US3855741A - Closure for fire resistant structure - Google Patents

Closure for fire resistant structure Download PDF

Info

Publication number
US3855741A
US3855741A US00350537A US35053773A US3855741A US 3855741 A US3855741 A US 3855741A US 00350537 A US00350537 A US 00350537A US 35053773 A US35053773 A US 35053773A US 3855741 A US3855741 A US 3855741A
Authority
US
United States
Prior art keywords
container
cover
filler
plaster
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00350537A
Inventor
H Semon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US00350537A priority Critical patent/US3855741A/en
Application granted granted Critical
Publication of US3855741A publication Critical patent/US3855741A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire

Definitions

  • ABSTRACT A container protective against high temperature of restricted duration is formed of a mixture of plaster of paris containing incombustible reinforcing filler, such as glass fibers, and/or insulating filler, such as glass spheres; and a particulate inorganic hydrate, such as magnesium sulphate, which may have a waterinsoluble coating. lt may also contain an infrared opacifier, such as chromium oxide.
  • the container cover is preferably stepped, to eliminate a direct radiation path between the cover and the container; and the stepped seat or the stepped edge of the cover may be covered with a fusible incombustible material, such as a glass cloth of suitable melting point, to seal the joint between cover and container in the existence of high temperature.
  • a fusible incombustible material such as a glass cloth of suitable melting point
  • Plaster of paris has, in general, not been accepted as suitable for such service, since it loses much of its mechanical integrity when it is heated to a temperature at which it is wholly Qapartially @hydrated SUMMARY OF THE INVENTION
  • Plaster of paris is inexpensive and readily produced in any desired form by a variety of techniques.
  • it is reinforced by the addition of glass fibers, and its insulation ability improved by addition of hollow glass spheres, and with incombustible fibers (which may be formed into cloth) at one or both surfaces. It is desired to provide low thermal conductivity through the structure and to provide maximal heat absorption in the structure in order that a given mass of material will provide a reduced temperature within the structure for the longest possible time.
  • insulating fillers in the form of hollow glass spheres or expanded vermiculite material are added and noncombustible hydrates are included in the mixture.
  • Magnesium sulphate hydrate (MSO4.7H2O) is preferred, since it is slightly more than one-half water by weight and it decomposes at low temperatures to leave a residue of magnesium sulphate andthen further decomposes at high temperatures to form magnesium oxide, which is itself a refractory and tends to preserve the structural form of the plaster mixture in which it is embedded.
  • an infrared opacifier such as chromic oxide, may be included.
  • magnesium sulphate In order to keep the magnesium sulphate from dissolving in the water used in preparing the plaster mixture, it may be coated with a thin layer of water-insoluble material, which may be a wax or an organic resin, since the total mass of combustible material thus added will be too small to constitute an appreciable impairment of the incombustibility of the structure; and the elimination of a possible limitation in the proportion of magnesium sulphate (or other soluble inorganic hydrate) which may be added more than compensates for the presence of organic material.
  • water-insoluble material which may be a wax or an organic resin
  • the resulting structure may be lighter than any structure embodying substantial proportions of common metals suitable for the envisaged service.
  • the structure described is, of course, not intended for continuous exposure to high temperatures. It is intended to protect temperature-vulnerable material against catastrophe such as intense fire lasting of the order of one hour. This period corresponds to the time rating of commercial ireproof safes. It is, of course, possible to extend the survival time indefinitely by increasing the thickness of protective material used; the time cited is an example of a period which has been found practically adapted to common situations.
  • a particular desirable feature of containers according to the present disclosure consists in the use of a stepped joint between the wall and the lid or door of the container in which one or both faces of the joint are covered with an incombustible material (such as glass cloth) having a melting point adequately above normal expected temperatures of normal use, but low enough so that in the catastrophic event it will melt and seal the opening tightly closed, providing a seal against entry of hot gases. Since the structure can be opened by conventional means, such as cold chiseling, after the emergency, the contents may be recovered without the inconvenience and possible danger -involved in cutting metal, which may require the use of a cutting torch. This may also retain the cover in place if outside fastenings are destroyed.
  • an incombustible material such as glass cloth
  • FIGURE represents in section a container according to the present disclosure.
  • Magnesium sulphate hydrate MgSO4.7I-I2O molecular weight roughly 246.3 of which 126, or about 5l percent, is water, is Egyptiant, commercially abundant, nontoxic in any reasonable ingested quantity; and it leaves as a residue after calcination an oxide which is stable chemically and physically and a notably useful refractory.
  • the oxides of sulphur which are produced during calcination are in the same general chemical family with the sulphate radical which is present in the hydrated plaster of paris CaSO4.2H2O, or gypsum (waiving any objection of the mineralogist that gypsum must be restricted to the naturally occurring mineral), and will not attack or destroy it.
