing is a diode-capacitor combination having a capacitor connected to establish a voltage across the circuit and a diode connected to supply the capacitor from one of said connectors and to block capacitor discharge by conduction of the output transistor means.
3. The flasher circuit according to claim 2 wherein said means for establishing a substantially stable voltage of a predetermined value includes at least one voltage establishing semiconductor means for fixing a transistor bias reference voltage.
4. The flasher circuit according to claim 3 wherein the timing circuit means is a transistor multivibrator and a transistor current amplifier supplying the multivibrator, the voltage establishing semiconductor means is a Zener diode connected to and establishing base drive for the transistor current amplifier.
5. The flasher circuit according to claim 1 further including means for detecting an overcurrent when the output transistor means conducts, and means responsive to the overcurrent detecting means for reducing the conduction of the output transistor means.
6. The flasher circuit according to claim 5 further including means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the conduction reducing means, and means connected with said means for detecting a voltage increase for halting conduction by the output transistor means.
7. A D.C. flasher circuit for connection to a circuit including a D.C. potential source and a load; the flasher circuit having an output transistor means alternately for conducting and blocking load current between two connectors, means connected with the output transistor means for controlling the output transistor means to cause conduction and nonconduction of the output transistor means, overcurrent sensing means for sensing the current during the conducting periods, first control means connected with the overcurrent sensing means to alter a bias applied to the output transistor means to reduce conduction of the output transistor means in response to overcurrents, means for detecting a voltage increase across the conducting output transistor means when the current through the output transistor means is reduced by the first control means, and a second control means connected with the increased voltage detecting means to stop conduction by the output transistor means in response to detected voltage increase.
8. The flasher circuit according to claim 7 wherein the overcurrent sensing means is a very low resistance resistor, and the conduction reducing first control means is a current control transistor circuit haviNg voltage sensitive bias connections connected across the sensing resistor for reducing a bias to the output transistor means in response to an increase in the voltage across the sensing resistor.
9. The flasher circuit according to claim 8 wherein the overcurrent sensing means comprises means for establishing a substantially stable voltage including a Zener diode connected with a circuit path across the flasher circuit, and one of said voltage sensitive bias connections is a control transistor base driven connection connected into a circuit path extending from one terminal of the Zener diode to an end of the sensing resistor.
10. The flasher circuit according to claim 7 wherein the increased voltage detecting means includes a voltage sampling Zener diode and a turn off control transistor, the Zener diode being connected in a circuit branch extending across the flasher circuit, the Zener diode being ordinarily biased to below its rated voltage, whereby increased voltage across the flasher circuit raises the voltage across the Zener diode, the control transistor having its base drive connected with the circuit path of the Zener diode to conduct and turn off the output transistor means after the rated Zener diode voltage is established.
11. The flasher circuit according to claim 10 further including a capacitor connected between said circuit branch including the Zener diode and a further point of connection in the flasher circuit, the capacitor initially diverting current to prevent immediate biasing into conduction of the turn off control transistor, thereby providing a slight time delay permitting initial overcurrents and voltage increases to diminish before the output transistor means is turned off.
12. The flasher circuit according to claim 8 whereby the first control means comprises a first control transistor connected with at least one further control transistor, the further control transistor being connected to control the conduction of the output transistor means, one of the first and further control transistors being an NPN transistor and the remaining of the two control transistors being a PNP transistor to reduce temperature dependence of the combined transistor characteristics.
13. A D.C. lamp flasher of the type including at least one output transistor for connection with an incandescent lamp circuit having a D.C. potential source and at least one lamp, and for alternately conducting and blocking conduction of current to the lamp; the lamp flasher including current sensitive and voltage sensitive protective means, the flasher including at least one output transistor connected alternately to conduct and to block current from one connector to another, means connected with the output transistor for controlling the output transistor to cause the conduction and nonconduction of the output transistor, a sensing resistor in series with the output transistor for providing a voltage drop indicative of the current through the output transistor, a first current control transistor connected with the sensing resistor and changing conductance in response to changes in the voltage across the sensing resistor, additional control transistor means connected with the first current control transistor and operatively connected with the output transistor to reduce base drive to the output transistor and to oppose increased conduction thereby when the current sensing resistor voltage increases, means for sampling the voltage across the output transistor to detect increased voltage thereacross resulting from decreased conduction in the output transistor, a turn off control transistor biased by the voltage sampling means and connected with said additional control transistor means to turn off the output transistor, and means for imparting a short time delay to the bias applied to the turn off control transistor to delay the turn off sufficiently to allow transient and incandescent lamp start up currents to be controlled by the current sensitive proteCtive means of the circuit.
US00370529A 1973-06-15 1973-06-15 D. c. flasher Expired - Lifetime US3858088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00370529A US3858088A (en) 1973-06-15 1973-06-15 D. c. flasher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00370529A US3858088A (en) 1973-06-15 1973-06-15 D. c. flasher

Publications (1)

Publication Number Publication Date
US3858088A true US3858088A (en) 1974-12-31

Family

ID=23460066

Family Applications (1)

