US3856658A - Slurried solids handling for coal hydrogenation - Google Patents

Slurried solids handling for coal hydrogenation Download PDF

Info

Publication number
US3856658A
US3856658A US00404281A US40428173A US3856658A US 3856658 A US3856658 A US 3856658A US 00404281 A US00404281 A US 00404281A US 40428173 A US40428173 A US 40428173A US 3856658 A US3856658 A US 3856658A
Authority
US
United States
Prior art keywords
slurry
liquid
coal
concentrated
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00404281A
Inventor
R Wolk
M Chervenak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRI Inc
Original Assignee
Hydrocarbon Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydrocarbon Research Inc filed Critical Hydrocarbon Research Inc
Priority to US00404281A priority Critical patent/US3856658A/en
Application granted granted Critical
Publication of US3856658A publication Critical patent/US3856658A/en
Assigned to HRI, INC., A DE CORP. reassignment HRI, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: HYDROCARBON RESEARCH, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • C10G1/065Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation in the presence of a solvent

Definitions

  • the pumping of the coal-liquid slurry to high pressure is accomplished on a dilute (low percentage of solids) slurry stream which is first pressurized to super-atmospheric pressures, preferably to slightly above the desired reactor pressure, following which a concentration of solids in the slurry to the extent desired is accomplished by centrifugal force means at substantially the same pressure level.
  • This concentrated slurry is then heated to near reactor temperature and passed into the reaction zone without further pressurization.
  • the undesired liquid portion is conveniently and substantially removed from the dilute slurry by centrifugal force action using a liquid cyclone device, and such liquid is recycled to the initial slurry preparation step.
  • centrifugal force means such as a liquid cyclone or hydroclone apparatus is quite desirable, in that the apparatus is relatively simple and reliable and no plugging problems ordinarily result due to the solids portion of the slurry, such as would usually occur if filtration means were used for the slurry concentration step.
  • This liquid recycle arrangement permits the pressurizing transfer pump to advantageously handle a dilute slurry material only, with the concentrated slurry material then being constituted so as to flow freely through regular piping and through the remainder of the system.
  • the carrier liquid used may be any hydrocarbon oil, it is preferably a light hydrocarbon oil which may conveniently be made: in the coal hydrogenation process.
  • the principle advantage provided by this invention is that it materially reduces the amount of diluent oil that must be handled in the remainder of the system downstream of the liquid-solid separation step, i.e., in the heater, reactor, heat exchangers, distillation apparatus and such. Consequently, this arrangement requires a smaller reactor and less heat exchange surface and smaller piping for handling the excess liquid.
  • Other advantages include less wear on the slurry pump, which thus usually can be a less expensive pump.
  • particulatecoal solids at and a carrier liquid which is preferably a light hydrocarbon oil, at 12 are added to a slurry mixing tank 14 in a preferred ratio of about 60 weight percent solids to 40 weight percent liquid.
  • the solids/liquid weight ratios of the slurry may vary from about 05:1 to 3:1 of coal to liquid depending on the properties of the carrier liquid.
  • the mixing tank 14 conveniently has a slurry mixer 16' which is driven by motor 18, which may be either electric or hydraulic and powered by recycle liquid,
  • the liquid cyclone .26 is selected and the pressure differential across it adjusted by the flow rate therethrough so that about weight percent of dilute slurry stream 24 is returned as clarified liquid through line 28 under control of pressure reducing means 30 back to slurry mixing tank 14 to help provide the dilute slurry therein.
  • the pressure drop across the liquid cyclone device will usually be -200 psi.
  • the remaining concentrated slurry at substantially the same pressure level and preferably containing about weight percent solids and 40 weight percent carrier liquid is now passed by line 32 through heater 34. Herein it is heated to at least 500F and preferably to 600-800F and then passed on to the hydrogenation reactor 36.
  • Carrier liquid 12 is prefera bly a light hydrocarbon oil boiling in the range of fuel oil, that is, having a nominal boiling range above 400F, illustratively, one having a nominal boiling range of 400975F and recovered from the process by conventional processing steps (not shown) downstream of liquid stream 42.
  • solid particulate matter may be catalyst rather than, or together with, the coal, such as also disclosed in US. Pat. No. 3,519,555.
  • the dilute slurry is pumped to a high pressure, following which the clarified liquid obtained after passing through the liquid cyclone separator is recycled back through pressure reducing means 30 to the slurry mixing tank.
  • the dissipation of the pressure of this recycled liquid stream may be accomplished by a hydraulic turbine, with the power output therefrom used in the sys tem either for driving the slurry mixer motor 18 or assisting in driving high pressure pump 22.
  • the concentrated slurry stream at substantially the high pressure level is passed to the process reactor 36.
  • high pressure pump 22 which is preferably a positive displacement reciprocating plunger type pump
  • the pump operates only on dilute slurry.
  • the more dilute the slurry the less the pump wear and greater the pump reliability.
  • No wasteful diluent is required in the remainder of the system and such avoidance of excess liquid processing and additional heat exchange surface is highly beneficial in reducing equipment investment and operating costs.
  • a coal hydrogenation process as normally operated with high pressure slurry pump 22, as much as 50-60 weight percent diluent liquid is required in the process.
  • this invention only about half of this diluent liquid is required for transfer of the coal slurry downstream of liquid cyclone 26 through the associated piping, heater, etc., to the reactor.
  • coal-oil dilute slurry may have the following initial properties:
  • a method for introducing particulate coal in liquid phase slurry form into a high pressure reaction zone which comprises:
  • step (b) has a viscosity less than about l0 poise.
  • a liquid phase catalytic hydroconversion process for converting coal to liquid hydrocarbons and gas which comprises:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