  • magnesium oxide may be added to certain ceramic formulations as an additional component in which it does promote formation of a lower melting compound, it is not a notorious lowmelting flux as e.g., the oxygen compounds of boron (including its compounds with oxides of the more strongly alkaline metals in the periodic table).
  • Borax Na2B4O1.
  • l0 H2O with a water content of over 47 percent and commercial availability and price compatible with tonnage use in the ceramics field, upon trial proved to be deleterious in its effect upon the setting of plaster of Paris, and disastrously fluxing at high temperatures.
  • Hydrated lithium metaborate, LiBO2.8H2O Hydrated lithium metaborate, LiBO2.8H2O, with a water content of almost 75 percent appears not to be a regular commercial item, and so was not tested, but would be expected to have the disadvantages of borax and a higher cost, not compensated by its higher water content.
  • Aggregates used depended upon the required maximum temperature against which protection was desired. Hollow fused silica glass spheres sufficiently small to mix readily into a plaster of paris formulation without separating out or impairing fluidity or surface smoothness excessively have been used as aggregates in all formulations; glass spheres of low melting point, exfoliated vermiculite, and diatomaceous earth have also been employed for the lower temperatures. So long as they do not react chemically, or melt, at the desired temperatures, aggregates appear to be effective by the insulation they afford that is, to their contribution to thermal resistance. Since they are of low density, the aggregates contribute to reduce the density of the total body.
  • the preparation of samples consisted of casting the sample formulation into a 7 by 7 inch rectangle, usually against a reinforcement or support of glass, asbestos, or fused silica cloth, and allowing it to set or cure. This was permitted to continue until the excess water had passed off enough to permit direct exposure of the sample face to the test temperature without cracking or spalling from generation of steam.
  • the sample was placed against a by 5 inch opening in a muffle furnace, with a drape of ceramic cloth to reduce heat flow to the edge of the sample panel.
  • a thermojunction was placed at the back or cold face of the sample, with a bit of organic cement to provide it with good thermal contact to the sample; and refractory (not insulating) brick was placed behind the sample to hold it in place.
  • a test was begun by placing the sample against a previously heated muffle so that the hot face was exposed immediately to radiation corresponding to the test temperature. Recordings of the temperature at the back side of the sample were made, always with the same qualitative result, but with quantitative differences. The temperature of the back face first rose roughly linearly with time, the rate depending upon the thermal aresistance of the initial compound, being less for larger proportions of aggregates. Then, when the dehydration temperature of the salt inclusions was reached, the temperature remained constant while the dehydration proceeded, after which it rose again. The total time from placing of the sample against the muffle opening until the back face temperature reached 200 centigrade was taken as the survival time of the sample.
  • Ratio Aggregate/Plaster 70 Borax A sample of Aggregate/Plaster 1.33 and percent ammonium aluminum sulphate hydrate was also prepared and tested at 1,400C. lts survival time was only about 75 percent that 0f a similar formulation with magnesium sulphate hydrate.
  • Reference 10 is a section of a container and 12 a matching plug, cover, or closure.
  • the major part 14 ofthe body of the container 10 and the major part 16 of the cover 12 is of the formulation described that is, of plaster of paris with inclusions 17 of inorganic hydrate, preferably magnesium sulphate hydrate.
  • the representation of hydrate inclusions 17 is purely symbolic, since they will ordinarily be too finely particulate and far too numerous to be readily represented with accuracy.
  • the aperture of the container 10 is provided with steps 18, which mate with steps 20 of the cover 12.
  • low-melting glass cloth 22 is represented on the right side of cover 12 applied to the steps 20, and similar glass cloth 24 is represented on the left side of the aperture of container 10 applied to steps 24.
  • container 10 or cover 12, or both may be so treated.
  • the glass cloth 22 or 24 (whose softening point should lie well above the normal ambient temperature of use, but preferably several hundred degrees below the temperature against which protection is expected to be required, to insure timely sealing of the cover to the container in an actual emergency) may be attached by casting of the wet formulation against it, or by any convenient adhesive.
  • Container l0 is represented as having an outside facing 26
  • cover 12 is represented as having a similar facing 28. For extremely high temperature resistance, this may well be cloth woven of silica fibers.
  • lt may be attached by casting the wet mixture of 14 and 16 against it, or may be attached with a convenient adhesive. If good mechanical handling properties are especially desirable, impregnation with epoxy cement will provide the durable face well known from its use in boat and similar fabrication. Similarly to improve durability, the inner walls of the container may be lined with glass cloth and/or epoxy/plastic.
  • the drawing represents a reentrant cavity in container 10; if the entire container is cast in a mold, a collapsible central elastic mandrel will permit its withdrawal after the plaster of the formulation has set. lf the cavity is not reentrant, the entire container may be cast upside down in a mold which has been lined with any desired outside facing material, and may be withdrawn when hardened.
  • a high-temperature-resistant container having an opening into its interior which opening is closable by a cover which when closed forms an interface between surfaces of the container and of the cover, the improvement comprising a facing affixed to a surface at the interface, which facing is a cloth of fibers of a glass hard at normal ambient temperature and having a softening point below the said high temperature.