Application Number Title Priority Date Filing Date
US00370529A Expired - Lifetime US3858088A (en) 1973-06-15 1973-06-15 D. c. flasher

Country Status (1)

Country Link
US (1) US3858088A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940660A (en) * 1973-12-14 1976-02-24 Edwards Frederick H Circuitry for load connection and disconnection
US4150359A (en) * 1977-03-09 1979-04-17 Nippondenso Co., Ltd. Method and apparatus for controlling vehicle directional lamps
US4199797A (en) * 1977-01-14 1980-04-22 Tokyo Shibaura Electric Co., Ltd. Protective circuit for amplifier circuits
EP0017431A1 (en) * 1979-04-05 1980-10-15 Nippondenso Co., Ltd. Direction indicating apparatus for vehicles
US4321509A (en) * 1979-05-23 1982-03-23 Toyota Jidosha Kogyo Kabushiki Kaisha Dimmer
US4477747A (en) * 1981-10-03 1984-10-16 Kabushiki Kaisha Sankyo Seiki Seisakusho Lamp circuit for automobile
US20080209751A1 (en) * 2007-02-20 2008-09-04 Asciolla Thomas J Dryer exhaust duct alarm
US20180362186A1 (en) * 2015-12-07 2018-12-20 Howard University System and method for protection of electronic box under lightning strike

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253186A (en) * 1964-01-21 1966-05-24 Elastic Stop Nut Corp Flasher circuit
US3329868A (en) * 1962-09-29 1967-07-04 Bosch Gmbh Robert Blinking light control arrangement
US3663860A (en) * 1970-02-25 1972-05-16 Motorola Inc Short circuit proof flasher circuit
US3684896A (en) * 1970-08-26 1972-08-15 Meridian Industries Inc Flasher circuit with short protection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3329868A (en) * 1962-09-29 1967-07-04 Bosch Gmbh Robert Blinking light control arrangement
US3253186A (en) * 1964-01-21 1966-05-24 Elastic Stop Nut Corp Flasher circuit
US3663860A (en) * 1970-02-25 1972-05-16 Motorola Inc Short circuit proof flasher circuit
US3684896A (en) * 1970-08-26 1972-08-15 Meridian Industries Inc Flasher circuit with short protection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940660A (en) * 1973-12-14 1976-02-24 Edwards Frederick H Circuitry for load connection and disconnection
US4199797A (en) * 1977-01-14 1980-04-22 Tokyo Shibaura Electric Co., Ltd. Protective circuit for amplifier circuits
US4150359A (en) * 1977-03-09 1979-04-17 Nippondenso Co., Ltd. Method and apparatus for controlling vehicle directional lamps
EP0017431A1 (en) * 1979-04-05 1980-10-15 Nippondenso Co., Ltd. Direction indicating apparatus for vehicles
US4321509A (en) * 1979-05-23 1982-03-23 Toyota Jidosha Kogyo Kabushiki Kaisha Dimmer
US4477747A (en) * 1981-10-03 1984-10-16 Kabushiki Kaisha Sankyo Seiki Seisakusho Lamp circuit for automobile
US20080209751A1 (en) * 2007-02-20 2008-09-04 Asciolla Thomas J Dryer exhaust duct alarm
US8256133B2 (en) * 2007-02-20 2012-09-04 Safety First Appliance Protection, Llc Dryer exhaust duct alarm
US20180362186A1 (en) * 2015-12-07 2018-12-20 Howard University System and method for protection of electronic box under lightning strike
US10633114B2 (en) * 2015-12-07 2020-04-28 Howard University System and method for protection of electronic box under lightning strike

Similar Documents

Publication Publication Date Title
US5313165A (en) Temperature-compensated apparatus for monitoring current having controlled sensitivity to supply voltage
US4259659A (en) Flasher apparatus for vehicles
US4291302A (en) Lamp monitoring circuits
US4658200A (en) Protection circuit for voltage regulator of vehicle mounted generator
US3858088A (en) D. c. flasher
US5210480A (en) Control device of vehicle mounted alternator
US3959708A (en) Battery charging systems for road vehicles
US3210727A (en) Indicating circuits for vehicle electrical systems
US4121146A (en) Battery charging systems for road vehicles
US6956377B2 (en) Disconnection detection apparatus
US4658202A (en) Circuit arrangement for controlling the current through an electric load
US4125824A (en) Alarm circuit
EP0017431B1 (en) Direction indicating apparatus for vehicles
US4438384A (en) Generation indicating apparatus for vehicle alternators
EP0071366B1 (en) Lamp drive circuit
JPS60131026A (en) Automotive electronic circuit device
US4985820A (en) Driver circuit for switching on lamp with low cold resistance
US4266212A (en) Apparatus for controlling vehicle directional lamps
JP2724564B2 (en) Overvoltage alarm device
JPH0819167A (en) Overvoltage protective circuit
US4458286A (en) Electronic device having a high voltage breakdown protection circuit
GB1604435A (en) Electrical circuit with load continuity detector
EP0112703B1 (en) Vehicle ligthing system
JPS601485Y2 (en) Fuse breakage detection device
KR950002407Y1 (en) Power circuit