In the H-Coal process for coal hydrogenation, an initial step is the preparation of a coal slurry for transfer by suitable means into the pressurized reactor. This invention provides an improved method for facilitating such slurry transfer by pumping, and uses a recycled carried liquid to help provide a dilute easily pumpable coal slurry which is pressurized to above reactor pressure and then concentrated in solids content to a desired extent by centrifugal separation means before passing the concentrated slurry to the reaction zone. A clarified liquid stream withdrawn from the slurry concentration step is recirculated back to the mixing step to facilitate the pumping step.

Description

United States Patent [1 1 [11] 3,856,658 Wolk et al. Dec. 24, 1974 [54] SLURRIED SOLIDS HANDLING FOR COAL 3,519,555 7 1970 Keith et al. 2025 10 HYDRQGENATION 3,635,8l4 l/i972 Rieve et al 208/[0 [75] Inventors: Ronald H. Wolk, Trenton; Michael C. Chervenak, Pennington, both of NJ.
Hydrocarbon Research Inc., New York, NY.
Filed: Oct. 9, 1973 Appl. No.: 404,281
Related US. Application Data Continuation-in-part of Ser. No. 191,035, Oct. 20, 1971, abandoned.
Assignee:
US. Cl. 208/10, 208/8 Int. Cl C10g 1/06 Field of Search 208/10; 302/14 References Cited UNITED STATES PATENTS 3,400,984 9/1968 Shellene et al. 302/l4 Cool Carrier Solids Liquid Hydrocyclone Heater Primary ExaminerDelbert E. Giantz Assistant Examiner-S. Berger [57] ABSTRACT In the H-Coal process for coal hydrogenation, an initial step is the preparation of a coal slurry for transfer by suitable means into the pressurized reactor. This invention provides an improved method for facilitating such slurry transfer by pumping and uses a recycled carried liquid to help provide a dilute easily pumpable coal slurry which is pressurized to above reactor pres sure and then concentrated in solids content to a de sired extent by centrifugal separation means before passing the concentrated slurry to the reaction zone. A clarified liquid stream withdrawn from the slurry concentration step is recirculated back to the mixing step to facilitate the pumping step.
10 Claims, 1 Drawing Figure Gaseous Products Liquid Products Reactor Hydrogen PATENTED [15324574 3,856,658
Cool Currier Solids Liquid Gaseous Products 42 H Llquidz Products Reocior 26/- Hydrocyclone Heater SLURRIED SOLIDS HANDLING FOR COAL HYDROGENATION CROSS REFERENCE TO RELATED APPLICATIONS This is a continuation-in-part of copending application, Ser. No. 191,035, filed Oct. 20, 1971 and now abandoned.
BACKGROUND OF THE INVENTION Hydrogenation of a coal-oil slurry by the upflow, liquid-phase, random motion ebullated bed process known as H-Coal and described in U.S. Pat. No. 3,519,555 to Keith et al., is accomplished at temperatures in the range of 750950F and pressures in the range of LOGO-3,000 psig with coal throughputs ranging from 15 to 300 pounds per hour per cubic fool of reactor volume, and results in yields in the order of four barrels of synthetic crude oil per ton of coal. There are, of course, other variables involved, primarily due to the rank of the coal to be converted and to the end products desired.
The particulate coal is usually mixed with a carrying oil to form a slurry, which is then pressurized and introduced into the reactor along with heated hydrogen gas. However, introducing the relatively viscous coal-oil slurry into the high pressure ebullated bed reactor presents significant problems. Because the coal particles are quite abrasive, they cause rapid erosion and wear in the pumping equipment, particularly for positive displacement type pumps which are usually used at the high discharge pressures involved and which have close internal clearances.
SUMMARY OF THE INVENTION It has been found that the economical introduction of coal into a pressurized reactor is a function of the solids concentration in the coal-liquid slurry, as well as a function of the viscosity and temperature of the carrier liquid used. While it is essential to provide a satisfactorily pumpable fluid slurry, any excessive dilution used in preparing the slurry to facilitate the pumping step has involved considerable excess investment costs for the rest of the high pressure reaction system and much higher operating costs. However, a coal-liquid slurry more concentrated in solids becomes far more difficult to pump in that the coal solids tend to settle out in the pump body and thus interfere with its normal operation, and also to accelerate erosion of the pump inner parts.
In accordance with the present invention, the pumping of the coal-liquid slurry to high pressure is accomplished on a dilute (low percentage of solids) slurry stream which is first pressurized to super-atmospheric pressures, preferably to slightly above the desired reactor pressure, following which a concentration of solids in the slurry to the extent desired is accomplished by centrifugal force means at substantially the same pressure level. This concentrated slurry is then heated to near reactor temperature and passed into the reaction zone without further pressurization.