Abstract

A container protective against high temperature of restricted duration is formed of a mixture of plaster of paris containing incombustible reinforcing filler, such as glass fibers, and/or insulating filler, such as glass spheres; and a particulate inorganic hydrate, such as magnesium sulphate, which may have a water-insoluble coating. It may also contain an infrared opacifier, such as chromium oxide. The container cover is preferably stepped, to eliminate a direct radiation path between the cover and the container; and the stepped seat or the stepped edge of the cover may be covered with a fusible incombustible material, such as a glass cloth of suitable melting point, to seal the joint between cover and container in the existence of high temperature. The wall structure may be graded, having higher melting filler and reinforcement at the exposed face, and lower melting filler at the interior portions.

Description

[limited States Semon aient [191 [451 Dec. 24, 1974 [54] CLOSURE FOR FIRE RESISTANT STRUCTURE [75] Inventor:
[73] Assignee: General Electric Company,
Fairfield, Conn.
[22] Filed: Apr. l2, 1973 [2l] Appl. No.: 350,537
Howard W. Semon, Malvern, Pa.
[58] Field of Search 52/19, 232, 302, 510, 5l5, 52/423; [O9/75, 64, 65; 220/24 R, 24 H, 42
[56] References Cited UNITED STATES PATENTS 7l8,878 l/1903 Reynolds et al. 109/75 X 1,868,485 7/1932 Bates 109/75 2,910,739 ll/l959 Snitker 52/232 X 3,635,369 1/1972 Lasswell et al 220/42 B Primary Examiner-Price C. Faw, Jr. Attorney, Agent, or Firm-Allen E. Amgott; Raymond H. Quist; Henry W. Kaufmann [57] ABSTRACT A container protective against high temperature of restricted duration is formed of a mixture of plaster of paris containing incombustible reinforcing filler, such as glass fibers, and/or insulating filler, such as glass spheres; and a particulate inorganic hydrate, such as magnesium sulphate, which may have a waterinsoluble coating. lt may also contain an infrared opacifier, such as chromium oxide. The container cover is preferably stepped, to eliminate a direct radiation path between the cover and the container; and the stepped seat or the stepped edge of the cover may be covered with a fusible incombustible material, such as a glass cloth of suitable melting point, to seal the joint between cover and container in the existence of high temperature. The wall structure may be graded, having higher melting filler and reinforcement at the exposed face, and lower melting filler at the interior portions.
2 Claims, l Drawing Figure PATENTEU UEC24|974 IIIIIIIIII/IIIII CLOSURE FOR FIRE RESISTANT STRUCTURE CROSS-REFERENCE TO RELATED APPLICATIONS FIRE RESISTANT STRUCTURE, Michael J. Noone, filed Apr. l2, 1973, and assigned to the assignee thereof.
ENCAPSULATED SALT ADDITIVES, Louis R. McCreight, filed Apr. l2, 1973 and assigned to the assignee thereof.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention pertains to high temperature resistant structures, particularly as containers.
2. Description of the Prior Art The general field is very old and extremely broad. Burial in earth and enclosure in thick-walled incombustible structures are presumably prehistoric, as is wetting down material in danger of exposure to high temperature. Modern examples of protective structures include fire-resistant safes, which are usually metal enclosures lined with inorganic thermal insulating materials, such as magnesia blocks. More recently ablative coatings to protect space vehicles during re-entry have assumed many forms. An objective of these has been combined light weight and low cost. Plaster of paris has, in general, not been accepted as suitable for such service, since it loses much of its mechanical integrity when it is heated to a temperature at which it is wholly Qapartially @hydrated SUMMARY OF THE INVENTION Plaster of paris is inexpensive and readily produced in any desired form by a variety of techniques. In the present disclosure it is reinforced by the addition of glass fibers, and its insulation ability improved by addition of hollow glass spheres, and with incombustible fibers (which may be formed into cloth) at one or both surfaces. It is desired to provide low thermal conductivity through the structure and to provide maximal heat absorption in the structure in order that a given mass of material will provide a reduced temperature within the structure for the longest possible time. To this end, insulating fillers in the form of hollow glass spheres or expanded vermiculite material are added and noncombustible hydrates are included in the mixture. Magnesium sulphate hydrate (MSO4.7H2O) is preferred, since it is slightly more than one-half water by weight and it decomposes at low temperatures to leave a residue of magnesium sulphate andthen further decomposes at high temperatures to form magnesium