US3852091A - Thermographic transfer sheets - Google Patents

Thermographic transfer sheets Download PDF

Info

Publication number
US3852091A
US3852091A US00288016A US28801672A US3852091A US 3852091 A US3852091 A US 3852091A US 00288016 A US00288016 A US 00288016A US 28801672 A US28801672 A US 28801672A US 3852091 A US3852091 A US 3852091A
Authority
US
United States
Prior art keywords
particles
weight
transfer
thermographic
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00288016A
Inventor
D Newman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia Ribbon and Carbon Manufacturing Co Inc
International Business Machines Corp
Original Assignee
Columbia Ribbon and Carbon Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia Ribbon and Carbon Manufacturing Co Inc filed Critical Columbia Ribbon and Carbon Manufacturing Co Inc
Priority to US00288016A priority Critical patent/US3852091A/en
Application granted granted Critical
Publication of US3852091A publication Critical patent/US3852091A/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: GREENE, IRA S., TRUSTEE OF COLUMBIA RIBBON AND CARBON MANUFACTURING CO. INC.
Assigned to GREENE, IRA S. reassignment GREENE, IRA S. COURT APPOINTMENT (SEE DOCUMENT FOR DETAILS). Assignors: COLUMBIA RIBBON AND CARBON MANUFACTURING CO INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/392Additives, other than colour forming substances, dyes or pigments, e.g. sensitisers, transfer promoting agents
    • B41M5/395Macromolecular additives, e.g. binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1091Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by physical transfer from a donor sheet having an uniform coating of lithographic material using thermal means as provided by a thermal head or a laser; by mechanical pressure, e.g. from a typewriter by electrical recording ribbon therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/913Material designed to be responsive to temperature, light, moisture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/914Transfer or decalcomania
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • thermographic transfer duplication process is in current commercial use for the imaging of single copies, hectograph masters and planographic printing plates corresponding to an imaged original sheet by means of infrared radiation and a thermographic transfer layer.
  • the original images become heated by the infrared and the heat melts corresponding areas of the transfer layer to cause it to wet and adhere to the receptive sheet to produce the desired copy, master or plate.
  • thermographic transfer sheets and processes are their inability to produce imaged copies, masters or plates (hereinaf-).
  • the present invention involves the discovery that improved thermographic transfer layers can be produced by formulating the transfer composition as a dispersion in a volatile vehicle, applying the dispersion to a receptive flexible foundation and evaporating the vehicle to ter referred to collectively as copysheets) which'are'a s sharp and clear as the original images on the original sheet.
  • Hot melt wax thermographic transfer layers have a-certain narrow threshold temperature range below which they will not transfer and above which they flow excessively.
  • a wax transfer layer conducts heat laterally as well as through the thickness of the layer and such lateral conduction causes broadening of the imagewise heat pattern.
  • the wax layer softens and melts in an area which is slightly broader than the dimensions of the original image, whereby the image transferred to the copy sheet is not as sharp or clear as the original.
  • the defects in the copy are magnified in cases where the copy sheet is'a master or plate from which hundreds of duplicate copies are made in the spirit or planographic processes, thus reducing the number of acceptable duplicate copies that can be made.
  • thermographictransfer layers resist liquefaction at thermographic temperatures but also have cohesive properties which resist sharp separation between the heated and unheated areas during transfer. Such layers also generally have higher softening temperatures than wax layers, and are as heat-conductive as wax layers, so that heat spreads from the image areas to adjacent areas to cause broadening of the imagewise heat pattern.
  • thermographic transfer sheets leading to the production of imperfect thermographic copies, is due to the nature of r the process itself.
  • the thermographic transfer layer becomes imagewise welded to the copy sheet.
  • the transfer sheet and copy sheet must be stripped apart whereby the areas of the transfer layer which are welded to the copy sheet are torn from the remainder of the transfer layer. This often results in the welded areas pulling over to the copy sheet adjacent non-welded areas of the transfer layer which have rebonded to the heated areas of the transfer layer during cooling. This is commonly evidenced by the formation of filled-in characters and occurs with both conventional wax and resinous thermographic transfer layers.
  • discontinuous layer of discrete particles has at least two critical properties which give rise to an unexpected improvement in the thermographic transfer process.
  • the discontinuous nature of the transfer layer provides a multiplicity of discrete particles, each separatedat least'partially from the next by means of an interface and air voids.
  • the air voids provide an insulation between particles and reduce substantially the thermal transfer between particles, whereby the ability of heat to spread laterally across the transfer layer is substantially reduced.
  • the discontinuous structureof the transfer layer enables the heated, coalesced-portions of the transfer layer to separate sharply from the unheated areas.