In the slurry concentration step, the undesired liquid portion is conveniently and substantially removed from the dilute slurry by centrifugal force action using a liquid cyclone device, and such liquid is recycled to the initial slurry preparation step. Separating this undesired liquid portion by centrifugal force means such as a liquid cyclone or hydroclone apparatus is quite desirable, in that the apparatus is relatively simple and reliable and no plugging problems ordinarily result due to the solids portion of the slurry, such as would usually occur if filtration means were used for the slurry concentration step. This liquid recycle arrangement permits the pressurizing transfer pump to advantageously handle a dilute slurry material only, with the concentrated slurry material then being constituted so as to flow freely through regular piping and through the remainder of the system. While the carrier liquid used may be any hydrocarbon oil, it is preferably a light hydrocarbon oil which may conveniently be made: in the coal hydrogenation process.
The principle advantage provided by this invention is that it materially reduces the amount of diluent oil that must be handled in the remainder of the system downstream of the liquid-solid separation step, i.e., in the heater, reactor, heat exchangers, distillation apparatus and such. Consequently, this arrangement requires a smaller reactor and less heat exchange surface and smaller piping for handling the excess liquid. Other advantages include less wear on the slurry pump, which thus usually can be a less expensive pump.
DESCRIPTION OF THE DRAWING The drawing is a schematic view of certain process equipment for the hydrogenation of coal.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the attached drawing, particulatecoal solids at and a carrier liquid, which is preferably a light hydrocarbon oil, at 12 are added to a slurry mixing tank 14 in a preferred ratio of about 60 weight percent solids to 40 weight percent liquid. The solids/liquid weight ratios of the slurry, however, may vary from about 05:1 to 3:1 of coal to liquid depending on the properties of the carrier liquid. The mixing tank 14 conveniently has a slurry mixer 16' which is driven by motor 18, which may be either electric or hydraulic and powered by recycle liquid,
The resulting coal-liquid slurry, diluted by a recycle liquid stream as explained below and at a pressure between atmospheric and about psig, is withdrawn from the mixing tank through line 20 to pump 22, wherein it is pressurized to above reactor pressure or about 500-3250 psig, and preferably to 1000-3,()00 psig. This high pressure dilute slurry is then passed through line 24 to liquid cyclone 26 for liquid-solids separation. In the liquid cyclone 26 the separation of the dilute slurry into a substantially clarified liquid overflow and concentrated slurry underflow streams occurs by centrifugal and centripetal force action induced by the pressure drop developed through the static device. The liquid cyclone .26 is selected and the pressure differential across it adjusted by the flow rate therethrough so that about weight percent of dilute slurry stream 24 is returned as clarified liquid through line 28 under control of pressure reducing means 30 back to slurry mixing tank 14 to help provide the dilute slurry therein. The pressure drop across the liquid cyclone device will usually be -200 psi. Thus, the remaining concentrated slurry at substantially the same pressure level and preferably containing about weight percent solids and 40 weight percent carrier liquid, is now passed by line 32 through heater 34. Herein it is heated to at least 500F and preferably to 600-800F and then passed on to the hydrogenation reactor 36.
As an example of this reactor 36, reference is made to US. Pat. No. 3,519,555 previously mentioned. In such case, by appropriate control of liquid and coal and hydrogen supplied in line 38, an ebullated bed hydroconversion condition can be provided in the reactor with the ultimate removal of gaseous products at 40 and liquid products at 42. Carrier liquid 12 is prefera bly a light hydrocarbon oil boiling in the range of fuel oil, that is, having a nominal boiling range above 400F, illustratively, one having a nominal boiling range of 400975F and recovered from the process by conventional processing steps (not shown) downstream of liquid stream 42.
It is also within the contemplation of this invention that the solid particulate matter may be catalyst rather than, or together with, the coal, such as also disclosed in US. Pat. No. 3,519,555.
In a coal hydrogenation system of this type, the dilute slurry is pumped to a high pressure, following which the clarified liquid obtained after passing through the liquid cyclone separator is recycled back through pressure reducing means 30 to the slurry mixing tank. lt'desired, the dissipation of the pressure of this recycled liquid stream may be accomplished by a hydraulic turbine, with the power output therefrom used in the sys tem either for driving the slurry mixer motor 18 or assisting in driving high pressure pump 22. The concentrated slurry stream at substantially the high pressure level is passed to the process reactor 36.