oxide, which is itself a refractory and tends to preserve the structural form of the plaster mixture in which it is embedded. In order to reduce thermal radiation through the structure an infrared opacifier, such as chromic oxide, may be included. In order to keep the magnesium sulphate from dissolving in the water used in preparing the plaster mixture, it may be coated with a thin layer of water-insoluble material, which may be a wax or an organic resin, since the total mass of combustible material thus added will be too small to constitute an appreciable impairment of the incombustibility of the structure; and the elimination of a possible limitation in the proportion of magnesium sulphate (or other soluble inorganic hydrate) which may be added more than compensates for the presence of organic material.
Since the density of gypsum is less than that even of metallic aluminum, and less than one-third that of steel, the resulting structure may be lighter than any structure embodying substantial proportions of common metals suitable for the envisaged service.
The structure described is, of course, not intended for continuous exposure to high temperatures. It is intended to protect temperature-vulnerable material against catastrophe such as intense fire lasting of the order of one hour. This period corresponds to the time rating of commercial ireproof safes. It is, of course, possible to extend the survival time indefinitely by increasing the thickness of protective material used; the time cited is an example of a period which has been found practically adapted to common situations.
A particular desirable feature of containers according to the present disclosure consists in the use of a stepped joint between the wall and the lid or door of the container in which one or both faces of the joint are covered with an incombustible material (such as glass cloth) having a melting point adequately above normal expected temperatures of normal use, but low enough so that in the catastrophic event it will melt and seal the opening tightly closed, providing a seal against entry of hot gases. Since the structure can be opened by conventional means, such as cold chiseling, after the emergency, the contents may be recovered without the inconvenience and possible danger -involved in cutting metal, which may require the use of a cutting torch. This may also retain the cover in place if outside fastenings are destroyed.
BRIEF DESCRIPTION OF THE DRAWING The FIGURE represents in section a container according to the present disclosure.
DESCRIPTION OF THE PREFERRED i EMBODIMENT Since the nature of the formulations is an essential part of the invention, first discussed is choice of materials, and the mode of testing the various formulations.
Magnesium sulphate hydrate MgSO4.7I-I2O, molecular weight roughly 246.3 of which 126, or about 5l percent, is water, isancient, commercially abundant, nontoxic in any reasonable ingested quantity; and it leaves as a residue after calcination an oxide which is stable chemically and physically and a notably useful refractory. The oxides of sulphur which are produced during calcination are in the same general chemical family with the sulphate radical which is present in the hydrated plaster of paris CaSO4.2H2O, or gypsum (waiving any objection of the mineralogist that gypsum must be restricted to the naturally occurring mineral), and will not attack or destroy it. While magnesium oxide may be added to certain ceramic formulations as an additional component in which it does promote formation of a lower melting compound, it is not a notorious lowmelting flux as e.g., the oxygen compounds of boron (including its compounds with oxides of the more strongly alkaline metals in the periodic table). Borax, Na2B4O1. l0 H2O, with a water content of over 47 percent and commercial availability and price compatible with tonnage use in the ceramics field, upon trial proved to be deleterious in its effect upon the setting of plaster of Paris, and disastrously fluxing at high temperatures. Hydrated lithium metaborate, LiBO2.8H2O, with a water content of almost 75 percent appears not to be a regular commercial item, and so was not tested, but would be expected to have the disadvantages of borax and a higher cost, not compensated by its higher water content. Ammonium alum, NH4AL(SO4)2.12 H2O with a water content of almost 48 percent appeared a priori very attractive; but the mechanical properties of bodies incorporating it were unsatisfactory.