  • the air voids and interfaces provide weakened severing points between heated and unheated areas whereby the heated areas, bonded to the copy sheet, break easily and sharply from the unheated areas. This facilitates the separating of the transfer sheet and-the imaged copy sheet and substantially reduces the ability of the portions of the transfer layer welded to the copy sheet to pull adjacent portions of unheated transfer composition from the transfer sheet.
  • the transfer compositions of the present invention comprise a major amount by weight of a waxy binder material and a minor amount by weight of a resinous binder material and, inmost cases, softeners or plasticizers and coloring matter.
  • the waxy binder material may be a conventional wax such as carnauba, ouricury, microcrystalline, beeswax, montan wax, or a mixture thereof.
  • Other waxy materials having the properties of wax are also suitable alone or mixed with waxes. These include the lower molecular weight polyethylenes such as A-C Polyethylene 400, solidCarbowaxes, polyvinyl stearate, and the like.
  • a minor amount of resinous film-forming binder material having a higher melting temperature than the wax is included as part of the binder material in order to increase the melting temperature of the dispersion and to render the heated areas more adhesive with respect to the copy sheet.
  • Suitable film-formers include cellulose materials such as ethyl cellulose, vinyls such as polyvinyl butyrate, polybutene resins, and the like.
  • the film-forming binder may be used in amounts ranging from about 5 percent up to about 35 percent of the total weight of the binder material.
  • Resinous dispersions are also suitable and these gen- I erally contain compatible oil softeners or plasticizers to provide resinous particles having the desired softening point within the thermographic temperature range of from about 150 F up to about 220 F.
  • Preferred resins include polyvinyl acetate, polystyrene, styrenebutadiene copolymers, cellulose esters and ethers such as ethyl cellulose and cellulose acetate-butyrate, and acrylic resins such as methyl methacrylate and ethyl acrylate and copolymers of each.
  • Suitable plasticizers and compatible oils vary from resin to resin and the selection of appropriate materials and amounts to provide the required softening temperature is within the skill of the art.
  • the coloring matter if present, must be one which does not absorb infrared radiation to any substantialextent.
  • the preferred materials are the crystal violet dyes which are used in small dissolved amounts in the case of making single copies, and in large undissolved amounts in the case of making hectograph masters. Conventional colorless color-forming reactive chemicals also can be used. In the case of imaging planographic plates, no imaging material is necessary since the wax binder is oleophilic, although a small amount of dissolved dye is preferably included for proofreading purposes.
  • the transfer composition is applied to a receptive flexible foundation such as thin paper or plastic film as a dispersion in a volatile vehicle, the dispersion comprising from about 3 percent to about percent solids.
  • vehicle may be water or a volatile organic solvent such as alcohol, toluol, mineral spirits, or the like.
  • the dispersion may be produced in any known manner such as by grinding and agitating the binder material and coloring matter in the vehicle. Preferably the waxy material is melted with the coloring matter and is poured slowly in the vehicle, which is chilled, to form the dispersion.
  • the dispersion is applied as a thin layer having a dry weight of from about 1 to 4 pounds per ream of 3,300 square feet.
  • the vehicle is evaporated at a moderately low temperature, below the softening temperature of the particles.
  • the waxy particles generally have a softening and melting temperature within the range of from about 150 F to 200 F.
  • the dispersion is applied as a uniformly thin layer to a film of mil Mylar polyethylene terephthalate and the alcohol is evaporated to leave a deposit of about 2V2 pounds of the dry dispersion per 3,300 square feet of film.
  • the alcohol gives the dispersion an affinity for the Mylar. Drying of the layer occurs at slightly elevated temperatures, well below the melting temperature of the dispersed particles, and the formed layer has a whitish, beady appearance and is translucent.
  • the formed transfer sheet 10 comprises the film foundation 11 and the dispersion transfer layer 12.
  • the transfer sheet is used to produce sharp, clear oleophilic images on a thermal planographic printing plate corresponding to images present on an imaged original sheet in the manner illustrated by the drawing.
  • the plate 20 comprises a film foundation 21 having a planographic surface 22.
  • the original sheet 30 may be any sheet carrying infrared radiationabsorbing images 31, The sheets are superposed in the order shown and are exposed to an infrared source 40. The infrared penetrates through to the original image 31 where it is absorbed to generate an imagewise heat pattern which is conducted back to soften a corresponding area of the particulate layer 12. The softened area adheres to the surface 22 of the plate 20 and transfers thereto in the form of a non-particulate, oleophilic image 23 when the sheets are separated.
  • Image 23 separates sharply and easily from the adjacent areas of transfer layer 12 since the adjacent areas are particulate and are not strongly bonded to the portion which was heated and transferred to produce image 23.