in this system utilizing high pressure pump 22, which is preferably a positive displacement reciprocating plunger type pump, the pump operates only on dilute slurry. Furthermore, the more dilute the slurry, the less the pump wear and greater the pump reliability. No wasteful diluent is required in the remainder of the system and such avoidance of excess liquid processing and additional heat exchange surface is highly beneficial in reducing equipment investment and operating costs. For example, in a coal hydrogenation process as normally operated with high pressure slurry pump 22, as much as 50-60 weight percent diluent liquid is required in the process. Using this invention. only about half of this diluent liquid is required for transfer of the coal slurry downstream of liquid cyclone 26 through the associated piping, heater, etc., to the reactor.
The significance of this coal slurry handling method for ebullated bed coal hydrogenation is evident from the determination that viscosity of coal-oil slurry increases appreciably for each percent increase in solids in the slurry. [t is usually preferred practice to limit the viscosity of slurries to be pumped in this pressure range (up to 3,500 psig) to about 3 poise and not more than poise. Pumping concentrated slurries is therefore quite difficult and expensive.
Normal conditions for coal hydrogenation have been established using a start-up coal-oil slurry of about weight percent solids at about l00F (ambient). which is pressurized to reactor pressure by one or more pumping stages, then concentrated to about weight percent solids. This slurry material will flow readily tlirough regular piping in the heater and to the reactor.
EXAMPLE From the established data, it is found that for coal hydrogenation, the coal-oil dilute slurry may have the following initial properties:
1. Slurry formed of pulverized coal finer than 20 mesh (U.S. Sieve Series) and hydrocarbon oil boiling in the range of fuel oil, i.e., having a nominal boiling range above 400F.
2. Temperature of l00250F.
3. Viscosity of 3-10 poise.
4. Materials added to the slurry mixing tank in 60/40- solids/liquid weight ratio. The dilute slurry is pressurized to l,()OO3,000 psig. then concentrated by centrifugal force means using a liquid cyclone apparatus, after which theclarified liquid portion is removed for return to the mixing tank. The remaining concentrated slurry for reactor fecd contains about 60/40-solids/liquid ratio. Such a slurry material will flow through pipes and heat exchanger passages to the reactor.
While we have shown and described a preferred form of embodiment of the invention, we are aware that modifications may be made thereto within the scope and spirit of the disclosure herein and of the claims appended thereto. For example, while a single liquid cyclone device has been shown, it is understood that multiple cyclone units connected in parallel could advanta geously be used in systems where the flow rate exceeded the desired capacity of a single cyclone unit.
We claim:
1. A method for introducing particulate coal in liquid phase slurry form into a high pressure reaction zone which comprises:
a. mixing said particulate coal with a hydrocarbon liquid to produce a dilute slurry;
b. pressurizing said dilute slurry to a pressure above the reaction zone pressure;
c. passing said pressurized slurry through liquid-solid centrifugal type separator means without substantial loss of pressure to produce a clarified liquid portion and a concentrated slurry portion;
d. returning the clarified liquid portion from (c) through pressure reducing means to the mixing step (a); and
e. passing the concentrated slurry portion of (c) to the high pressure reaction zone.
2. The method of claim 1 wherein the particulate coal solids are smaller than 20 mesh and the slurrying liquid is a light hydrocarbon oil.
3. The method of claim 1 wherein the particulate solids are a mixture of coal and catalyst and the liquid is oil.
4. The method of claim 1 wherein the initial slurry is formed under ambient conditions and is pressurized to at least 500 psig and the concentrated slurry is then heated to a temperature of at least 500F.
5. The method of claim 1 wherein the pressure drop across the centrifugal separator means to effect the liquid-solids separation is 50200 psi.
6. The process of claim 1 wherein the slurry of step (b) has a viscosity less than about l0 poise.
7. The method of claim 1 wherein the slurry pressurizing means is a positive displacement reciprocating plunger type pump.
8. A liquid phase catalytic hydroconversion process for converting coal to liquid hydrocarbons and gas which comprises:
a. slurry said coal with a hydrocarbon oil boiling above 400F recovered from the process in a ratio of from 0.5 part of coal per part of oil to 3 parts e. heating the concentrated coal slurry to coal per part of oil at substantially ambient condi- 600950F; and tions; f. discharging said concentrated heat slurry to a high b. pressurizing said slurry by positive displacement pressure reaction zone wherein it is converted to pumping means to a pressure of 1,000-3,000 psig; 5 hydrocarbon liquid and gas products.
0. centrifugally separating at least a substantial part 9. The process of claim 8 wherein said slurry liquid of the liquid portion from the coal slurry by centrifis a hydrocarbon oil recovered from the process and ugal force means to provide a more concentrated having a nominal boiling range above 400F. solids slurry portion; 10. The process of claim 8 wherein the pressure re d. returning the clarified liquid from step (0) through 10 ducing means to step (d) is a hydraulic turbine.
pressure reducing means to step (a);

