US3857790A - Improvement in the preparation of overbased magnesium lubricant additives - Google Patents

Improvement in the preparation of overbased magnesium lubricant additives Download PDF

Info

Publication number
US3857790A
US3857790A US00257424A US25742472A US3857790A US 3857790 A US3857790 A US 3857790A US 00257424 A US00257424 A US 00257424A US 25742472 A US25742472 A US 25742472A US 3857790 A US3857790 A US 3857790A
Authority
US
United States
Prior art keywords
weight
percent
oil
reaction mixture
inert solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00257424A
Inventor
P Saunders
P Derbyshire
M Fox
A Fagan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cooper E & Co Ltd gb
Edwin Cooper and Co Ltd
Original Assignee
Edwin Cooper and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB1760471A priority Critical patent/GB1399092A/en
Priority to US00257424A priority patent/US3857790A/en
Priority to DE2225714A priority patent/DE2225714C3/en
Priority to CA143,123A priority patent/CA985668A/en
Priority to AU42820/72A priority patent/AU468371B2/en
Application filed by Edwin Cooper and Co Ltd filed Critical Edwin Cooper and Co Ltd
Priority to FR727218852A priority patent/FR2139120B1/fr
Priority to AT460872A priority patent/AT326252B/en
Priority to NL7207250A priority patent/NL7207250A/xx
Priority to US510038A priority patent/US3928216A/en
Application granted granted Critical
Publication of US3857790A publication Critical patent/US3857790A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/12Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2225/00Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2225/04Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • an oil-soluble detergent'or dispersant ii. a basicalkaline earth compound, iii, a hydroxy containing organic compound, and iv. as promoter, an amine salt of an acid; b. treating the reaction mixture with an acidic gas;
  • lubricants containing the overbased additives as detergents and dispersants.
  • This invention relates to lubricant additives, and in particular to the prepartion of overbased lubricant additives, which are detergents and dispersants, and to compositions containing the additives so prepared.
  • detergent and/or dispersant additives are commonly incorporated in lubricants to counteract such deposits. It has been found that basic detergents and dispersants, i.e., detergents and dispersants having a high content of an alkali or alkaline earth metal salt of a weak acid such as carbonate, are particularly useful. The basicity of such additives counteracts corrosive acidic compounds, e.g., combustion products, which are formed during the operation of engines.
  • the basic additives are commonly prepared by a process consisting essentially of suspending a basic metal compound, e.g., calcium hydroxide or oxide, in an inert solvent (usually lubricating oil) containing a detergent or dispersant, such as a carboxylic or sulphonic acid or metal salt thereof, and passing an acidic gas, usually carbon dioxide, through the suspension.
  • a basic metal compound e.g., calcium hydroxide or oxide
  • an inert solvent usually lubricating oil
  • a detergent or dispersant such as a carboxylic or sulphonic acid or metal salt thereof
  • the product should be a clear liquid which is stable, i.e., the basic metal compound should not separate from the liquid phase, and in which the metal of the metal compound is present in an excess of the stoichiometric amount required to react with the acid groups of the detergent of dispersant.
  • the overbasing process should have good repeatability. That is to say there should be a high degree of consistency in the quality of products obtained when the process is carried out repeatedly under identical conditions, as happens when commercial production is undertaken.
  • magnesium oxide or hydroxide as a source of magnesium have been uneconomic, e.g., by virtue of being multi-stage processes, and/or have produced additives lacking, to an unacceptable degree, one of more of the properties of clarity, basicity, consistency of quality and performance in engine tests.
  • the products have been unsuitable therefore for economic or technical reasons.
  • overbased magnesium-containing detergents have not been produced on a commercial scale from magnesium oxide or hydroxide and the only commercially used method employs magnesium metal, despite the unfavourable economics of using such expensive starting materials.
  • the present invention provides a process for preparing an overbased lubricant additive, which process comprises:
  • the inert solvent employed in the process ofthe pres ent invention may be a lubricating oil of the synthetic ester type well known in the art.
  • An example of such esters is dioctyl sebacate. Further examples of these esters are described in U.l(. Pat. No. 1,205,177 the relevant portions of which are incorporated herein by reference.
  • Such esters are also available commercially, for example, the range of pentaerythritol esters marketed under the trade name Hercolube.
  • a hydrocarbon solvent such as a petroleum oil of the type used in lubricating compositions.
  • the hydrocarbon oil vehicle may consist of a synthetic hydrocarbon oil, for example, an alkylated benzene fraction, or a mixture of such an oil with.
  • the inert solvent may be a non-polar diluent, particularly a hydrocarbon diluent, as referred to hereinafter.
  • a non-polar diluent particularly a hydrocarbon diluent, as referred to hereinafter.
  • Such diluents of comparatively low viscosity may be useful when the detergent or dispersant is a pure sulphonic acid or salt thereof which is solid or a highly viscous liquid.
  • the proportions of the inert solvent which is employed can vary widely depending on the proportions of the other components of the reaction mixture. Indeed the proportion of each component can vary according to the varying proportions of each of the other components. In view of this interdependency of the proportions it is convenient to take the amount of the inert solvent as a reference point and relate the proportions of other components thereto.
  • Oil-soluble detergents or dispersants which are susceptible to overbasing are well known in the art and the material used in the present process may be selected from those conventionally used in overbasing pro Fallss, such as phosphosulphurised hydrocarbons, e.g., polyisobutylene treated with phosphorus pentasulphide, or metal salts of carboxylic acids, particularly alkanoic acids, e.g., acetic or fatty acids, or naphthenic acids.
  • Suitable oil-soluble detergents or dispersants include those disclosed in the aforementioned U.S. Pat. Nos. 3,492,230 and 3,629,109. It is particularly preferred to use a sulphonic acid or metal salt thereof, especially a metal salt wherein the metal is an alkaline earth metal. In a preferred embodiment the metal is the same as the metal present in the basic alkaline earth compound.
  • the sulphonic acid may be a petroleum sulphonic acid (also termed mahogany sulphonic acids) prepared by sulphonating petroleum feedstocks or it may be an alkyl, aryl or alkaryl sulphonic acid. Examples of such sulphonic acids include.
  • petroleum sulphonic acids of molecular weight 350 to 750 dilauryl aryl sulphonic acid, lauryl-cetyl aryl sulphonic acid, paraffin waxsubstituted benzene sulphonic acid, didodecyl benzene sulphonic acid, polyolefin alkylated benzene sulphonic acids, such as polyisobutylene alkylated benzene sulphonic acids in which the polyisobutylene substituents have molecular weights of at least 200, preferably from 300 to 2,500, polypropylene alkylated benzene sulphonic acids in which the polypropylene substituents have molecular weights of at least 200, preferably from 290 to 1,500, naphthalene sulphonic acids and alkylsubstituted naphthalene sulphonic acids.
  • Particularly preferred sulphonic acids are mono-alkyl substituted benzene sulphonic acids having molecular weights of from 450 to 550, for example, the commercially available product Monsanto M 5336 (straight chain monoalkyl substituted benzene sulphonic acid of molecular weight 470 to 480).
  • the amount of detergent or dispersant employed may be varied over a wide range. We prefer to use from percent, more preferablyat least percent, up to 120 or even 150 percent by weight based onthe weight of the inert solvent. A particularly preferred proportion is from 60 to 120 percent by weight.
  • the basic akaline earth compounds useful in over- I basing processes are also well known, examples being oxides and hydroxides such as magnesium, barium and calcium oxides and hydroxides, the magnesium compounds, especially magnesium oxide, being preferred.
  • the process of the present invention can also be'used for preparing overbased additives containing other metals.
  • the amount of the basic alkaline earth compound to be employed may be readily calculated from the intended basicity of the additive product.
  • the maximum basicity which can be achieved will depend, inter alia, on the degree of susceptibility of the detergent of dispersant.
  • T.B.N total base number
  • Additives having this level of basicity are regarded as highly basic and the process of the present invention is particularly suitable for preparing such highly basic additives.
  • additives of lower basicity are also useful commercial products and may also be prepared by the process of the present invention.
  • magnesium oxide is the most preferred basic alkaline earth compound for use in the present invention.
  • Magnesium oxide is commercially available in two forms, sometimes referred to as light and heavy magnesium oxide.
  • the former is a relatively active form, usually derived from extraction from sea water.
  • Heavy magnesium oxide sometimes called dead burned, is produced by mining and roasting of the mineral material and is commonly considered a less active form of magnesium oxide.
  • either form of magnesium oxide may be used.
  • Light magnesium oxide such as the commercially available material Merck Maglite Y3234 supplied by Merck Chemical Division, N.J., is preferable from the viewpoint of providing a somewhat more easily controlled process and somewhat better product; whereas heavy magnesium oxide, which is less expensive,
  • the hydroxy compound employed in the reaction mixture is believed to act as a co-promoter with the amine salt of an acid.
  • suitable hydroxy compounds include alcohols, glycols and glycol monoeth'ers.
  • the choice of hydroxy compound is not critical. However, for ease of removal of the hydroxy compound from the product of the process it is preferred that the hydroxy compound has as low a boiling point as possible. For this reason the hydroxy compound preferably contains from one to four carbon atoms and the preferred hydroxy compounds are therefore lower alcohols, particularly alkanols, glycols containing from one to four carbon atoms, e.g., ethylene glycol, propylene glycol, butylene glycol or diethylene glycol, and
  • monoethers of glycols containing from one to four carbon atoms e.g., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol mono-n-propyl ether, propylene glycol mono-ethyl ether, propylene glycol mono-methyl ether, diethylene glycol monomethyl ether or butylene glycol mono-methyl ether.
  • the lower alkanols, particularly methanol, are especially preferred.
  • the amount of hydroxy compound used is a reaction promoting amount preferably at least 5 percent, more preferably 25 percent to 50 percent by weight based on the weight of the inert solvent.
  • water is also present in the reaction mixture, for example in an amount of from 5 to 50 percent, more preferably 15 to 30 percent by weight based on the weight of the inert solvent.
  • water may be desirable to subsequently add a further quantity of water, for example from 10 to 25percent by weight based on the weight of the inert solvent, during the treatment of the reaction mixutre with acidic gas.
  • the amine salt of an acid which is used as a promoter in the process of the present invention may be a salt of a mono-, dior poly-amine with an inorganic acid or an organic acid, eg a mono-, dior poly-carboxylic acid and the amine and/or the acid may be aliphatic or aromatic, Alternatively, a heterocyclic amine may be used.
  • the promoter may be selected from salts of a large number of amines, although among these certain salts are preferred.
  • salts of aliphatic amines with aliphatic carboxylic acids, particularly monocarboxylic acids, are especially useful.
  • the salts are preferably neutral salts.
  • the promoter is a salt of a carboxylic acid. If an aromatic carboxylic acid is sued, this preferably consists only of carbon and hydrogen atoms other than the two oxygen atoms in the, or each, carboxyl group. However salts of aliphatic carboxylic acids are preferred. Diand polycarboxylic aliphatic acids which may be used include those containing two to ten carbon atoms, examples being adipic, maleic, glutaric, succinic, and azelaic acids. Monocarboxylic acids, such as aklanoic acids, may also be used.
  • acids from which the promoters may be formed are alkanoic acids containing from one to twenty carbon atoms (including the carbon atom present in the carboxylic group).
  • the most preferred acids are formic acid and alkanoic acids containing from seven to twelve carbon atoms, e.g,m decanoic.
  • the amines from which the salts are formed include monoamines, such as oleylamine and laurylamine, diamines, such as ethylene diamine or propylene diamine, and polyamines, such as diethylene triamine. These are representative aliphatic hydrocarbyl amines. Suitable amines also include those disclosed in the aforementioned US. Pat. No. 3,492,230. Preferred amines contain not more than carbon atoms. Diamines and polyamines are the most preferred amine moiety, particularly those containing from two to eight carbon atoms. Ethylene diamine is the most preferred amine and it is especially preferred to use as the promotoer the diformate salt of ethylene diamine.
  • the amount of the promoter used is a reaction promoting amount and may be, for example, from 0.1 to 30 or 40 percent by wieght, based on the weight of the inert solvent, within which range optimum proportions may be selected according to the amine salt used and the intended basicity.
  • the preferred proportions of promoter are from 0.1 to percent more preferably 1.0 to 10 percent by weight based on the weight of the inert solvent. This may be varied according to the intended basicity of the product. For example, from 5 to 7 percent by weight of promoter may be used in the preparation of an additive having a T.B.N. of 300 and from 7 to 10 percent by weight in the preparation of an additive having a T.B.N. of 400.
  • the preferred proportions are such as to give the same molar ratio of promoter to other components of the reaction mixture as in the case of the preferred proportions of ethylene diamine diformate.
  • non-polar diluent other than any used as, or as part of, the inert solvent, particularly a hydrocarbon diluent such as xylene, benzene, toluene or pertroleum ether.
  • This diluent assists in maintaining the reaction mixture at a low viscosity during the overbasing process and is preferably a volatile diluent which can be varied over a very wide range depending on the choice of other components in the reaction mixture and their effect on viscosity.
  • from 80 to 150 percent, more preferably 100 to 130 percent by weight, based on the weight of the inert solvent, of toluene is used as diluent.