  • Thermographic transfer sheet comprising a flexible foundation carrying a uniform thin volatile-liquidapplied imaging layer of discrete particles which soften at a temperature within the range of from about F to 220 F comprising a major amount by weight of wax and a minor amount by weight of resinous filmformer having a higher melting point than the wax, the particles being separated, at least partially, by an interface and air avoids to form areas which are transferable to a copy sheet, the said air voids and interfaces providing a thermal insulation and weakened severing points between heated and unheated particles.
  • Transfer sheet according to claim 1 in which the particles comprise a low molecular weight polyethylene.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

Thermographic transfer sheets having a heat-transferable layer comprising discrete particles which are capable of softening and adhering to a copy sheet at thermographic temperatures, said particles being separated by an interface and air voids which provide a thermal insulation and weakened severing points between heated and unheated particles.

Description

nlted States Patent 1 [111 3,852,091 Newman 1 Dec. 3, 1974 1 THERMOGRAPHIC TRANSFER SHEETS [56] References Cited [75] inventor: Douglas A. Newman, Glen Cove, UNITED STATES PATENTS 4 N.Y. 3,289,579 12/1966 Blockm, 101/473 X [73] Assignee: Columbia Ribbon & Carbon g g et 250/65 Manufacturing q q Glen Cove i. 7 Primary Examiner-Thomas J. Herbert, Jr. [22] Filed: Sept. 11, 1972 Attorney, Agent, or Firm-Thomas L. Tully [21] Appl. No.: 288,016 ABSTRACT Related Application Data 7 Thermographic transfer sheets having a heat- [62] Dlvlslo" 109,132, 1971' transferable layer comprising discrete particles which 3751318' are capable of softening and adhering to a copy sheet at thermographic temperatures, said particles being [52] U.S. Cl 1l7/36.l, 117/35.6, 156/234 separated by an interface and air voids which provide Int. Clthermal insulation and weakened severing points Field of Search -1 17/3611, 1.7, 3.4, 13, i 117/21, 35.6; 156/234 7 tween heated and unheated particles.
4 Claims, 1 Drawing Figure 1 THERMOGRAPHIC TRANSFER SHEETS This application is a division of parent application Ser. No. 109,132, filed Jan. 25, 1971, now US. Pat. No. 3,751,318.
The thermographic transfer duplication process is in current commercial use for the imaging of single copies, hectograph masters and planographic printing plates corresponding to an imaged original sheet by means of infrared radiation and a thermographic transfer layer. The original images become heated by the infrared and the heat melts corresponding areas of the transfer layer to cause it to wet and adhere to the receptive sheet to produce the desired copy, master or plate.
-One important disadvantage of the known thermographic transfer sheets and processes is their inability to produce imaged copies, masters or plates (hereinaf- The present invention involves the discovery that improved thermographic transfer layers can be produced by formulating the transfer composition as a dispersion in a volatile vehicle, applying the dispersion to a receptive flexible foundation and evaporating the vehicle to ter referred to collectively as copysheets) which'are'a s sharp and clear as the original images on the original sheet. Hot melt wax thermographic transfer layers have a-certain narrow threshold temperature range below which they will not transfer and above which they flow excessively. However even within the limits of the narrow threshold temperature range, a wax transfer layer conducts heat laterally as well as through the thickness of the layer and such lateral conduction causes broadening of the imagewise heat pattern. Thus the wax layer softens and melts in an area which is slightly broader than the dimensions of the original image, whereby the image transferred to the copy sheet is not as sharp or clear as the original. The defects in the copy are magnified in cases where the copy sheet is'a master or plate from which hundreds of duplicate copies are made in the spirit or planographic processes, thus reducing the number of acceptable duplicate copies that can be made. i
1 Conventional solvent-applied resinous thermographictransfer layers resist liquefaction at thermographic temperatures but also have cohesive properties which resist sharp separation between the heated and unheated areas during transfer. Such layers also generally have higher softening temperatures than wax layers, and are as heat-conductive as wax layers, so that heat spreads from the image areas to adjacent areas to cause broadening of the imagewise heat pattern.
Another important disadvantage of prior known thermographic transfer sheets, leading to the production of imperfect thermographic copies, is due to the nature of r the process itself. During thermal exposure the thermographic transfer layer becomes imagewise welded to the copy sheet. After exposure and cooling, the transfer sheet and copy sheet must be stripped apart whereby the areas of the transfer layer which are welded to the copy sheet are torn from the remainder of the transfer layer. This often results in the welded areas pulling over to the copy sheet adjacent non-welded areas of the transfer layer which have rebonded to the heated areas of the transfer layer during cooling. This is commonly evidenced by the formation of filled-in characters and occurs with both conventional wax and resinous thermographic transfer layers.