Claims (10)

1. A METHOD FOR INTRODUCING PARTICULATE COAL IN LIQUID PHASE SLURRY FORM INTO A HIGH PRESSURE REATION ZONE WHICH COMPRISES: A. MIXING SAID PARTICULATE COAL WITH A HYDROCARBON LIQUID TO PRODUCE A DILUTE SLURRY; B. PRESSURIZING EAID DILUTE SLURRY TO A PRESSURE ABOVE THE REACTION ZONE PRESSURE; C. PASSING SAID PRESSURIZED SLURRY THROUGH LIQUID-SOLID CENTRIFUGAL TYPE SEPARATOR MEANS WITHOUT SUBSTANTIAL LOSS OF PRESSURE TO PRODUCE A CLARIFIED LIQUID PORTION AND A CONCENTRATED SLURRY PORTION; D. RETURNING THE CLARIFIED LIQUID PORTION FROM (C) THROUGH PRESSURE REDUCING MEANS TO THE MIXING STEP (A); AND E. PASSING THE CONCENTRATED SLURRY PORTION OF (C) TO THE HIGH PRESSURE REACTION ZONE.
2. The method of claim 1 wherein the particulate coal solids are smaller than 20 mesh and the slurrying liquid is a light hydrocarbon oil.
3. The method of claim 1 wherein the particulate solids are a mixture of coal and catalyst and the liquid is oil.
4. The method of claim 1 wherein the initial slurry is formed under ambient conditions and is pressurized to at least 500 psig and the concentrated slurry is then heated to a temperature of at least 500*F.
5. The method of claim 1 wherein the pressure drop across the centrifugal separator means to effect the liquid-solids separation is 50-200 psi.
6. The process of claim 1 wherein the slurry of step (b) has a viscosity less than about 10 poise.
7. The method of claim 1 wherein the slurry pressurizing means is a positive displacement reciprocating plunger type pump.
8. A liquid phase catalytic hydroconversion process for converting coal to liquid hydrocarbons and gas which comprises: a. slurry said coal with a hydrocarbon oil boiling above 400*F recovered from the process in a ratio of from 0.5 part of coal per part of oil to 3 parts coal per part of oil at substantially ambient conditions; b. pressurizing said slurry by positive displacement pumping means to a pressure of 1,000-3,000 psig; c. centrifugally separating at least a substantial part of the liquid portion from the coal slurry by centrifugal force means to provide a more concentrated solids slurry portion; d. returning the clarified liquid from step (c) through pressure reducing means to step (a); e. heating the concentrated coal slurry to 600*-950*F; and f. discharging said concentrated heat slurry to a high pressure reaction zone wherein it is converted to hydrocarbon liquid and gas products.
9. The process of claim 8 wherein said slurry liquid is a hydrocarbon oil recovered from the process and having a nominal boiling range above 400*F.
10. The process of claim 8 wherein the pressure reducing means to step (d) is a hydraulic turbine.
US00404281A 1971-10-20 1973-10-09 Slurried solids handling for coal hydrogenation Expired - Lifetime US3856658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00404281A US3856658A (en) 1971-10-20 1973-10-09 Slurried solids handling for coal hydrogenation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19103571A 1971-10-20 1971-10-20
US00404281A US3856658A (en) 1971-10-20 1973-10-09 Slurried solids handling for coal hydrogenation