  • the components of the reaction mixture may be merely mixed in a reaction vessel and the order in which the components are added is not critical. However, a convenient technique is to prepare an aqueous solution of the promoter and add it to the remaining components previously mixed in the reaction vessel.
  • an acidic gas is passed therethrough.
  • the acidic gases which may be used in overbasing processes are also well-known in the art, examples being sulphur dioxide and hydrogen sulphide. However, a particularly preferred acidic gas is carbon dioxide.
  • the pressure at which the reaction mixture is treated with the acidic gas is also not critical. A pressure above, below or at atmospheric may be used. Treatment at atmospheric pressure is convenient as not requiring equipment to establish and maintain the pressure at which the reaction is carried out.
  • an increase in pressure over atmospheric may assist utilization of the acid gas.
  • a small increase over atmospheric e.g., up to 4 or 5 p.s.i.g., will suffice and normally only 1 or 2 p.s.i.g. is sufficient.
  • the temperature at which the process is carried out is likewise not critical and treatment with the acidic gas may take place at any temperature from ambient (about 20C) up to the decomposition temperature of the reaction mixture.
  • the reaction is exothermic and the temperature of the reaction mixture will tend to increase as the reaction proceeds. If desired, this can be counterbalanced, e.g., by cooling, to maintain a low reaction temperature.
  • the important factor in the decomposition temperature of the reaction mixture is the temperature at which significant deterioration of the product formed in the reaction mixture occurs. We prefer therefore to keep the reaction temperature below 180C., more preferably below C.
  • the reaction temperature will also be affected by water, and non-polar diluent, if used, and the choice of hydroxy compound.
  • reaction temperature therefore desirably does not exceed the boiling point of the most volatile component of the reaction mixture (normally methanol) or any azeotrope formed by components of the reaction mixture (e.g., a methanol/water/toluene azeotrope). It is normally advantageous therefore to carry out the reaction at or below the reflux temperature of the reaction mixture.
  • treatment at the reflux temperature has the advantage that a constant temperature is easily maintained.
  • the reaction mixture may be agitated to improve contact between gas and reaction mixture.
  • the acidic gas is passed through the reaction mixture until the basic alkaline earth compound is substantially converted to alkaline earth salt, whereafter the reaction mixture is heated to remove volatile components, e.g., water, methanol and any non-polar diluent.
  • volatile components e.g., water, methanol and any non-polar diluent.
  • the volatile components are removed under reduced pressure, e.g., by vacuum stripping.
  • Basic alkaline earth compound not consumed during the overbasing process may be removed by filtration of the product.
  • a filter aid such as diatomaceous earth, may be used in the filtration, which may be carried out after stripping, although we prefer to filter before stripping off volatile components.
  • water and volatile hydroxy compound particularly in the case of methanol, are substantially removed before filtration, and any non-polar diluent and remaining water and volatile hydroxy compound are stripped off after filtration.
  • v. about 0.1 to 40 percent by weight, based on the weight of the inert solvent, of a salt of an aliphatic amine and an alkanoic acid, preferably the diformate salt of ehtylene diamine, and, optionally,
  • magnesium oxide or hydroxide by converting the magnesium oxide or hydroxide to magnesium carbonate is meant complexing or dispersing the magnesium in the inert solvent to form a stable, liquid product, by means of the treatment with carbon dioxide.
  • the exact chemical structure of the additives of the present invention is not completely understood.
  • the present invention further includes an overbased 40 lubricant additive whenever preapred by the process of the present invention and a composition comprising a lubricating oil and an overbased lubricant additive prepared by the process of the present invention.
  • Such compositions may be lubricantcompositions containing a major amount of lubricating oil and a minor amount, for example 0.1 to 10 percent, preferably 0.5 to 5 percent by weight based on the total weight of the compositions of one or more overbased additives prepared by the process of the present invention.
  • lubricant compositions may also contain conventional additives such as antioxidants, corrosion inhibitors, an ti-wear additives, detergents, dispersants, extreme pressure additives, viscosity index improvers, pour point depressants and/or load carrying additives.
  • conventional additives such as antioxidants, corrosion inhibitors, an ti-wear additives, detergents, dispersants, extreme pressure additives, viscosity index improvers, pour point depressants and/or load carrying additives.
  • compositions may be concentrates containing a minor amount of lubricating oil and a major amount of one of more overbased additives prepared by the process of the present invention or additive packages containing a minor amount of lubricating oil and a major amount of an additive consisting of one or more-additives prepared in accordance with the present invention in combination with one or more conventional additives.
  • Esso HT 233 sulphonic acid branched chain mono-substituted alkyl benzene sulphonic acid of molecular weight about 500; 70 percent active
  • Mineral Oil A a branched chain mono-substituted alkyl benzene sulphonic acid of molecular weight about 500; 70 percent active
  • the product of the carbonation was filtered with the aid of a filter, aid. Toluene, water and methanol were removed from the product by vacuum stripping to 150C.
  • the final product contained 6.7 percent by weight Mg., 30 percent by weight soap (magnesium sulphonate) and had a T.B.N. of 300 mg, KOH/g.
  • Magnesium oxide (as in Example 1) 312g. Toluene 84g. Methanol A promoter was prepared by reacting l6g. formic acid with 10g. ethylene diamine in ml. water and the promoter was transferred to the flask with the aid of a further 25ml. water. The mixture was then carbonated under reflux in the same manner as in Example 1., whereafter a further 50ml. water was added and carbonation continued for a further 2 hours.
  • Example 2 The product was filtered and vacuum stripped as in Example 1, to yield a final product containing 8.7 percent by weight Mg., 20 percent by weight soap and having a T.B.N. of 400mg. KOH/g.
  • the sulphonic acid, base oil, toluene, methanol and magnesium oxide were weighed into a 2-litre reaction flask fitted with a stirrer, reflux condenser, thermometer and a sub-surface injection tube for carbon dioxide.
  • the ethylene diamine and formic acid were dissolved separately in 25g. and 50g. water, respectively.
  • the two resulting solutions were carefully mixed together with a further g. of water and the ethylene diamine diformate solution added to the neutral magnesium sulphonate mixture.
  • Carbon dioxide gas was injected into the stirred reaction mixture via the injection tube at a rate of 1.22 1itres per minute. The passage of gas was continued for one hour, during which period the reaction temperature rose from 43C to 68C maximum.
  • the product was clear, bright and mobile.
  • the total base number (TBN) was 396mg. KOH/g, with a total magnesium content of 9.3 percent.
  • the soap content was 25 percent.
  • Mineral Oil B used in this example had viscosities of about 22 and 4 cSt. at 100F and 210F respectively and a Viscosity Index of 95.
  • EXAMPLE 4 An additive having a TBN of 338mg. KOH/g. and containing 26.6 percent by weight soap and 7.86 percent by weight Mg was prepared by a procedure identical to and using the same quantities of the same materials as in Example 3, except in that 207g. dioctyl sebacate was used in place of Mineral Oil B. The product was a clear, bright liquid.
  • EXAMPLE 5 An additive having a TBN of 183mg. KOH/g. and containing 30.7 percent by weight soap and 4.64 percent by weight Mg was prepared by the same procedure as, and using the same quantities of the same materials as, Example 3 except for the following:
  • Magnesium hydroxide (146g) was used in place of the magnesium oxide.
  • EXAMPLE 6 An additive having a TBN of 377mg. KOH/g. and containing 25.5 percent by weight soap and 8.66 percent by weight Mg was prepared using the same quantities of the same material as, and following the procedure of, Example 3 except in that carbonation was continued for minutes and the temperature of the reaction mixture was maintained at 40C i 1C. throughout the carbonation. The product was a clear, bright liquid.
  • EXAMPLE 7 An additive having a TBN of 298mg. KOH/g. and containing 27.6 percent by weight soap and 7.02 percent by weight Mg was prepared by the procedure of Example 3 except as follows:
  • the product was a clear, bright, mobile liquid having excellent filterability.
  • EXAMPLE 8 A very highly basic additive (TBN 543mg.KOH/g.) containing 21.8 percent by weight soap and 11.35 percent by weight Mg. was prepared from the following materials:
  • Example 3 The procedure was the same as that of Example 3 except that durig carbonation the temperature rose, due to the exotherm, to a maximum of 61C after 20 minutes and carbonation was continued for a total of 1% hours.
  • Table 1 shows the results obtained using various de' tergents and dispersants in the process of Example 3. Except in respect of the detergent or dispersant the materials used, and the quantities thereof, were the same as in Example 3.
  • Table 2 summarizes the preparation of additives of varying soap content by the process of Example 3.
  • the quantities of the sulphonic acid and Mineral Oil B were varied to adjust the final soap content. All other components, and the quantities thereof, were the same as in Example 3.
  • Table 3 shows preparations wherein the same procedure as in Example 3 was used and the materials and quantities were the same as in Example 3, except in that the 70g. methanol was replaced by 70g. of various other hydroxy compounds.
  • Table 4 summarizes preparations using the neutral formate salts of various amines
  • Table 5 summarizes preparations using ethylene such as using larger quantities of the less viscous components of the reaction mixture, filtering before removing volatile components to improve filterability (the volatile components are in general also the less viscous diamine salts of various acids. Except for the indicated 5 components) and/or selection ofreaction mixture comvariations all the preparations were carried out using ponents (for example, in the case of the inert solvent the same procedure, materials and quantities thereof as synthetic ester lubricating oils normally have lower visin Example 3. cosities than mineral oils).
  • PRODUCT NO. (gm.) (mg.KOH/g.)
  • Polyisobutylene substituted succinic acid prepared by 9 reaction of maleic anhydride with Hyvis 100 (commercially 1160 available polyisobutylene of average molecular weight about 2000) Succinimide prepared by formation of 1:! molar reaction product of dicyandiamide and tetraethylene pentamine l0 and reaction of this product with a polyisobutylerie sub- 1160 38 stituted succinic acid as in Example 9.
  • ll Naphthenic Acid 97 181 Magnesium sulphonate prepared by double decomposition of a 50% solution in mineral oil (8.0. 0.9) of a sodium etroleum sulphonate with magnesium chloride.
  • the sodium petroleum sulphonate had an average 12 molecular weight of 460 to 465 and the mineral oil 187 267 solution of the sulphonate consisted of parts of a mineral oil solution (50%) of a medium molecular weight sulphonate and 25. parts of a mineral oil solution (50%) of a high molecular weight sulphonate.
  • Petroleum sulphonic acid being the acid from which 13 the sodium petroleum sulphonate of Example'l2 was derived).
  • Patent No.3492230 Ethylene Diamine Di- 64 formate (20g. ethylene Example ll of U5. 3
  • a reaction mixture of an oil soluble detergent or dispersant susceptible to overbasing selected from the group consisting of phosphosulphurized hydrocarbons, metal salts of carboxylic acids, sulphonic acids and metal salts of sulphonic acid, a basic magnesium compound in an amount sufficient to overbase said oil soluble detergent or dispersant, and a reaction promoting amount of a hydroxy-containing compound selected from the group consisting of alcohols and monoethers of glycols is formed in an inert solvent
  • said reaction mixture is contacted with an acidic gas at a reaction temperature of from about 20C up to the decomposition temperature of the reaction mixture and the resultant product is heated
  • the oil soluble detergent or dispersant is present in the amount of about 10 to 150 percent by weight based on the weight of the inert solvent
  • the hydroxy containing organic compound is present in an amount of about 5 to 50 percent by weight, based on the weight of the inert solvent
  • the salt of the amine and acid is present in the reaction mixture in an amount of about 0.1 to 40 percent by weight, based on the weight of the inert solvent, about 5 to 50 percent by weight, based on the weight of the inert solvent, of water is present in the reaction mixture and wherein the acidic gas is carbon dioxide.
  • hydroxy containing organic compound is selected from the group consisting of monohydroxis alcohols, containing from one to four carbon atoms, glycols containing from one taining from one to four carbon atoms.
  • reaction mixture is formed by admixing the inert'solvent, the oilsoluble detergent or dispersant, the basic magnesium compound and the hydroxy containing organic compound and thereafter adding thereto an aqueous solution of the amine salt of the acid.
  • the inert solvent is selected from the group consisting of mineral oils, alkyla'ted benzene and mixtures thereof.
  • non-plar diluent is selected from the group consisting of xylene, benzene, toluene and petroleum ether.
  • the inert solvent is a hydrocarbon oil solvent
  • the oil soluble detergent or dispersant is an oil soluble neutral magnesium salt of sulphonic acid in an amount of about 20 to 120 percent by weight, based on the weight of the hydrocarbon oil solvent
  • the basic magnesium compound is magnesium oxide or magnesium hydroxide in an amount to provide an additive having a total base number of about 250 to 500 mg.
  • the hydroxy-containing compound is methanol in an amount of about 25 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent; the salt of an alkanoic acid and an aliphatic hydrocarbyl diamine is present in an amount of about 0.1 to 15 percent by weight, based on the weight of the hydrocarbon oil solvent; from about 5 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent, of water is present in the reaction mixutre; and the reaction mixture is treated with carbon dioxide at a temperature of from about 20C up to the reflux temperature of the reaction mixture until the magnesium soluble additive according to claim 17.
  • a lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oilsoluble additive according to claim 18.
  • a lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oilsoluble additive according to claim 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