Aggregates used depended upon the required maximum temperature against which protection was desired. Hollow fused silica glass spheres sufficiently small to mix readily into a plaster of paris formulation without separating out or impairing fluidity or surface smoothness excessively have been used as aggregates in all formulations; glass spheres of low melting point, exfoliated vermiculite, and diatomaceous earth have also been employed for the lower temperatures. So long as they do not react chemically, or melt, at the desired temperatures, aggregates appear to be effective by the insulation they afford that is, to their contribution to thermal resistance. Since they are of low density, the aggregates contribute to reduce the density of the total body.
The preparation of samples consisted of casting the sample formulation into a 7 by 7 inch rectangle, usually against a reinforcement or support of glass, asbestos, or fused silica cloth, and allowing it to set or cure. This was permitted to continue until the excess water had passed off enough to permit direct exposure of the sample face to the test temperature without cracking or spalling from generation of steam. The sample was placed against a by 5 inch opening in a muffle furnace, with a drape of ceramic cloth to reduce heat flow to the edge of the sample panel. A thermojunction was placed at the back or cold face of the sample, with a bit of organic cement to provide it with good thermal contact to the sample; and refractory (not insulating) brick was placed behind the sample to hold it in place. A test was begun by placing the sample against a previously heated muffle so that the hot face was exposed immediately to radiation corresponding to the test temperature. Recordings of the temperature at the back side of the sample were made, always with the same qualitative result, but with quantitative differences. The temperature of the back face first rose roughly linearly with time, the rate depending upon the thermal aresistance of the initial compound, being less for larger proportions of aggregates. Then, when the dehydration temperature of the salt inclusions was reached, the temperature remained constant while the dehydration proceeded, after which it rose again. The total time from placing of the sample against the muffle opening until the back face temperature reached 200 centigrade was taken as the survival time of the sample. A satisfactory sample must retain some physical integrity at the end of the survival time; samples whose hot face had fluxed or otherwise disintegrated were considered unsatisfactory regardless of nominal measured survival time. The desired thickness of samples was 28 mm., but the casting process employed did not permit accurate control of thickness, so that strictly comparable results were not obtained for the various formulations. However, a distinct trend to longer survival times for higher hydrated salt contents was established, with relative insensitivity to proportion of aggregate.
The following tabulation of results is for tests at 1,400C.; the salt was magnesium sulphate hydrate, the aggregate was fused silica hollow spheres (microbal loons), and the survival time is given in minutes. Thickness is in mm. including face sheets of glass cloth asbestos and epoxy.
7o Ratio Salt Aggregate/Plaster Timc "niickness 14 1.0 24 34 37 0.7 28 34 40 l .0 20 30 54 0.65 28 30 54 1.09 30 28 56 l .0 30 28 58 0.9 l 33 30 58 l .00 33 28 62 0.8 l 36 29 63 2,47 39 34 (7c Ratio Salt Aggregate/Plaster Time Thickncss 30 D,V 1.33 33 28 3l D,V 1.09 30 27 3l 1.23 23 23 34 D,V l.0 49 33 47 V 0.61 32 26 50 D,V 1.0 42 28 5l 0.63 45 27 54 0.7l 36 26 55 0.80 50 30 58 1.10 52 30 60 l.0 48 28 Again, a trend to better performance at salt concentrations up to 60 percent is discernible, although the thickness variations tend to make the results somewhat obscurant of the trend in particular instances.
Similarly, at 630C. compatible results were obtained.
7o Ratio Salt Aggrcgate/ Plaster Time 'Thickness 0 D,V l .0 30 l 8 37 D,V 0.5 l 45 20 42 D,V l .0 43 2l 44 D,V 0.5 l 48 20 59 l .73 95 34 63 l .3 l 55 24 The smaller number of samples at the lower temperature renders the trend to improved results with increasing proportions of salt less obvious, but still detectible.
Samples of the following compositions were prepared and tested at 1,400C. Both failed, by melting, in about ten minutes:
Ratio Aggregate/Plaster 70 Borax A sample of Aggregate/Plaster 1.33 and percent ammonium aluminum sulphate hydrate was also prepared and tested at 1,400C. lts survival time was only about 75 percent that 0f a similar formulation with magnesium sulphate hydrate.