Publications (1)

Publication Number Publication Date
US3856658A true US3856658A (en) 1974-12-24

Family

ID=26886676

Family Applications (1)

Application Number Title Priority Date Filing Date
US00404281A Expired - Lifetime US3856658A (en) 1971-10-20 1973-10-09 Slurried solids handling for coal hydrogenation

Country Status (1)

Country Link
US (1) US3856658A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030893A (en) * 1976-05-20 1977-06-21 The Keller Corporation Method of preparing low-sulfur, low-ash fuel
US4039425A (en) * 1975-12-22 1977-08-02 Exxon Research And Engineering Company Method for preparing a coal slurry substantially depleted in mineral-rich particles
US4110192A (en) * 1976-11-30 1978-08-29 Gulf Research & Development Company Process for liquefying coal employing a vented dissolver
EP0047569A2 (en) * 1980-09-08 1982-03-17 The Pittsburgh & Midway Coal Mining Company Process for blending coal with water immiscible liquid
US4435280A (en) 1981-10-07 1984-03-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy Hydrocracking of heavy hydrocarbon oils with high pitch conversion
US4510037A (en) * 1983-12-23 1985-04-09 Hri, Inc. Hydrogenation process for solid carbonaceous feed materials using thermal countercurrent flow reaction zone
US4900429A (en) * 1985-07-29 1990-02-13 Richardson Reginald D Process utilizing pyrolyzation and gasification for the synergistic co-processing of a combined feedstock of coal and heavy oil to produce a synthetic crude oil
WO1995009902A1 (en) * 1993-10-04 1995-04-13 Texaco Development Corporation Liquefaction of plastic materials
US5445659A (en) * 1993-10-04 1995-08-29 Texaco Inc. Partial oxidation of products of liquefaction of plastic materials
US20040071618A1 (en) * 2002-10-15 2004-04-15 Sprouse Kenneth Michael Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US20050281720A1 (en) * 2004-06-16 2005-12-22 Sprouse Kenneth M Two phase injector for fluidized bed reactor
US20060045269A1 (en) * 2004-08-31 2006-03-02 Microsoft Corporation Quantum computational systems
US20060045632A1 (en) * 2004-06-16 2006-03-02 Sprouse Kenneth M Hot rotary screw pump
US20060210457A1 (en) * 2005-03-16 2006-09-21 Sprouse Kenneth M Compact high efficiency gasifier
US20060242907A1 (en) * 2005-04-29 2006-11-02 Sprouse Kenneth M Gasifier injector
US20060243583A1 (en) * 2005-04-29 2006-11-02 Sprouse Kenneth M High pressure dry coal slurry extrusion pump
US7402188B2 (en) 2004-08-31 2008-07-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for coal gasifier
US20110139257A1 (en) * 2009-12-15 2011-06-16 Exxonmobil Research And Engineering Company Passive solids supply system and method for supplying solids
US8307974B2 (en) 2011-01-21 2012-11-13 United Technologies Corporation Load beam unit replaceable inserts for dry coal extrusion pumps
CN103831163A (en) * 2012-11-20 2014-06-04 辽宁工程技术大学 Pre-separation process of coal slime flotation
US8851406B2 (en) 2010-04-13 2014-10-07 Aerojet Rocketdyne Of De, Inc. Pump apparatus including deconsolidator
US8939278B2 (en) 2010-04-13 2015-01-27 Aerojet Rocketdyne Of De, Inc. Deconsolidation device for particulate material extrusion pump
US9752776B2 (en) 2010-08-31 2017-09-05 Gas Technology Institute Pressure vessel and method therefor
US9932974B2 (en) 2014-06-05 2018-04-03 Gas Technology Institute Duct having oscillatory side wall