A process for preparing overbased lubricant additives comprises: A. FORMING IN AN INERT SOLVENT A REACTION MIXTURE OF, I. AN OIL-SOLUBLE DETERGENT OR DISPERSANT, II. A BASIC ALKALINE EARTH COMPOUND, III. A HYDROXY CONTAINING ORGANIC COMPOUND, AND IV. AS PROMOTER, AN AMINE SALT OF AN ACID; B. TREATING THE REACTION MIXTURE WITH AN ACIDIC GAS; AND C. HEATING THE RESULTANT PRODUCT TO REMOVE VOLATILE COMPONENTS. Also described are lubricants containing the overbased additives as detergents and dispersants.

Description

United States Patent 1 1 Saunders et al.
[ Dec. 31, 1974 IMPROVEMENT IN THE PREPARATION OF OVERBASED MAGNESIUM LUBRICANT ADDITIVES Inventors: Peter Anthony Saunders; Michael Frank Fox; Anthony Francis Fagan; Philip Edward Derbyshire, all of London, England Edwin Cooper & Company Limited, London, England Filed: May 26, 1972 Appl. No.: 257,424
Assignee:
Foreign Application Priority Data May 27, 1971 Great Britain 17604/71 [52] US. Cl. 252/33.4, 252/18, 252/32.7 1-1C, 252/33, 252/39, 252/40.7 Int. Cl .L ClOm 1/40 Field of Search 252/18, 32.7 HC, 33, 33.4, 252/39, 40.7
References Cited UNITED STATES PATENTS 11/1952 Asseff et al. 252/33.4 X 8/1956 LeSuer 252/33 X 3/1964 Versteeg 252/32.7 HC 5/1966 Hunt 252/18 X Primary Examiner-Patrick P. Garvin Assistant E.raminerAndrew H. Metz Attorney, Agent, or Firm-Bacon & Thomas [57] ABSTRACT A process for preparing overbased lubricant additives comprises:
a. forming in an inert solvent a reaction mixture of,
i. an oil-soluble detergent'or dispersant, ii. a basicalkaline earth compound, iii, a hydroxy containing organic compound, and iv. as promoter, an amine salt of an acid; b. treating the reaction mixture with an acidic gas;
and c. heating the resultant product to remove volatile components.
Also described are lubricants containing the overbased additives as detergents and dispersants.
23 Claims, No Drawings IMPROVEMENT IN THE PREPARATION OF OVERBASED MAGNESIUM LUBRICANT ADDITIVES This invention relates to lubricant additives, and in particular to the prepartion of overbased lubricant additives, which are detergents and dispersants, and to compositions containing the additives so prepared.
In the lubrication of modern internal combustion engines deposits, such as soot, lacquers and sludge, may be formed and detergent and/or dispersant additives are commonly incorporated in lubricants to counteract such deposits. It has been found that basic detergents and dispersants, i.e., detergents and dispersants having a high content of an alkali or alkaline earth metal salt of a weak acid such as carbonate, are particularly useful. The basicity of such additives counteracts corrosive acidic compounds, e.g., combustion products, which are formed during the operation of engines.
The basic additives are commonly prepared by a process consisting essentially of suspending a basic metal compound, e.g., calcium hydroxide or oxide, in an inert solvent (usually lubricating oil) containing a detergent or dispersant, such as a carboxylic or sulphonic acid or metal salt thereof, and passing an acidic gas, usually carbon dioxide, through the suspension. This process, which is often referred to as overbasing, produces a product in which the metal compound is complexed or dispersed in the lubricating oil. Ideally, the product should be a clear liquid which is stable, i.e., the basic metal compound should not separate from the liquid phase, and in which the metal of the metal compound is present in an excess of the stoichiometric amount required to react with the acid groups of the detergent of dispersant. For many purposes it is desirable for a very large excess of metal to be present. Moreover, the overbasing process should have good repeatability. That is to say there should be a high degree of consistency in the quality of products obtained when the process is carried out repeatedly under identical conditions, as happens when commercial production is undertaken.
Although calcium and barium compounds were initially the most commonly used metal compounds, more recently magnesium compounds have become of greater interest because of the lower ash content of lubricants containing magnesium. However, it has been found that the overbasing process usually applied to calcium and barium compounds cannot be modified in a simple manner to produce basic detergents and dispersants containing magnesium. Attempts to produce magnesium-containing basic detergents and dispersants have commonly been uneconomic or have yielded products having inferior properties.
Among the variations in technique which have been proposed for the overbasing process is the incorporation of a promoter in the reaction mixture to improve the process and the properties of the product. This is illustrated by US. Pat. No. 3,492,230 of Jan. 27, 1970, to R. W. Watson, E. E. Richardson and A. R, Sabol, which discloses the use of ethylene diamine as promoter, and by US. Pat. No. 3,629,109 of Dec. 21, 1970, to W. C. Gergel, J. L. Karn and L. E. King. However, as far as the preparation of overbased magnesium-containing detergents and dispersants are concerned, there remains a need for an economical process for preparing a technically suitable product. Thus, techniques hitherto proposed for using magnesium oxide or hydroxide as a source of magnesium have been uneconomic, e.g., by virtue of being multi-stage processes, and/or have produced additives lacking, to an unacceptable degree, one of more of the properties of clarity, basicity, consistency of quality and performance in engine tests. The products have been unsuitable therefore for economic or technical reasons. To the best of our knowledge and belief overbased magnesium-containing detergents have not been produced on a commercial scale from magnesium oxide or hydroxide and the only commercially used method employs magnesium metal, despite the unfavourable economics of using such expensive starting materials.
We have now found that certain compounds are effective promoters, such that by using these compounds, it is possible to obtain an improvement in one or more of the properties of clarity, basicity, repeatability and performance in engine tests even when the alkaline earth metal present is magnesium.
Accordingly, the present invention provides a process for preparing an overbased lubricant additive, which process comprises:
a. forming in an inert solvent a reaction mixutre of,
i. an oil-soluble detergent or dispersant,
ii. a basic alkaline earth compound,
iii. a hydroxy containing organic compound, and iv. as proinotor, an amine salt of an acid;
b. treating the reaction mixture with an acidic gas;
and
c. heating the resultant product to remove volatile components.
The inert solvent employed in the process ofthe pres ent invention may be a lubricating oil of the synthetic ester type well known in the art. An example of such esters is dioctyl sebacate. Further examples of these esters are described in U.l(. Pat. No. 1,205,177 the relevant portions of which are incorporated herein by reference. Such esters are also available commercially, for example, the range of pentaerythritol esters marketed under the trade name Hercolube. However, it is pre ferred to use a hydrocarbon solvent such as a petroleum oil of the type used in lubricating compositions. Alternatively, the hydrocarbon oil vehicle may consist of a synthetic hydrocarbon oil, for example, an alkylated benzene fraction, or a mixture of such an oil with.
petroleum oil.
In yet another alternative the inert solvent may be a non-polar diluent, particularly a hydrocarbon diluent, as referred to hereinafter. Such diluents of comparatively low viscosity, may be useful when the detergent or dispersant is a pure sulphonic acid or salt thereof which is solid or a highly viscous liquid.
The proportions of the inert solvent which is employed can vary widely depending on the proportions of the other components of the reaction mixture. Indeed the proportion of each component can vary according to the varying proportions of each of the other components. In view of this interdependency of the proportions it is convenient to take the amount of the inert solvent as a reference point and relate the proportions of other components thereto.
Oil-soluble detergents or dispersants which are susceptible to overbasing are well known in the art and the material used in the present process may be selected from those conventionally used in overbasing pro cesses, such as phosphosulphurised hydrocarbons, e.g., polyisobutylene treated with phosphorus pentasulphide, or metal salts of carboxylic acids, particularly alkanoic acids, e.g., acetic or fatty acids, or naphthenic acids. Suitable oil-soluble detergents or dispersants include those disclosed in the aforementioned U.S. Pat. Nos. 3,492,230 and 3,629,109. It is particularly preferred to use a sulphonic acid or metal salt thereof, especially a metal salt wherein the metal is an alkaline earth metal. In a preferred embodiment the metal is the same as the metal present in the basic alkaline earth compound.
The sulphonic acid may be a petroleum sulphonic acid (also termed mahogany sulphonic acids) prepared by sulphonating petroleum feedstocks or it may be an alkyl, aryl or alkaryl sulphonic acid. Examples of such sulphonic acids include. petroleum sulphonic acids of molecular weight 350 to 750, dilauryl aryl sulphonic acid, lauryl-cetyl aryl sulphonic acid, paraffin waxsubstituted benzene sulphonic acid, didodecyl benzene sulphonic acid, polyolefin alkylated benzene sulphonic acids, such as polyisobutylene alkylated benzene sulphonic acids in which the polyisobutylene substituents have molecular weights of at least 200, preferably from 300 to 2,500, polypropylene alkylated benzene sulphonic acids in which the polypropylene substituents have molecular weights of at least 200, preferably from 290 to 1,500, naphthalene sulphonic acids and alkylsubstituted naphthalene sulphonic acids. Particularly preferred sulphonic acids are mono-alkyl substituted benzene sulphonic acids having molecular weights of from 450 to 550, for example, the commercially available product Monsanto M 5336 (straight chain monoalkyl substituted benzene sulphonic acid of molecular weight 470 to 480).
The amount of detergent or dispersant employed may be varied over a wide range. We prefer to use from percent, more preferablyat least percent, up to 120 or even 150 percent by weight based onthe weight of the inert solvent. A particularly preferred proportion is from 60 to 120 percent by weight.
The basic akaline earth compounds useful in over- I basing processes are also well known, examples being oxides and hydroxides such as magnesium, barium and calcium oxides and hydroxides, the magnesium compounds, especially magnesium oxide, being preferred.