Reference is now made to the drawing. Reference 10 is a section of a container and 12 a matching plug, cover, or closure. The major part 14 ofthe body of the container 10 and the major part 16 of the cover 12 is of the formulation described that is, of plaster of paris with inclusions 17 of inorganic hydrate, preferably magnesium sulphate hydrate. The representation of hydrate inclusions 17 is purely symbolic, since they will ordinarily be too finely particulate and far too numerous to be readily represented with accuracy. The aperture of the container 10 is provided with steps 18, which mate with steps 20 of the cover 12. By way of emphasizing the alternate possibility, low-melting glass cloth 22 is represented on the right side of cover 12 applied to the steps 20, and similar glass cloth 24 is represented on the left side of the aperture of container 10 applied to steps 24. Either container 10 or cover 12, or both, may be so treated. The glass cloth 22 or 24 (whose softening point should lie well above the normal ambient temperature of use, but preferably several hundred degrees below the temperature against which protection is expected to be required, to insure timely sealing of the cover to the container in an actual emergency) may be attached by casting of the wet formulation against it, or by any convenient adhesive. Container l0 is represented as having an outside facing 26, and cover 12 is represented as having a similar facing 28. For extremely high temperature resistance, this may well be cloth woven of silica fibers. lt may be attached by casting the wet mixture of 14 and 16 against it, or may be attached with a convenient adhesive. If good mechanical handling properties are especially desirable, impregnation with epoxy cement will provide the durable face well known from its use in boat and similar fabrication. Similarly to improve durability, the inner walls of the container may be lined with glass cloth and/or epoxy/plastic. The drawing represents a reentrant cavity in container 10; if the entire container is cast in a mold, a collapsible central elastic mandrel will permit its withdrawal after the plaster of the formulation has set. lf the cavity is not reentrant, the entire container may be cast upside down in a mold which has been lined with any desired outside facing material, and may be withdrawn when hardened.
ln tests, containers of this general description have protected commercially available explosives in a deliberately fed gasoline fire for an hour before explosion occurred. Chromic oxide Cr2O3 was incorporated in the formulation to the extent of about 3 percent of the weight of plaster of paris used. This is intended to function as an opacifier to infrared radiation.
While the use of the formulations disclosed has been to a container, flat panels may be cast in accordance with the well known art for temporary or permanent installation as shields. An alternative to casting of a slurry is the following: A layer of the dry components suitably dispersed is placed in the conventional mold, and is then sprinkled with water, with no disturbance of the mixture other than that caused by the water itself. The plaster of paris becomes hydrated without stirring of the soluble hydrated salt (e.g., magnesium sulphate hydrate); the quantity of soluble salt dissolved in the water is minimized by this procedure. lf desired, this procedure may be repeated to build up thick layers. Also, hollow vessels may be cast using the formulations taught to be placed over objects in or on the ground. Protection of supplies against brush or forest fires is a natural application.
This specification is descriptive of the inventions of three different inventors. Each invention is best described in conjunction with the others. It is here noted, and stipulated by the signer of this application that, to his best knowledge and belief, the invention of providing a water-insoluble coating upon soluble particulate salts to be incorporated undissolved in an aqueous slurry and thus in the solid formed therefrom is the invention of Louis R. McCreight; the invention of the novel materials formulations described herein and of their application to form high-temperature resistant containers and barriers is the invention of Michael J. Noone; and the invention of providing at the interface between the opening of a high-temperature resistant container and its lid or closure a relatively low-melting facing, described in the specification preferred embodiment as of glass cloth, is the invention of Howard W. Semon. The appended claims claim only that which the applicant in this application believes to be his own invention.
What is claimed is:
1. ln a high-temperature-resistant container having an opening into its interior which opening is closable by a cover which when closed forms an interface between surfaces of the container and of the cover, the improvement comprising a facing affixed to a surface at the interface, which facing is a cloth of fibers of a glass hard at normal ambient temperature and having a softening point below the said high temperature.
2. The improvement claimed in claim 1 in which the therein said container and cover are formed of a composition comprising gypsum and therein dispersed particles of a hydrated inorganic salt.
=i r a a:

Claims (2)

1. In a high-temperature-resistant container having an opening into its interior which opening is closable by a cover which when closed forms an interface between surfaces of the container and of the cover, the improvement comprising a facing affixed to a surface at the interface, which facing is a cloth of fibers of a glass hard at normal ambient temperature and having a softening point below the said high temperature.
2. The improvement claimed in claim 1 in which the therein said container and cover are formed of a composition comprising gypsum and therein dispersed particles of a hydrated inorganic salt.
US00350537A 1973-04-12 1973-04-12 Closure for fire resistant structure Expired - Lifetime US3855741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00350537A US3855741A (en) 1973-04-12 1973-04-12 Closure for fire resistant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00350537A US3855741A (en) 1973-04-12 1973-04-12 Closure for fire resistant structure

Publications (1)

Publication Number Publication Date
US3855741A true US3855741A (en) 1974-12-24

Family

ID=23377150

Family Applications (1)

Application Number Title Priority Date Filing Date
US00350537A Expired - Lifetime US3855741A (en) 1973-04-12 1973-04-12 Closure for fire resistant structure

Country Status (1)

Country Link
US (1) US3855741A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2314320A1 (en) * 1975-06-12 1977-01-07 So Ge Co Fire-resistant partition-wall - has adjacent panels with rigid, heat-proof mineral fibre core between two plaster cladding-sheets
US4048926A (en) * 1975-06-20 1977-09-20 John D. Brush & Co., Inc. Safe
US4174711A (en) * 1976-10-19 1979-11-20 Ingeborg Laing Fire resistant enclosure
US4214418A (en) * 1978-08-28 1980-07-29 Smith Stuart B Method of constructing a thermal insulation packet
US4218502A (en) * 1978-06-19 1980-08-19 Minnesota Mining And Manufacturing Company Intumescable fire-retardant products
US4232493A (en) * 1978-04-28 1980-11-11 H. H. Robertson Company Fire-resistant electrical wiring distributing floor structure and method
US4282276A (en) * 1978-08-28 1981-08-04 Smith Stuart B Thermal insulation packet
EP0071700A2 (en) * 1981-05-04 1983-02-16 Wespanwerk Wenger AG Fire-proof casing for metallic profiles, and manufacturing method
GB2226345A (en) * 1988-12-23 1990-06-27 Paul Maniatt Structural cam cladding
US5152231A (en) * 1991-01-30 1992-10-06 John D. Brush & Co., Inc. Fire-resistant safe
US5769564A (en) * 1993-09-24 1998-06-23 Csr Limited Manhole cover frames
US20030141794A1 (en) * 2002-01-30 2003-07-31 Cleveland Terri Peartree Fire-resistant gun cabinet
US20030180190A1 (en) * 2002-01-18 2003-09-25 Corcoran Craig S. Covered microchamber structures
US6643991B1 (en) * 2000-10-12 2003-11-11 Premdor International, Inc. Fire door and method of assembly
US20040126538A1 (en) * 2002-01-18 2004-07-01 Corcoran Craig S. Sheet having microsized architecture
US20060258284A1 (en) * 2005-05-16 2006-11-16 Melesky James B System for Insulating Attic Openings
US20070000925A1 (en) * 2005-06-29 2007-01-04 Andre Fortin Portable fire and heat resistant storage unit for electronic media
US20070224407A1 (en) * 2006-03-24 2007-09-27 Eloret Corporation Low-density ablative heat shield fabrication
US20100186299A1 (en) * 2001-12-21 2010-07-29 Melesky James B Insulation Cover for Attic Closures
US20110094423A1 (en) * 2009-10-28 2011-04-28 Dellorusso Jr Anthony J Light weight portable fire resistant containment system
US20120049714A1 (en) * 2010-08-24 2012-03-01 John D. Brush & Co., Inc. Split-Bodied Insulated Cavity for a File Cabinet
US8474386B2 (en) 2009-10-28 2013-07-02 Anthony J. DelloRusso, JR. Fire resistant containment system having a light weight portable removable enclosure
US8661750B2 (en) 2001-12-21 2014-03-04 James B. Melesky Systems and methods for insulating attic openings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US718878A (en) * 1902-05-31 1903-01-20 Meilink Mfg Company Closing and locking device for safes, &c.
US1868485A (en) * 1931-05-06 1932-07-26 Mosler Safe Co Fireproof joint construction
US2910739A (en) * 1956-01-28 1959-11-03 S O S B Skod I S Frames for fire-retarding and fire-proof doors
US3635369A (en) * 1969-08-19 1972-01-18 Tull C Lasswell Precoated plug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US718878A (en) * 1902-05-31 1903-01-20 Meilink Mfg Company Closing and locking device for safes, &c.
US1868485A (en) * 1931-05-06 1932-07-26 Mosler Safe Co Fireproof joint construction
US2910739A (en) * 1956-01-28 1959-11-03 S O S B Skod I S Frames for fire-retarding and fire-proof doors
US3635369A (en) * 1969-08-19 1972-01-18 Tull C Lasswell Precoated plug