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400984A (en) * 1967-06-13 1968-09-10 Shell Oil Co System for pumping slurries of high concentrations
US3519555A (en) * 1968-11-08 1970-07-07 Hydrocarbon Research Inc Ebullated bed coal hydrogenation
US3635814A (en) * 1970-11-25 1972-01-18 Atlantic Richfield Co Catalytic coal conversion process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400984A (en) * 1967-06-13 1968-09-10 Shell Oil Co System for pumping slurries of high concentrations
US3519555A (en) * 1968-11-08 1970-07-07 Hydrocarbon Research Inc Ebullated bed coal hydrogenation
US3635814A (en) * 1970-11-25 1972-01-18 Atlantic Richfield Co Catalytic coal conversion process

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039425A (en) * 1975-12-22 1977-08-02 Exxon Research And Engineering Company Method for preparing a coal slurry substantially depleted in mineral-rich particles
US4030893A (en) * 1976-05-20 1977-06-21 The Keller Corporation Method of preparing low-sulfur, low-ash fuel
US4110192A (en) * 1976-11-30 1978-08-29 Gulf Research & Development Company Process for liquefying coal employing a vented dissolver
EP0047569A2 (en) * 1980-09-08 1982-03-17 The Pittsburgh & Midway Coal Mining Company Process for blending coal with water immiscible liquid
EP0047569A3 (en) * 1980-09-08 1982-05-26 The Pittsburgh & Midway Coal Mining Company Process for blending coal with water immiscible liquid
US4435280A (en) 1981-10-07 1984-03-06 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy Hydrocracking of heavy hydrocarbon oils with high pitch conversion
US4510037A (en) * 1983-12-23 1985-04-09 Hri, Inc. Hydrogenation process for solid carbonaceous feed materials using thermal countercurrent flow reaction zone
US4900429A (en) * 1985-07-29 1990-02-13 Richardson Reginald D Process utilizing pyrolyzation and gasification for the synergistic co-processing of a combined feedstock of coal and heavy oil to produce a synthetic crude oil
WO1995009902A1 (en) * 1993-10-04 1995-04-13 Texaco Development Corporation Liquefaction of plastic materials
US5445659A (en) * 1993-10-04 1995-08-29 Texaco Inc. Partial oxidation of products of liquefaction of plastic materials
US8011861B2 (en) 2002-10-15 2011-09-06 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US7615198B2 (en) 2002-10-15 2009-11-10 Pratt & Whitney Rocketdyne, Inc. Apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US20040071618A1 (en) * 2002-10-15 2004-04-15 Sprouse Kenneth Michael Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US20070297877A1 (en) * 2002-10-15 2007-12-27 Sprouse Kenneth M Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US20070297958A1 (en) * 2002-10-15 2007-12-27 Sprouse Kenneth M Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US7303597B2 (en) 2002-10-15 2007-12-04 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
US7547419B2 (en) 2004-06-16 2009-06-16 United Technologies Corporation Two phase injector for fluidized bed reactor
US20100119419A1 (en) * 2004-06-16 2010-05-13 Sprouse Kenneth M Two phase injector for fluidized bed reactor
US20050281720A1 (en) * 2004-06-16 2005-12-22 Sprouse Kenneth M Two phase injector for fluidized bed reactor
US20060045632A1 (en) * 2004-06-16 2006-03-02 Sprouse Kenneth M Hot rotary screw pump
US7360639B2 (en) 2004-06-16 2008-04-22 Pratt & Whitney Rocketdyne, Inc. Hot rotary screw pump
US7740672B2 (en) 2004-08-31 2010-06-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for a coal gasifier
US20060045269A1 (en) * 2004-08-31 2006-03-02 Microsoft Corporation Quantum computational systems
US7402188B2 (en) 2004-08-31 2008-07-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for coal gasifier
US20080289254A1 (en) * 2004-08-31 2008-11-27 Sprouse Kenneth M Method and apparatus for a coal gasifier
US7547423B2 (en) 2005-03-16 2009-06-16 Pratt & Whitney Rocketdyne Compact high efficiency gasifier
US20060210457A1 (en) * 2005-03-16 2006-09-21 Sprouse Kenneth M Compact high efficiency gasifier
US8308829B1 (en) 2005-04-29 2012-11-13 Pratt & Whitney Rocketdyne, Inc. Gasifier injector
US20060242907A1 (en) * 2005-04-29 2006-11-02 Sprouse Kenneth M Gasifier injector
US20060243583A1 (en) * 2005-04-29 2006-11-02 Sprouse Kenneth M High pressure dry coal slurry extrusion pump
US7717046B2 (en) 2005-04-29 2010-05-18 Pratt & Whitney Rocketdyne, Inc. High pressure dry coal slurry extrusion pump
US8196848B2 (en) 2005-04-29 2012-06-12 Pratt & Whitney Rocketdyne, Inc. Gasifier injector
US8950570B2 (en) * 2009-12-15 2015-02-10 Exxonmobil Research And Engineering Company Passive solids supply system and method for supplying solids
US20110139257A1 (en) * 2009-12-15 2011-06-16 Exxonmobil Research And Engineering Company Passive solids supply system and method for supplying solids
US8851406B2 (en) 2010-04-13 2014-10-07 Aerojet Rocketdyne Of De, Inc. Pump apparatus including deconsolidator
US8939278B2 (en) 2010-04-13 2015-01-27 Aerojet Rocketdyne Of De, Inc. Deconsolidation device for particulate material extrusion pump
US9752776B2 (en) 2010-08-31 2017-09-05 Gas Technology Institute Pressure vessel and method therefor
US10352560B2 (en) 2010-08-31 2019-07-16 Gas Technology Institute Pressure vessel and method therefor
US8307974B2 (en) 2011-01-21 2012-11-13 United Technologies Corporation Load beam unit replaceable inserts for dry coal extrusion pumps
CN103831163A (en) * 2012-11-20 2014-06-04 辽宁工程技术大学 Pre-separation process of coal slime flotation
CN103831163B (en) * 2012-11-20 2015-10-28 辽宁工程技术大学 Coal slurry flotation is process for discarding tailings in advance
US9932974B2 (en) 2014-06-05 2018-04-03 Gas Technology Institute Duct having oscillatory side wall