Thus, although particularly suitable for preparing overbased magnesium-containing additives the process of the present invention can also be'used for preparing overbased additives containing other metals. The amount of the basic alkaline earth compound to be employed may be readily calculated from the intended basicity of the additive product. The maximum basicity which can be achieved will depend, inter alia, on the degree of susceptibility of the detergent of dispersant. In overbasing magnesium salts of sulphonic acids it may be possible to achieve a total base number (T.B.N) ashigh as 600mg KOH/g. However, it is preferred to use sufficient base to produce a T.B.N. of 250 to 500, more preferably 300 to 400, mg.KOH/g. Additives having this level of basicity are regarded as highly basic and the process of the present invention is particularly suitable for preparing such highly basic additives. However, additives of lower basicity are also useful commercial products and may also be prepared by the process of the present invention.
To allow for incomplete utilisation of the base it may be desirable to use a small amount in excess of that theoretically required to produce the desired. basicity.
As hereinbefore indicated magnesium oxide is the most preferred basic alkaline earth compound for use in the present invention. Magnesium oxide is commercially available in two forms, sometimes referred to as light and heavy magnesium oxide. The former is a relatively active form, usually derived from extraction from sea water. Heavy magnesium oxide, sometimes called dead burned, is produced by mining and roasting of the mineral material and is commonly considered a less active form of magnesium oxide. In the present invention either form of magnesium oxide may be used. Light magnesium oxide, such as the commercially available material Merck Maglite Y3234 supplied by Merck Chemical Division, N.J., is preferable from the viewpoint of providing a somewhat more easily controlled process and somewhat better product; whereas heavy magnesium oxide, which is less expensive,
may be used without introducing undue difficulty into the operability of the process and 'without too serious a reduction in the quality of the product.
The hydroxy compound employed in the reaction mixture is believed to act as a co-promoter with the amine salt of an acid. Examples of suitable hydroxy compounds include alcohols, glycols and glycol monoeth'ers. The choice of hydroxy compound is not critical. However, for ease of removal of the hydroxy compound from the product of the process it is preferred that the hydroxy compound has as low a boiling point as possible. For this reason the hydroxy compound preferably contains from one to four carbon atoms and the preferred hydroxy compounds are therefore lower alcohols, particularly alkanols, glycols containing from one to four carbon atoms, e.g., ethylene glycol, propylene glycol, butylene glycol or diethylene glycol, and
monoethers of glycols containing from one to four carbon atoms, e.g., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol mono-n-propyl ether, propylene glycol mono-ethyl ether, propylene glycol mono-methyl ether, diethylene glycol monomethyl ether or butylene glycol mono-methyl ether. The lower alkanols, particularly methanol, are especially preferred. The amount of hydroxy compound used is a reaction promoting amount preferably at least 5 percent, more preferably 25 percent to 50 percent by weight based on the weight of the inert solvent.
In a highly preferred embodiment of the invention water is also present in the reaction mixture, for example in an amount of from 5 to 50 percent, more preferably 15 to 30 percent by weight based on the weight of the inert solvent. In the preparation of highly basic additives it may be desirable to subsequently add a further quantity of water, for example from 10 to 25percent by weight based on the weight of the inert solvent, during the treatment of the reaction mixutre with acidic gas.
The amine salt of an acid which is used as a promoter in the process of the present invention may be a salt of a mono-, dior poly-amine with an inorganic acid or an organic acid, eg a mono-, dior poly-carboxylic acid and the amine and/or the acid may be aliphatic or aromatic, Alternatively, a heterocyclic amine may be used.
Thus, the promoter may be selected from salts of a large number of amines, although among these certain salts are preferred. Thus, salts of aliphatic amines with aliphatic carboxylic acids, particularly monocarboxylic acids, are especially useful. The salts are preferably neutral salts.
In a preferred embodiment of the invention the promoter is a salt of a carboxylic acid. If an aromatic carboxylic acid is sued, this preferably consists only of carbon and hydrogen atoms other than the two oxygen atoms in the, or each, carboxyl group. However salts of aliphatic carboxylic acids are preferred. Diand polycarboxylic aliphatic acids which may be used include those containing two to ten carbon atoms, examples being adipic, maleic, glutaric, succinic, and azelaic acids. Monocarboxylic acids, such as aklanoic acids, may also be used. Examples of particularly suitable acids from which the promoters may be formed are alkanoic acids containing from one to twenty carbon atoms (including the carbon atom present in the carboxylic group). The most preferred acids are formic acid and alkanoic acids containing from seven to twelve carbon atoms, e.g,m decanoic.
The amines from which the salts are formed include monoamines, such as oleylamine and laurylamine, diamines, such as ethylene diamine or propylene diamine, and polyamines, such as diethylene triamine. These are representative aliphatic hydrocarbyl amines. Suitable amines also include those disclosed in the aforementioned US. Pat. No. 3,492,230. Preferred amines contain not more than carbon atoms. Diamines and polyamines are the most preferred amine moiety, particularly those containing from two to eight carbon atoms. Ethylene diamine is the most preferred amine and it is especially preferred to use as the promotoer the diformate salt of ethylene diamine.
The amount of the promoter used is a reaction promoting amount and may be, for example, from 0.1 to 30 or 40 percent by wieght, based on the weight of the inert solvent, within which range optimum proportions may be selected according to the amine salt used and the intended basicity. In the case of ethylene diamine diformate the preferred proportions of promoter are from 0.1 to percent more preferably 1.0 to 10 percent by weight based on the weight of the inert solvent. This may be varied according to the intended basicity of the product. For example, from 5 to 7 percent by weight of promoter may be used in the preparation of an additive having a T.B.N. of 300 and from 7 to 10 percent by weight in the preparation of an additive having a T.B.N. of 400.
In the case of other amine salts the preferred proportions are such as to give the same molar ratio of promoter to other components of the reaction mixture as in the case of the preferred proportions of ethylene diamine diformate.
There may also be included in the reaction mixture a non-polar diluent other than any used as, or as part of, the inert solvent, particularly a hydrocarbon diluent such as xylene, benzene, toluene or pertroleum ether. This diluent assists in maintaining the reaction mixture at a low viscosity during the overbasing process and is preferably a volatile diluent which can be varied over a very wide range depending on the choice of other components in the reaction mixture and their effect on viscosity. In a preferred embodiment of the invention from 80 to 150 percent, more preferably 100 to 130 percent by weight, based on the weight of the inert solvent, of toluene is used as diluent.
The components of the reaction mixture may be merely mixed in a reaction vessel and the order in which the components are added is not critical. However, a convenient technique is to prepare an aqueous solution of the promoter and add it to the remaining components previously mixed in the reaction vessel.
After formation of the reaction mixture an acidic gas is passed therethrough. The acidic gases which may be used in overbasing processes are also well-known in the art, examples being sulphur dioxide and hydrogen sulphide. However, a particularly preferred acidic gas is carbon dioxide. The pressure at which the reaction mixture is treated with the acidic gas is also not critical. A pressure above, below or at atmospheric may be used. Treatment at atmospheric pressure is convenient as not requiring equipment to establish and maintain the pressure at which the reaction is carried out.
Alternately, an increase in pressure over atmospheric may assist utilization of the acid gas. For this purpose a small increase over atmospheric, e.g., up to 4 or 5 p.s.i.g., will suffice and normally only 1 or 2 p.s.i.g. is sufficient.
The temperature at which the process is carried out is likewise not critical and treatment with the acidic gas may take place at any temperature from ambient (about 20C) up to the decomposition temperature of the reaction mixture. The reaction is exothermic and the temperature of the reaction mixture will tend to increase as the reaction proceeds. If desired, this can be counterbalanced, e.g., by cooling, to maintain a low reaction temperature. At the upper end of the temperature range, the important factor in the decomposition temperature of the reaction mixture is the temperature at which significant deterioration of the product formed in the reaction mixture occurs. We prefer therefore to keep the reaction temperature below 180C., more preferably below C. However, the reaction temperature will also be affected by water, and non-polar diluent, if used, and the choice of hydroxy compound. Volatile components will be distilled off if the reaction temperature is too high. The reaction temperature therefore desirably does not exceed the boiling point of the most volatile component of the reaction mixture (normally methanol) or any azeotrope formed by components of the reaction mixture (e.g., a methanol/water/toluene azeotrope). It is normally advantageous therefore to carry out the reaction at or below the reflux temperature of the reaction mixture. In the case of reaction mixtures containing the more volatile hydroxy compounds, such as methanol, treatment at the reflux temperature has the advantage that a constant temperature is easily maintained. During treatment with the acidic gas the reaction mixture may be agitated to improve contact between gas and reaction mixture.
The acidic gas is passed through the reaction mixture until the basic alkaline earth compound is substantially converted to alkaline earth salt, whereafter the reaction mixture is heated to remove volatile components, e.g., water, methanol and any non-polar diluent. Preferably the volatile components are removed under reduced pressure, e.g., by vacuum stripping. Basic alkaline earth compound not consumed during the overbasing process may be removed by filtration of the product. A filter aid, such as diatomaceous earth, may be used in the filtration, which may be carried out after stripping, although we prefer to filter before stripping off volatile components. Alternatively, in a very useful technique, water and volatile hydroxy compound, particularly in the case of methanol, are substantially removed before filtration, and any non-polar diluent and remaining water and volatile hydroxy compound are stripped off after filtration.
In a particularly preferred embodiment of the present invention there is provided a process for preparing an overbased lubricant additive, which process comprises:
a. forming in an inert solvent a reaction mixture of i. about 20 to 120 percent by weight, based on the weight of the inert solvent, of an oil-soluble sulphonic acid or alkaline earth metal salt thereof,
ii. magnesium oxide or hydroxide,
iii. about to 50 percent by weight, based on the weight of the inert solvent, of a lower alcohol, perferably methanol,
iv. about 5 to 50 percent weight, based on the weight of the inert solvent, of water,
v. about 0.1 to 40 percent by weight, based on the weight of the inert solvent, of a salt of an aliphatic amine and an alkanoic acid, preferably the diformate salt of ehtylene diamine, and, optionally,
vi. about 80 to 150 percent by weight, based on the weight of the inert solvent, of a non-polar diluent, preferably toluene or xylene;
b. passing carbon dioxide through the reaction mixture at a temperature of from about 20C up to the reflux temperature of the reaction mixutre until the magnesium oxide or hydroxide is substantially converted to magnesium carbonate; and
c. heating the resultant product to remove volatile components, i.e., water, alcohol and any diluent present.
In the preceding paragraph, and also in the appended claims, by converting the magnesium oxide or hydroxide to magnesium carbonate is meant complexing or dispersing the magnesium in the inert solvent to form a stable, liquid product, by means of the treatment with carbon dioxide. As with other overbased additives, the exact chemical structure of the additives of the present invention is not completely understood.
The present invention further includes an overbased 40 lubricant additive whenever preapred by the process of the present invention and a composition comprising a lubricating oil and an overbased lubricant additive prepared by the process of the present invention. Such compositions may be lubricantcompositions containing a major amount of lubricating oil and a minor amount, for example 0.1 to 10 percent, preferably 0.5 to 5 percent by weight based on the total weight of the compositions of one or more overbased additives prepared by the process of the present invention. These lubricant compositions may also contain conventional additives such as antioxidants, corrosion inhibitors, an ti-wear additives, detergents, dispersants, extreme pressure additives, viscosity index improvers, pour point depressants and/or load carrying additives.
Alternatively, the compositions may be concentrates containing a minor amount of lubricating oil and a major amount of one of more overbased additives prepared by the process of the present invention or additive packages containing a minor amount of lubricating oil and a major amount of an additive consisting of one or more-additives prepared in accordance with the present invention in combination with one or more conventional additives.
The present invention will now be illustrated by way of example with reference to the following nonlimitative examples, in which weight percentages given for soap and Mg in the final product are based on the total weight of the product:
EXAMPLE I The following reactants were stirred together in a 2- litre flask:
208g. Esso HT 233 sulphonic acid (branched chain mono-substituted alkyl benzene sulphonic acid of molecular weight about 500; 70 percent active) 190g. Mineral Oil A.
70g. Magnesium oxide (commercially available reagent grade of heavy oxide) 312g. Toluene 86g. Methanol A promoter was prepared by reacting 8g. formic acid with 5g. ethylene diamine in 25ml. water and the promoter was transferred to the 2-litre flask with the aid of a further 15ml. water. The mixture in the flask was then heated to its reflux temperature (about 67) and CO introduced, via a dip tube, into the mixture at a flow rate of 1.92 litres/min. Carbonation was continued for 2 hours.
The product of the carbonation was filtered with the aid of a filter, aid. Toluene, water and methanol were removed from the product by vacuum stripping to 150C. The final product contained 6.7 percent by weight Mg., 30 percent by weight soap (magnesium sulphonate) and had a T.B.N. of 300 mg, KOH/g.
EXAMPLE 2 The following reactants were stirred together in a 2- litre flask:
208g. Esso HT-233 sulphonic acid 310g. Mineral Oil A.
160g. Magnesium oxide (as in Example 1) 312g. Toluene 84g. Methanol A promoter was prepared by reacting l6g. formic acid with 10g. ethylene diamine in ml. water and the promoter was transferred to the flask with the aid of a further 25ml. water. The mixture was then carbonated under reflux in the same manner as in Example 1., whereafter a further 50ml. water was added and carbonation continued for a further 2 hours.
The product was filtered and vacuum stripped as in Example 1, to yield a final product containing 8.7 percent by weight Mg., 20 percent by weight soap and having a T.B.N. of 400mg. KOH/g.
Mineral Oil A used in the foregoing examples was a 50 150 Solvent Neutral mineral oil having viscosities of 34 EXAMPLE 3 Constituent quantities:
208g. Esso sulphonic acid HT 233 207g. Mineral Oil B 312g. Toluene g. Methanol g. Magnesium oxide (Merck Maglite Y3234) 10g. Ethylene diamine 16g. formic acid 90g. water The sulphonic acid, base oil, toluene, methanol and magnesium oxide were weighed into a 2-litre reaction flask fitted with a stirrer, reflux condenser, thermometer and a sub-surface injection tube for carbon dioxide.
These reactants were allowed to stir together for approximately 10 mins. in order to form the neutral magnesium sulphonate. The temperature rose from approx 20C to approx. 33C.
The ethylene diamine and formic acid were dissolved separately in 25g. and 50g. water, respectively. The two resulting solutions were carefully mixed together with a further g. of water and the ethylene diamine diformate solution added to the neutral magnesium sulphonate mixture.
(The exothermic nature of the formation of the promoter results in a solution with a final temperature of approx. 68C which, when added to the neutral sulphonate mixture, increased its temperature to approx. 43C).
Carbon dioxide gas was injected into the stirred reaction mixture via the injection tube at a rate of 1.22 1itres per minute. The passage of gas was continued for one hour, during which period the reaction temperature rose from 43C to 68C maximum.
The passage of gas was stopped and the product mixture was filtered through a bed ofa filter aid. The filtration was rapid and the resulting filtrate was vacuum stripped to a maximum temperature of 180C and 50 mm. Hg vacuum.
The product was clear, bright and mobile. The total base number (TBN) was 396mg. KOH/g, with a total magnesium content of 9.3 percent. The soap content was 25 percent.
Mineral Oil B used in this example had viscosities of about 22 and 4 cSt. at 100F and 210F respectively and a Viscosity Index of 95.
EXAMPLE 4 An additive having a TBN of 338mg. KOH/g. and containing 26.6 percent by weight soap and 7.86 percent by weight Mg was prepared by a procedure identical to and using the same quantities of the same materials as in Example 3, except in that 207g. dioctyl sebacate was used in place of Mineral Oil B. The product was a clear, bright liquid.
EXAMPLE 5 An additive having a TBN of 183mg. KOH/g. and containing 30.7 percent by weight soap and 4.64 percent by weight Mg was prepared by the same procedure as, and using the same quantities of the same materials as, Example 3 except for the following:
a. Magnesium hydroxide (146g) was used in place of the magnesium oxide.
b. The initial starting temperature was 19C.
c. The exotherm due to neutralisation of sulphonic acid increased the temperature from 19C to 28C.
d. Addition of the promoter solution increased reaction mixture temperature to 38C.
e. The exotherm during carbonation increased the temperature to 39C.
EXAMPLE 6 An additive having a TBN of 377mg. KOH/g. and containing 25.5 percent by weight soap and 8.66 percent by weight Mg was prepared using the same quantities of the same material as, and following the procedure of, Example 3 except in that carbonation was continued for minutes and the temperature of the reaction mixture was maintained at 40C i 1C. throughout the carbonation. The product was a clear, bright liquid.
EXAMPLE 7 An additive having a TBN of 298mg. KOH/g. and containing 27.6 percent by weight soap and 7.02 percent by weight Mg was prepared by the procedure of Example 3 except as follows:
a. The methanol was replaced by 70g. methyl dioxidtol (di-ethylene glycol monomethyl ether).
b. The starting temperature was 21C.
c. The exotherm due to neutralisation of sulphonic acid increased the reaction mixture temperature to 33C.
d. Addition of the promoter solution increased reaction mixture temperature to 425C.
e. The exotherm during carbonation increased the temperature to 73C after 35 minutes and thereafter external heating was used to raise the reaction mixture to its reflux temperature (895C) during the remaining 25 minutes carbonation.
The product was a clear, bright, mobile liquid having excellent filterability.
EXAMPLE 8 A very highly basic additive (TBN 543mg.KOH/g.) containing 21.8 percent by weight soap and 11.35 percent by weight Mg. was prepared from the following materials:
208g. Esso sulphonic acid HT 233 207g. Mineral Oil B 312g. Toluene 140g. Magnesium oxide (Maglite Y3234) 70g. Methanol 7g. Ethylene diamine 11.2g. Formic acid g. Water. I
The procedure was the same as that of Example 3 except that durig carbonation the temperature rose, due to the exotherm, to a maximum of 61C after 20 minutes and carbonation was continued for a total of 1% hours.
Further preparations were carried out to demonstrate variations in the choice of the components of the reaction mixture. These preparations, and the results obtained, are summarized in the following Tables 1 to 6.
Table 1 shows the results obtained using various de' tergents and dispersants in the process of Example 3. Except in respect of the detergent or dispersant the materials used, and the quantities thereof, were the same as in Example 3.
Table 2 summarizes the preparation of additives of varying soap content by the process of Example 3. The quantities of the sulphonic acid and Mineral Oil B were varied to adjust the final soap content. All other components, and the quantities thereof, were the same as in Example 3.
Table 3 shows preparations wherein the same procedure as in Example 3 was used and the materials and quantities were the same as in Example 3, except in that the 70g. methanol was replaced by 70g. of various other hydroxy compounds.