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2314320A1 (en) * 1975-06-12 1977-01-07 So Ge Co Fire-resistant partition-wall - has adjacent panels with rigid, heat-proof mineral fibre core between two plaster cladding-sheets
US4048926A (en) * 1975-06-20 1977-09-20 John D. Brush & Co., Inc. Safe
US4174711A (en) * 1976-10-19 1979-11-20 Ingeborg Laing Fire resistant enclosure
US4232493A (en) * 1978-04-28 1980-11-11 H. H. Robertson Company Fire-resistant electrical wiring distributing floor structure and method
US4218502A (en) * 1978-06-19 1980-08-19 Minnesota Mining And Manufacturing Company Intumescable fire-retardant products
US4214418A (en) * 1978-08-28 1980-07-29 Smith Stuart B Method of constructing a thermal insulation packet
US4282276A (en) * 1978-08-28 1981-08-04 Smith Stuart B Thermal insulation packet
EP0071700A2 (en) * 1981-05-04 1983-02-16 Wespanwerk Wenger AG Fire-proof casing for metallic profiles, and manufacturing method
EP0071700A3 (en) * 1981-05-04 1983-04-13 Wespanwerk Wenger AG Fire-proof casing for metallic profiles, and manufacturing method
GB2226345A (en) * 1988-12-23 1990-06-27 Paul Maniatt Structural cam cladding
US5152231A (en) * 1991-01-30 1992-10-06 John D. Brush & Co., Inc. Fire-resistant safe
US5769564A (en) * 1993-09-24 1998-06-23 Csr Limited Manhole cover frames
US6643991B1 (en) * 2000-10-12 2003-11-11 Premdor International, Inc. Fire door and method of assembly
US9803416B2 (en) 2001-12-21 2017-10-31 James B. Melesky Systems and methods for insulating attic openings
US20100186299A1 (en) * 2001-12-21 2010-07-29 Melesky James B Insulation Cover for Attic Closures
US8413393B2 (en) 2001-12-21 2013-04-09 James B. Melesky Insulation cover for attic closures
US9260858B2 (en) 2001-12-21 2016-02-16 James B. Melesky Systems and methods for insulating attic openings
US8661750B2 (en) 2001-12-21 2014-03-04 James B. Melesky Systems and methods for insulating attic openings
US10435939B2 (en) * 2001-12-21 2019-10-08 James B. Melesky Systems and methods for insulating attic openings
US9435116B2 (en) 2001-12-21 2016-09-06 James B. Melesky Systems and methods for insulating attic openings
US20030180190A1 (en) * 2002-01-18 2003-09-25 Corcoran Craig S. Covered microchamber structures
US7514045B2 (en) * 2002-01-18 2009-04-07 Avery Dennison Corporation Covered microchamber structures
US20040126538A1 (en) * 2002-01-18 2004-07-01 Corcoran Craig S. Sheet having microsized architecture
US20050118393A1 (en) * 2002-01-18 2005-06-02 Corcoran Craig S. Sheet having microsized architecture
US20030141794A1 (en) * 2002-01-30 2003-07-31 Cleveland Terri Peartree Fire-resistant gun cabinet
US7926229B2 (en) 2005-05-16 2011-04-19 Melesky James B System for insulating attic openings
US20110225899A1 (en) * 2005-05-16 2011-09-22 Melesky James B System for Insulating Attic Openings
US8869473B2 (en) 2005-05-16 2014-10-28 James B. Melesky System for insulating attic openings
US20060258284A1 (en) * 2005-05-16 2006-11-16 Melesky James B System for Insulating Attic Openings
US7849644B2 (en) 2005-05-16 2010-12-14 Melesky James B System for insulating attic openings
US20100275536A1 (en) * 2005-05-16 2010-11-04 Melesky James B System for Insulating Attic Openings
US20070000925A1 (en) * 2005-06-29 2007-01-04 Andre Fortin Portable fire and heat resistant storage unit for electronic media
US20070224407A1 (en) * 2006-03-24 2007-09-27 Eloret Corporation Low-density ablative heat shield fabrication
US8474386B2 (en) 2009-10-28 2013-07-02 Anthony J. DelloRusso, JR. Fire resistant containment system having a light weight portable removable enclosure
US8327778B2 (en) 2009-10-28 2012-12-11 Dellorusso Jr Anthony J Light weight portable fire resistant containment system
US20110094423A1 (en) * 2009-10-28 2011-04-28 Dellorusso Jr Anthony J Light weight portable fire resistant containment system
US8454104B2 (en) * 2010-08-24 2013-06-04 John D. Brush & Co., Inc. Split-bodied insulated cavity for a file cabinet
US20120049714A1 (en) * 2010-08-24 2012-03-01 John D. Brush & Co., Inc. Split-Bodied Insulated Cavity for a File Cabinet

Similar Documents

Publication Publication Date Title
US3855741A (en) Closure for fire resistant structure
US5035951A (en) Fire resistant coatings
US4218502A (en) Intumescable fire-retardant products
US6960308B1 (en) Endothermic heat shield composition and method for the preparation thereof
US20050031843A1 (en) Multi-layer fire barrier systems
EP0084266B1 (en) Refractory coating compositions
JPS61502120A (en) fire barrier coating
US3916804A (en) Fire resistant structure
SE466154B (en) FLAMMING PROTECTIVE COATING
US3885980A (en) Fire resistant composition
US3873332A (en) Encapsulated salt additives
JPH0228632B2 (en) NANNENSEIFUKUGOTAIBUTSUSHITSU
KR101589060B1 (en) Environment Friendly and None Toxic Intumescent Fire-Retardant Paint
JP4230725B2 (en) Insulating refractory material composition and insulating refractory material using the same
US4022626A (en) Structural material
US3630764A (en) Fire-resistant paint
KR950006071B1 (en) Expandable nonorganic composition
RU2527997C2 (en) Composition for thermal barrier coatings
WO2021177378A1 (en) Fireproof heat insulating board and fireproof heat insulating structural body
CN109897415A (en) A kind of mould proof environmentally friendly tunnel coating
JP3181152B2 (en) Composition for fireproof coating
JP2004155643A (en) Inorganic foaming composition
KR20020003482A (en) The sprayed fire-resistive materials
CA1115450A (en) Fire protective mastic and fire stop
GB2073049A (en) Fire retardant roofing material