Similar Documents

Publication Publication Date Title
US3856658A (en) Slurried solids handling for coal hydrogenation
US3996026A (en) Process for feeding a high solids content solid fuel-water slurry to a gasifier
US4356078A (en) Process for blending coal with water immiscible liquid
US3607719A (en) Low-pressure hydrogenation of coal
US2669509A (en) Process for gasifying carbonaceous solids
US4309269A (en) Coal-oil slurry pipeline process
US4378183A (en) Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid
US2518337A (en) Slurry handling
US3644192A (en) Upflow three-phase fluidized bed coal liquefaction reactor system
US2517900A (en) Method and apparatus for liquid phase hydrocarbon conversion
CN210176791U (en) Coal and biomass multistage liquefaction system
JPS58111892A (en) Coal hydrogenation with high boiling bed reactor solid preverving rate
JPS6150996B2 (en)
US3962098A (en) Gravity settling
US4410414A (en) Method for hydroconversion of solid carbonaceous materials
US3617474A (en) Low sulfur fuel oil from coal
US4315834A (en) Process for recovering the soot formed during the production of synthesis gas by partial oxidation of hydrocarbonaceous materials
US4422246A (en) Process for feeding slurry-pressurized and solvent-dewatered coal into a pressurized zone
US2428914A (en) Process for effecting exothermic catalytic reactions
US4191629A (en) Reactor residuum concentration control in hydroconversion of coal
CN213506759U (en) Enhanced reaction system for direct coal liquefaction
GB2058125A (en) Process and apparatus for the hydrogenation of coal
US4400261A (en) Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers
US2908634A (en) Hydrocarbon conversion process
US4944866A (en) Process for the hydrogenation of coal

Legal Events

Date Code Title Description
AS Assignment

Owner name: HRI, INC., 1313 DOLLEY MADISON BLVD, MC LEANN, VA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HYDROCARBON RESEARCH, INC.;REEL/FRAME:004180/0621

Effective date: 19830331