Tables 4 and show the use of differing amines and acids in the promoter. Table 4 summarizes preparations using the neutral formate salts of various amines, and Table 5 summarizes preparations using ethylene such as using larger quantities of the less viscous components of the reaction mixture, filtering before removing volatile components to improve filterability (the volatile components are in general also the less viscous diamine salts of various acids. Except for the indicated 5 components) and/or selection ofreaction mixture comvariations all the preparations were carried out using ponents (for example, in the case of the inert solvent the same procedure, materials and quantities thereof as synthetic ester lubricating oils normally have lower visin Example 3. cosities than mineral oils). Similarly, the rate at which Table 6 shows preparations using ethylene diamine f i .29 which q i IS salts of various acids, but the preparations were carried if t e 2 g e vanef to out using the same procedure, materials and quantities i g eslgn g acturmg p am thereof as in Example 1, except for the indicated variaan t e eye 9 l requlle y t proqess opera' tions. tor. Such variations in technique of a routine nature will be apparent to the process operator.
In the p fp n Shown Tables 1 to for the In the following Table 7 perparations using ethylene P P P lhnsnanon y: one component of the diamine diformate as promoter are compared with the ncnon mlxtul'e has been Varled and a n n P P f use of ethylene diamine, under the conditions and pronve Pl' has been "Sedi To pn f n cedure of Example 3 herein and also in accordance P n and Procedure for y p n Varlatlon with the conditions and procedure of Example ll of slmple achustmenlts can be m the adiustmepts t be U.S. Pat. No. 3,492,230. It can be seen that diformate made belng readlly netermlflable- Moreover, It W111 be produced a superior product to ethylene diamine in rennderstood that VQTIOUS adjlltmellts y be made to spect of basicity and clarity. In addition, in the case of the process to suit the particular requirements and th r highly basic products prepared according to preferences of the operator. For example, viscosity Example 3 herein, the ethylene diamine promoted control may be of less lmportance when the operator 5 product had an undesirably high viscosity. intends to immediately blend the product with a large While particular embodiments of the invention have quantity of lubricating oil, and other additives, to prebeen described, it is to be understood that the invention pare a fully formulated lubricant. Alternatively, the is not limited thereto, but covers such modifications process operator may, depending on the circumand variations as come within the spirit and scope of stances, wish to use various means to control viscosity the appended claims.
TABLE I EXAMPLE DETERGENT/DISPERSANT. QUANTITY -T.B.N. of
PRODUCT NO. (gm.) (mg.KOH/g.)
Polyisobutylene substituted succinic acid prepared by 9 reaction of maleic anhydride with Hyvis 100 (commercially 1160 available polyisobutylene of average molecular weight about 2000) Succinimide prepared by formation of 1:! molar reaction product of dicyandiamide and tetraethylene pentamine l0 and reaction of this product with a polyisobutylerie sub- 1160 38 stituted succinic acid as in Example 9. ll Naphthenic Acid. 97 181 Magnesium sulphonate prepared by double decomposition of a 50% solution in mineral oil (8.0. 0.9) of a sodium etroleum sulphonate with magnesium chloride. The sodium petroleum sulphonate had an average 12 molecular weight of 460 to 465 and the mineral oil 187 267 solution of the sulphonate consisted of parts of a mineral oil solution (50%) of a medium molecular weight sulphonate and 25. parts of a mineral oil solution (50%) of a high molecular weight sulphonate. Petroleum sulphonic acid (being the acid from which 13 the sodium petroleum sulphonate of Example'l2 was derived). 156 333 TABLE 2 VARIATION OF SOAP CONTENT EXAMPLE REACTANTS ran. SOAP CONTENT NO. HT 233 SULPHONlC ACID (gm.) MINERAL OIL B (gm.) (mg.KOH/g.) by weight) None inert solvent 14 M6 provided by alkylated 380 49 benzene component of sulphonic acid. 15 208 834 230 l0 I6 I04 939 99 5 I7 208 3l0 390 20 TABLE 3.
VARIATION OF HYDROXY COMPOUND EXAMPLE HYDROXY COMPOUND T.B.N. of REMARKS ON PRODUCT PRODUCT NO. (mg.KOH/g-) l8 Ethanol 201 Some turbidity l9 n-Propanol 127 do.
i-Propanol 130 do.
2l n-Butanol 173 do.
22 i-Butanol 230 do.
23 s-Butanol 243 do.
24 t-Butanol 257 do.
25 n-Pentanol 214 do.
26 Benzyl alcohol 266 Clear and bright 27 Ethylene glycol 205 do.
28 Propan-I,2-diol 375 do.
29 Propan-1,3-diol 306 do.
30 Di-ethylene glycol 334 do.
3] Methyl dioxitol (di-ethylene glycol monomethyl ether) 300 do.
32 Ethyl dioxitol (di-ethylene glycol monoethyl ether) 250 do.
33 Ethylene glycol monornethyl ether 356 do.
34 Ethylene glycol monoethyl ether 235 do TABLE 4.
VARIATION OF AMINE FORMATE PROMOTER PRODUCT EXAMPLE T.B.N.
NO. Amino in Formate Salt Quantity of Amine (mg.KOI-I/g.) REMARKS 35 l,3-Diamine Propane 12g. 376 Bright and clear, and mobile. 36 3,3-Diamino propylamine 10g. 353 do.
37 Dimethylamine 15g. 170 do. 38 Trimethylamine 18g. 8l Hazy. 39 I.6-Diamino hexane l9g. 113 do.
40 Aniline 3 lg. 107 Clear and bright. 41 l,2-Diamino benzene 18g. 184 do.
42 l,3-Diamino benzene l8g. 140 Dark, but clear and bright. 43 1,4-Diamino benzene 18g. 176 do.
44 Urea 10g. 112 Clear and bright, and mobile.
TABLE 5.
VARIATION OF ACID IN ETHYLENE DIAMINE SALT PRODUCT EXAMPLE Acid in Salt Quantity of Acid T.B.N. REMARKS 45 Nitric 2Ig. 244 Clear and bright.
46 Hydrochloric l2g. 347 do.
47 Boric 7g. 331 do.
48 Palmitic 86g. 38l do.
49 Behonic I I3g. 355 do.
50 Benzoic 38g. 275 Carbonatton stopped after half an hour due to viscosity increase.
TABLE 6 VARIATION OF ACID IN ETHYLENE DIAMINE SALT PRODUCT EXAMPLE T.B.N. REMARKS NO. Acid in Salt Quantity of Acid mg.KOH/g.)
SI Acetic 10g. 260 High viscosity. 52 Pentanoic 16.5g. 270 do. 53 Heptanoic 21.7g. 309 do. 54 Octanoic 26.0g. 298 do. 55 lso-octanoic 26.0g. 315 Viscous 56 Nonanoic 29.0g. 293 Viscous. 57 Decanoic 287g. 3l6 Viscous. 58 Malcic 9.7g. I92 59 Succinic 9.8g. I88 60 Formic 8.0g. 290 Clear and bright. and mobile.
TABLE 7 COMPARISON OF ETHYLENE DlAMlNE AND ITS DIFORMATE SALT AS PROMOTER PRODUCT EXAMPLE PREPARA'IIVE PROCEDURE PROMOTER AND CONDITIONS T.B.N. REMARKS NO. (mg.KOH/g.)
6| Etgylene Diamine Example 3 herein 383 Hazy and viscous.
Ethylene Diamine Di- 62 formate (10g. ethyl Example 3 herein 402 Clear and bright one diamine 16g. formic acid) 63 Ethylene Diamine Example ll of U.S. 263 Hazy.
(20g.) Patent No.3492230 Ethylene Diamine Di- 64 formate (20g. ethylene Example ll of U5. 3| l Clear and bright diamine 32g. formic Patent No.3492230 acid) We claim: to four carbon atoms and monoethers of glycols con- In a process for preparing a magnesium overbased lubricant additive wherein a reaction mixture of an oil soluble detergent or dispersant susceptible to overbasing selected from the group consisting of phosphosulphurized hydrocarbons, metal salts of carboxylic acids, sulphonic acids and metal salts of sulphonic acid, a basic magnesium compound in an amount sufficient to overbase said oil soluble detergent or dispersant, and a reaction promoting amount of a hydroxy-containing compound selected from the group consisting of alcohols and monoethers of glycols is formed in an inert solvent, said reaction mixture is contacted with an acidic gas at a reaction temperature of from about 20C up to the decomposition temperature of the reaction mixture and the resultant product is heated to remove volatile components; the improvement comprising: incorporating in said reaction mixture a reaction promoting amount, up to about 40 percent by weight based on the weight of the inert solvent, of a salt of an alkanoic acid containing from one to 20 carbon atoms and an aliphatic hydrocarbyl diamine or polyamine containing from two to eight carbon atoms;
2. The process of claim 1 wherein the oil soluble detergent or dispersant is present in the amount of about 10 to 150 percent by weight based on the weight of the inert solvent, the hydroxy containing organic compound is present in an amount of about 5 to 50 percent by weight, based on the weight of the inert solvent, the salt of the amine and acid is present in the reaction mixture in an amount of about 0.1 to 40 percent by weight, based on the weight of the inert solvent, about 5 to 50 percent by weight, based on the weight of the inert solvent, of water is present in the reaction mixture and wherein the acidic gas is carbon dioxide.
3. The process of claim 2 wherein the said salt is a neutral salt of formic acid and an aliphatic hydrocarbyl diamine containing from two to eight carbon atoms.
4. The process of claim 3 wherein the salt is ethylen diamine diformate.
5. The process of claim 2 wherein the basic magnesium compound is magnesium oxide or magnesium hydroxide. I
6. The process of claim 2 wherein the inert solvent is a hydrocarbon.
7. The process of claim 2 wherein the hydroxy containing organic compound is selected from the group consisting of monohydroxis alcohols, containing from one to four carbon atoms, glycols containing from one taining from one to four carbon atoms.
8. The process of claim 2 wherein the reaction mixture is formed by admixing the inert'solvent, the oilsoluble detergent or dispersant, the basic magnesium compound and the hydroxy containing organic compound and thereafter adding thereto an aqueous solution of the amine salt of the acid.
9. The process of claim 2 wherein the basic magnesium compound is present in an amount to provide an additive having a total base number of from about 250 to 500 mg. KOH/g.
10. The process of claim 2 wherein the inert solvent is selected from the group consisting of mineral oils, alkyla'ted benzene and mixtures thereof.
, 11. The process of claim 2 wherein the inert solvent is a synthetic ester lubricating oil.
12. The process of claim 2 wherein the hydroxy containing organic compound is methanol.
13. The process of claim 2 wherein a non-polar diluent is also included in the reaction mixture.
14. The process of claim 2 wherein the non-plar diluent is selected from the group consisting of xylene, benzene, toluene and petroleum ether.
15. The process of claim 2 wherein from about 10 to 25 percent by weight, based on the weight of the inert solvent, of water is added to the reaction mixture during treatment of said reaction mixture with carbon dioxide.
16. The process of claim 1 wherein the inert solvent is a hydrocarbon oil solvent, the oil soluble detergent or dispersant is an oil soluble neutral magnesium salt of sulphonic acid in an amount of about 20 to 120 percent by weight, based on the weight of the hydrocarbon oil solvent; the basic magnesium compound is magnesium oxide or magnesium hydroxide in an amount to provide an additive having a total base number of about 250 to 500 mg. KOH/g.; the hydroxy-containing compound is methanol in an amount of about 25 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent; the salt of an alkanoic acid and an aliphatic hydrocarbyl diamine is present in an amount of about 0.1 to 15 percent by weight, based on the weight of the hydrocarbon oil solvent; from about 5 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent, of water is present in the reaction mixutre; and the reaction mixture is treated with carbon dioxide at a temperature of from about 20C up to the reflux temperature of the reaction mixture until the magnesium soluble additive according to claim 17.
21. A lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oilsoluble additive according to claim 18.
22. A lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oilsoluble additive according to claim 19.
23. The process of claim 1 wherein the amine salt of the acid is a neutral salt.

Claims (23)

1. IN A PROCESS FOR PREPARING A MAGNESIUM OVERBASED LUBRICANT ADDITIVE WHEREIN A REACTION MIXTURE OF AN OIL SOLUBLE DETERGENT OR DISPERANT SUSCEPTIBLE TO OVERBASING SELECTED FROM THE GROUP CONSISTING OF PHOSPHOSULPHURIZED HYDROCARBONS, METAL SALTS OF CARBOXYLIC ACIDS, SULPHONIC ACIDS AND METAL SALTS OF SULPHONIC ACID, A BASIC MAGNESIUM COMPOUND IN AN AMOUNT SUFFICIENT TO OVERBASE SAID OIL SOLUBLE DETERGENT OR DISPERANT, AND A REACTION PROMOTING AMOUNT OF A HYDROXYCONTAINING COMPOUND SELECTED FROM THE GROUP CONSISTING OF ALCOHOLS AND MONETHERS OF GLYCOLS IS FORMED IN AN INERT SOLVENT, SAID REACTION MIXTURE IS CONTACTED WITH AN ACIDIC GAS AT A REACTION TEMPERATURE OF FROM ABOUT 200 *C UP TO THE DECOMPOSITION TEMPERATURE OF THE REACTION MIXTURE AND THE RESULTANT PRODUCT IS HEATED TO REMOVE VOLATILE COMPONENTS; THE IMPROVEMENT COMPRISING: INCORPORATING IN SAID REACTION MIXTURE A REACTION PROMOTING AMOUNT UP TO ABOUT 40 PERCENT BY WEIGHT BASED ON THE OF THE INERT SOLVENT, OF A SALT OF AN ALKANOIC AICD CONTAINING FROM ONE TO 20 CARBON ATOMS AND AN ALIPHATIC HYDROCARBYL DIAMINE OR POLYAMINE CONTAINING FROM TWO TO EIGHT CARBON ATOMS.
2. The process of claim 1 wherein the oil soluble detergent or dispersant is present in the amount of about 10 to 150 percent by weight based on the weight of the inert solvent, the hydroxy containing organic compound is present in an amount of about 5 to 50 percent by weight, based on the weight of the inert solvent, the salt of the amine and acid is present in the reaction mixture in an amount of about 0.1 to 40 percent by weight, based on the weight of the inert solvent, about 5 to 50 percent by weight, based on the weight of the inert solvent, of water is present in the reaction mixture and wherein the acidic gas is carbon dioxide.
3. The process of claim 2 wherein the said salt is a neutral salt of formic acid and an aliphatic hydrocarbyl diamine containing from two to eight carbon atoms.
4. The process of claim 3 wherein the salt is ethylene diamine diformate.
5. The process of claim 2 wherein the basic magnesium compound is magnesium oxide or magnesium hydroxide.
6. The process of claim 2 wherein the inert solvent is a hydrocarbon.
7. The process of claim 2 wherein the hydroxy containing organic compound is selected from the group consisting of monohydroxis alcohols, containing from one to four carbon atoms, glycols containing from one to four carbon atoms and monoethers of glycols containing from one to four carbon atoms.
8. The process of claim 2 wherein the reaction mixture is formed by admixing the inert solvent, the oil-soluble detergent or dispersant, the basic magnesium compound and the hydroxy containing organic compound and thereafter adding thereto an aqueous solution of the amine salt of the acid.
9. The process of claim 2 wherein the basic magnesium compound is present in an amount to provide an additive having a total base number of from about 250 to 500 mg. KOH/g.
10. The process of claim 2 wherein the inert solvent is selected from the group consisting of mineral oils, alkylated benzene and mixtures thereof.
11. ThE process of claim 2 wherein the inert solvent is a synthetic ester lubricating oil.
12. The process of claim 2 wherein the hydroxy containing organic compound is methanol.
13. The process of claim 2 wherein a non-polar diluent is also included in the reaction mixture.
14. The process of claim 2 wherein the non-plar diluent is selected from the group consisting of xylene, benzene, toluene and petroleum ether.
15. The process of claim 2 wherein from about 10 to 25 percent by weight, based on the weight of the inert solvent, of water is added to the reaction mixture during treatment of said reaction mixture with carbon dioxide.
16. The process of claim 1 wherein the inert solvent is a hydrocarbon oil solvent, the oil soluble detergent or dispersant is an oil soluble neutral magnesium salt of sulphonic acid in an amount of about 20 to 120 percent by weight, based on the weight of the hydrocarbon oil solvent; the basic magnesium compound is magnesium oxide or magnesium hydroxide in an amount to provide an additive having a total base number of about 250 to 500 mg. KOH/g.; the hydroxy-containing compound is methanol in an amount of about 25 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent; the salt of an alkanoic acid and an aliphatic hydrocarbyl diamine is present in an amount of about 0.1 to 15 percent by weight, based on the weight of the hydrocarbon oil solvent; from about 5 to 50 percent by weight, based on the weight of the hydrocarbon oil solvent, of water is present in the reaction mixutre; and the reaction mixture is treated with carbon dioxide at a temperature of from about 20*C up to the reflux temperature of the reaction mixture until the magnesium oxide or magnesium hydroxide is substantially converted to magnesium carbonate.
17. An oil-soluble additive prepared according to the process of claim 1.
18. An oil-soluble additive prepared according to the process of claim 3.
19. An oil-soluble additive prepared according to the process of claim 16.
20. A lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oil-soluble additive according to claim 17.
21. A lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oil-soluble additive according to claim 18.
22. A lubricant comprising a major amount of lubricating oil containing from 0.1 to 10 percent by weight, based on the total weight of the lubricant, of an oil-soluble additive according to claim 19.
23. The process of claim 1 wherein the amine salt of the acid is a neutral salt.
US00257424A 1971-05-27 1972-05-26 Improvement in the preparation of overbased magnesium lubricant additives Expired - Lifetime US3857790A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB1760471A GB1399092A (en) 1971-05-27 1971-05-27 Lubricant additives
DE2225714A DE2225714C3 (en) 1971-05-27 1972-05-26 Process for the preparation of overbased lubricant additives and their use in a lubricant
CA143,123A CA985668A (en) 1971-05-27 1972-05-26 Amine salt promoted overbased lube additive
AU42820/72A AU468371B2 (en) 1971-05-27 1972-05-26 Improvements in or relating to lubricant additives
US00257424A US3857790A (en) 1971-05-27 1972-05-26 Improvement in the preparation of overbased magnesium lubricant additives
FR727218852A FR2139120B1 (en) 1971-05-27 1972-05-26
AT460872A AT326252B (en) 1971-05-27 1972-05-26 METHOD OF MANUFACTURING OVER BASED LUBRICATING OIL ADDITIVE
NL7207250A NL7207250A (en) 1971-05-27 1972-05-29
US510038A US3928216A (en) 1971-05-27 1974-09-27 Preparation of overbased magnesium lubricant additives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1760471A GB1399092A (en) 1971-05-27 1971-05-27 Lubricant additives
US00257424A US3857790A (en) 1971-05-27 1972-05-26 Improvement in the preparation of overbased magnesium lubricant additives
US510038A US3928216A (en) 1971-05-27 1974-09-27 Preparation of overbased magnesium lubricant additives

Publications (1)

Publication Number Publication Date
US3857790A true US3857790A (en) 1974-12-31

Family

ID=27257524

Family Applications (2)

Application Number Title Priority Date Filing Date
US00257424A Expired - Lifetime US3857790A (en) 1971-05-27 1972-05-26 Improvement in the preparation of overbased magnesium lubricant additives
US510038A Expired - Lifetime US3928216A (en) 1971-05-27 1974-09-27 Preparation of overbased magnesium lubricant additives

Family Applications After (1)

Application Number Title Priority Date Filing Date
US510038A Expired - Lifetime US3928216A (en) 1971-05-27 1974-09-27 Preparation of overbased magnesium lubricant additives

Country Status (8)

Country Link
US (2) US3857790A (en)
AT (1) AT326252B (en)
AU (1) AU468371B2 (en)
CA (1) CA985668A (en)
DE (1) DE2225714C3 (en)
FR (1) FR2139120B1 (en)
GB (1) GB1399092A (en)
NL (1) NL7207250A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165291A (en) * 1978-06-20 1979-08-21 Phillips Petroleum Company Overbasing calcium petroleum sulfonates in lubricating oils employing monoalkylbenzene
US4179385A (en) * 1978-05-03 1979-12-18 Tenneco Chemicals, Inc. Process for the production of overbased manganese salts of organic acids
US4192758A (en) * 1978-05-01 1980-03-11 Bray Oil Company, Inc. Overbased magnesium sulfonate process
US4218328A (en) * 1978-12-28 1980-08-19 Chevron Research Company Lubricating oil additive
US4252659A (en) * 1979-10-12 1981-02-24 Tenneco Chemicals, Inc. Process for the production of overbased manganese salts of organic acids
US4306983A (en) * 1979-03-26 1981-12-22 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
US4320015A (en) * 1979-06-29 1982-03-16 Chevron Research Company Magnesium salts of N-carboxyamino acid
US4347147A (en) * 1980-09-04 1982-08-31 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
US4749499A (en) * 1985-10-03 1988-06-07 Elf France Method for preparing very fluid overbased additives having a high basicity and composition containing the additives
US5013463A (en) * 1986-11-19 1991-05-07 Amoco Corporation Process for overbased petroleum oxidate
US5041231A (en) * 1985-10-03 1991-08-20 Elf France Process for preparing an additive for lubricating oils, the additive thus obtained and a lubricating composition containing the additive
US5089155A (en) * 1987-10-12 1992-02-18 Exxon Chemical Patents Inc. Overbased magnesium sulphonate composition
US5112506A (en) * 1987-10-12 1992-05-12 Exxon Chemical Patents Inc. Overbased metal sulphonate composition
US5114601A (en) * 1990-03-31 1992-05-19 Bp Chemicals (Additive) Limited Overbased calixarates, compositions containing them and use as lubricating oil additives
US5205946A (en) * 1990-03-31 1993-04-27 Bp Chemicals (Additives) Limited Process for the production of overbased calixarates
US5437803A (en) * 1988-06-14 1995-08-01 Bp Chemicals (Additives) Limited Process for the production of a lubricating oil additive concentrate
USH1536H (en) * 1995-04-11 1996-06-04 The Lubrizol Corporation Overbased materials in ester media
CN113366096A (en) * 2018-12-24 2021-09-07 卡乔有限责任公司 Mineral oil-free lubricant and method of making a mineral oil-free lubricant

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2271281B2 (en) * 1974-03-29 1977-01-21 Inst Francais Du Petrole
GB1594699A (en) * 1977-06-14 1981-08-05 Cooper & Co Ltd Edwin Overbased alkaline earth metal hydrocarbyl sulphonate
FR2412607A1 (en) * 1977-12-20 1979-07-20 Orogil NEW BASIC MAGNESIUM COMPLEXES AND THEIR APPLICATION FOR THE MANUFACTURE OF DETERGENT-DISPERSANT ADDITIVES FOR LUBRICATING OILS
US4148740A (en) * 1978-05-01 1979-04-10 Witco Chemical Corporation Preparation of overbased magnesium sulfonates
JPS5573653A (en) * 1978-11-30 1980-06-03 Saapasu Chem Ltd Basified magnesium sulfonate
GB2037309A (en) * 1978-12-13 1980-07-09 Exxon Research Engineering Co Prearation of basic magnesium sulphonates
FR2529225B1 (en) * 1982-06-24 1986-04-25 Orogil NEW HIGH ALKALINITY METAL DETERGENT-DISPERSANT ADDITIVE FOR LUBRICATING OILS
FR2529224B1 (en) * 1982-06-24 1986-02-07 Orogil NEW SURALKALINIZED DETERGENT-DISPERSANT ADDITIVE FOR LUBRICATING OILS
FR2588268B1 (en) * 1985-10-03 1988-02-05 Elf France PROCESS FOR THE SYNTHESIS OF OVERBASED ADDITIVES BY CARBONATION AT CONSTANT PRESSURE OF CARBONIC ANHYDRIDE
FR2616441B1 (en) * 1987-06-11 1990-03-23 Elf France PROCESS FOR THE PREPARATION OF BASED ADDITIVES AND COMPOSITIONS CONTAINING SAID ADDITIVES
GB8814013D0 (en) * 1988-06-14 1988-07-20 Bp Chemicals Additives Chemical process
EP2045314B1 (en) * 2007-10-04 2017-11-08 Infineum International Limited An overbased metal sulphonate detergent
EP2045313B1 (en) * 2007-10-04 2017-05-31 Infineum International Limited A lubricating oil composition
US10487286B2 (en) 2016-05-23 2019-11-26 Infineum International Ltd. Highly borated dispersant concentrates for lubricating oil compositions and methods for forming same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27582A (en) * 1860-03-20 Collecting toll from grist-mills
US2616911A (en) * 1951-03-16 1952-11-04 Lubrizol Corp Organic alkaline earth metal complexes formed by use of sulfonic promoters
US2760970A (en) * 1953-04-06 1956-08-28 Lubrizol Corp Process for the preparation of substantially pure metal salts of organic sulfonic acids
US3127348A (en) * 1961-06-30 1964-03-31 Table i
US3250710A (en) * 1963-06-03 1966-05-10 Continental Oil Co Preparation of over-based sulfonate composition
US3312618A (en) * 1966-07-15 1967-04-04 Lubrizol Corp Process for preparing an oil soluble highly basic metal salt of an organic acid
US3429811A (en) * 1966-08-17 1969-02-25 Exxon Research Engineering Co Preparation of overbased sulfonates
GB1225039A (en) * 1968-04-05 1971-03-17 Exxon Research Engineering Co Fuel additives
US3595790A (en) * 1969-10-22 1971-07-27 Lubrizol Corp Oil soluble highly basic metal salts of organic acids
US3609076A (en) * 1968-10-15 1971-09-28 Standard Oil Co Method of preparing over-based alkaline earth sulfonates
US3629109A (en) * 1968-12-19 1971-12-21 Lubrizol Corp Basic magnesium salts processes and lubricants and fuels containing the same
US3691075A (en) * 1970-08-31 1972-09-12 Continental Oil Co Process for preparing barium-containing dispersion

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086940A (en) * 1960-01-07 1963-04-23 Standard Oil Co Lubricant addition agents and lubricants containing same
US3251770A (en) * 1962-05-03 1966-05-17 Lubrizol Corp Process for preparing boron-containing metal salts of phosphosulfurized polymer
US3480548A (en) * 1967-06-21 1969-11-25 Texaco Inc Alkaline earth metal polyborate carbonate overbased alkaline earth metal sulfonate lube oil composition
US3829381A (en) * 1970-02-02 1974-08-13 Lubrizol Corp Boron-and calcium-containing compositions and process

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27582A (en) * 1860-03-20 Collecting toll from grist-mills
US2616911A (en) * 1951-03-16 1952-11-04 Lubrizol Corp Organic alkaline earth metal complexes formed by use of sulfonic promoters
US2760970A (en) * 1953-04-06 1956-08-28 Lubrizol Corp Process for the preparation of substantially pure metal salts of organic sulfonic acids
US3127348A (en) * 1961-06-30 1964-03-31 Table i
US3250710A (en) * 1963-06-03 1966-05-10 Continental Oil Co Preparation of over-based sulfonate composition
US3312618A (en) * 1966-07-15 1967-04-04 Lubrizol Corp Process for preparing an oil soluble highly basic metal salt of an organic acid
US3429811A (en) * 1966-08-17 1969-02-25 Exxon Research Engineering Co Preparation of overbased sulfonates
GB1225039A (en) * 1968-04-05 1971-03-17 Exxon Research Engineering Co Fuel additives
US3609076A (en) * 1968-10-15 1971-09-28 Standard Oil Co Method of preparing over-based alkaline earth sulfonates
US3629109A (en) * 1968-12-19 1971-12-21 Lubrizol Corp Basic magnesium salts processes and lubricants and fuels containing the same
US3595790A (en) * 1969-10-22 1971-07-27 Lubrizol Corp Oil soluble highly basic metal salts of organic acids
US3691075A (en) * 1970-08-31 1972-09-12 Continental Oil Co Process for preparing barium-containing dispersion

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192758A (en) * 1978-05-01 1980-03-11 Bray Oil Company, Inc. Overbased magnesium sulfonate process
US4179385A (en) * 1978-05-03 1979-12-18 Tenneco Chemicals, Inc. Process for the production of overbased manganese salts of organic acids
US4165291A (en) * 1978-06-20 1979-08-21 Phillips Petroleum Company Overbasing calcium petroleum sulfonates in lubricating oils employing monoalkylbenzene
US4218328A (en) * 1978-12-28 1980-08-19 Chevron Research Company Lubricating oil additive
US4306983A (en) * 1979-03-26 1981-12-22 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
US4320015A (en) * 1979-06-29 1982-03-16 Chevron Research Company Magnesium salts of N-carboxyamino acid
US4252659A (en) * 1979-10-12 1981-02-24 Tenneco Chemicals, Inc. Process for the production of overbased manganese salts of organic acids
US4347147A (en) * 1980-09-04 1982-08-31 Nalco Chemical Company Process for preparing overbased magnesium sulfonates
US5041231A (en) * 1985-10-03 1991-08-20 Elf France Process for preparing an additive for lubricating oils, the additive thus obtained and a lubricating composition containing the additive
US4749499A (en) * 1985-10-03 1988-06-07 Elf France Method for preparing very fluid overbased additives having a high basicity and composition containing the additives
US5013463A (en) * 1986-11-19 1991-05-07 Amoco Corporation Process for overbased petroleum oxidate
US5089155A (en) * 1987-10-12 1992-02-18 Exxon Chemical Patents Inc. Overbased magnesium sulphonate composition
US5112506A (en) * 1987-10-12 1992-05-12 Exxon Chemical Patents Inc. Overbased metal sulphonate composition
US5137648A (en) * 1987-10-12 1992-08-11 Exxon Chemical Patents Inc. Overbased metal sulphonate composition
US5437803A (en) * 1988-06-14 1995-08-01 Bp Chemicals (Additives) Limited Process for the production of a lubricating oil additive concentrate
US5114601A (en) * 1990-03-31 1992-05-19 Bp Chemicals (Additive) Limited Overbased calixarates, compositions containing them and use as lubricating oil additives
US5205946A (en) * 1990-03-31 1993-04-27 Bp Chemicals (Additives) Limited Process for the production of overbased calixarates
USH1536H (en) * 1995-04-11 1996-06-04 The Lubrizol Corporation Overbased materials in ester media
CN113366096A (en) * 2018-12-24 2021-09-07 卡乔有限责任公司 Mineral oil-free lubricant and method of making a mineral oil-free lubricant
CN113366096B (en) * 2018-12-24 2023-03-17 卡乔有限责任公司 Mineral oil-free lubricant and method of making a mineral oil-free lubricant

Also Published As

Publication number Publication date
AU4282072A (en) 1973-11-29
ATA460872A (en) 1975-02-15
GB1399092A (en) 1975-06-25
DE2225714A1 (en) 1972-12-07
AT326252B (en) 1975-12-10
DE2225714B2 (en) 1979-09-27
AU468371B2 (en) 1976-01-08
DE2225714C3 (en) 1980-06-12
US3928216A (en) 1975-12-23
NL7207250A (en) 1972-11-29
CA985668A (en) 1976-03-16
FR2139120A1 (en) 1973-01-05
FR2139120B1 (en) 1979-02-09

Similar Documents

Publication Publication Date Title
US3857790A (en) Improvement in the preparation of overbased magnesium lubricant additives
CA1305697C (en) Sulphurised alkaline earth metal hydrocarbyl phenates, their production and use thereof
US3869514A (en) Ashless lubricating oil dispersant
EP0279493B1 (en) Process for the preparation of a basic salt, salt thus prepared and oil compositions containing such a salt
EP0859042A1 (en) Low chlorine content compounds for use in lubricants and fuels
KR880014088A (en) Improved Manufacturing Method of Stable Oil Composition
EP0609260B1 (en) Improved overbased carboxylates
FI78683B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT OEVERBASISKT SVAVELHALTIGT ALKYLFENAT AV EN ALKALISK JORDARTSMETALL.
US5716914A (en) Alkaline earth metal hydrocarbyl phenates, their sulphurized derivatives, their production and use thereof
US6090760A (en) Sulphurized alkaline earth metal hydrocarbyl phenates, their production and use thereof
JPH0284494A (en) Manufacture of concentrated additive used in lubricating oil
JP2980675B2 (en) Method for preparing monothiophosphoric acid by sulfidation of phosphite in the presence of amide
CA2204552C (en) Methods for preparing normal and overbased phenates
US5529705A (en) Methods for preparing normal and overbased phenates
US3350310A (en) Preparation of overbased calcium alkylphenate sulfides
KR950009006B1 (en) Grease and gear lubricant compositions
US3446736A (en) Mixed carboxylate derivatives of basic alkaline earth metal sulfonates
US4317739A (en) Aminated sulfurized olefin funtionalized with a boron compound and formaldehyde
EP0266034B1 (en) Overbased alkali metal additives
US2856359A (en) Superbasic alkaline earth metal sulfonates
JP2512457B2 (en) Overbased sodium sulfonate oil solution, lubricating oil composition and fuel composition containing the same
US3997570A (en) Alkenyl halolactone esters
GB2102799A (en) Magnesium salts of n-carboxyamino acids
NO134843B (en)