It is-the principal object of the present invention to provide novel'thermographic transfer layers which produce sharper and more perfect thermographic copies than heretofore possible. I
provide a discontinuous layer of discrete solid heatsoftenable particles.
[shave discovered that such a discontinuous layer of discrete particles has at least two critical properties which give rise to an unexpected improvement in the thermographic transfer process. First, the discontinuous nature of the transfer layer provides a multiplicity of discrete particles, each separatedat least'partially from the next by means of an interface and air voids. The air voids provide an insulation between particles and reduce substantially the thermal transfer between particles, whereby the ability of heat to spread laterally across the transfer layer is substantially reduced.
Second, the discontinuous structureof the transfer layer enables the heated, coalesced-portions of the transfer layer to separate sharply from the unheated areas. The air voids and interfaces provide weakened severing points between heated and unheated areas whereby the heated areas, bonded to the copy sheet, break easily and sharply from the unheated areas. This facilitates the separating of the transfer sheet and-the imaged copy sheet and substantially reduces the ability of the portions of the transfer layer welded to the copy sheet to pull adjacent portions of unheated transfer composition from the transfer sheet.
The transfer compositions of the present invention comprise a major amount by weight of a waxy binder material and a minor amount by weight of a resinous binder material and, inmost cases, softeners or plasticizers and coloring matter. The waxy binder material may be a conventional wax such as carnauba, ouricury, microcrystalline, beeswax, montan wax, or a mixture thereof. Other waxy materials having the properties of wax are also suitable alone or mixed with waxes. These include the lower molecular weight polyethylenes such as A-C Polyethylene 400, solidCarbowaxes, polyvinyl stearate, and the like. In addition, a minor amount of resinous film-forming binder material having a higher melting temperature than the wax is included as part of the binder material in order to increase the melting temperature of the dispersion and to render the heated areas more adhesive with respect to the copy sheet.
Suitable film-formers include cellulose materials such as ethyl cellulose, vinyls such as polyvinyl butyrate, polybutene resins, and the like. The film-forming binder may be used in amounts ranging from about 5 percent up to about 35 percent of the total weight of the binder material.
Resinous dispersions are also suitable and these gen- I erally contain compatible oil softeners or plasticizers to provide resinous particles having the desired softening point within the thermographic temperature range of from about 150 F up to about 220 F. Preferred resins include polyvinyl acetate, polystyrene, styrenebutadiene copolymers, cellulose esters and ethers such as ethyl cellulose and cellulose acetate-butyrate, and acrylic resins such as methyl methacrylate and ethyl acrylate and copolymers of each. Suitable plasticizers and compatible oils vary from resin to resin and the selection of appropriate materials and amounts to provide the required softening temperature is within the skill of the art.
The coloring matter, if present, must be one which does not absorb infrared radiation to any substantialextent. The preferred materials are the crystal violet dyes which are used in small dissolved amounts in the case of making single copies, and in large undissolved amounts in the case of making hectograph masters. Conventional colorless color-forming reactive chemicals also can be used. In the case of imaging planographic plates, no imaging material is necessary since the wax binder is oleophilic, although a small amount of dissolved dye is preferably included for proofreading purposes.
The transfer composition is applied to a receptive flexible foundation such as thin paper or plastic film as a dispersion in a volatile vehicle, the dispersion comprising from about 3 percent to about percent solids. The vehicle may be water or a volatile organic solvent such as alcohol, toluol, mineral spirits, or the like. The dispersion may be produced in any known manner such as by grinding and agitating the binder material and coloring matter in the vehicle. Preferably the waxy material is melted with the coloring matter and is poured slowly in the vehicle, which is chilled, to form the dispersion.
The dispersion is applied as a thin layer having a dry weight of from about 1 to 4 pounds per ream of 3,300 square feet. The vehicle is evaporated at a moderately low temperature, below the softening temperature of the particles. The waxy particles generally have a softening and melting temperature within the range of from about 150 F to 200 F.
The following example is given as an illustration of one embodiment of this invention.
Eighty grams of carnauba wax and twenty grams of ethyl cellulose are melted together at a temperature of 200 F. The ethyl cellulose apparently dissolves in the molten carnauba wax rather than melting, but the melt is homogeneous. Next the melt is slowly poured into 1,900 grams of ethyl alcohol chilled to a temperature of F. The alcohol is agitated during pouring and a fine milky dispersion of the melt is formed having a solids content of about 5 percent.
Next the dispersion is applied as a uniformly thin layer to a film of mil Mylar polyethylene terephthalate and the alcohol is evaporated to leave a deposit of about 2V2 pounds of the dry dispersion per 3,300 square feet of film. The alcohol gives the dispersion an affinity for the Mylar. Drying of the layer occurs at slightly elevated temperatures, well below the melting temperature of the dispersed particles, and the formed layer has a whitish, beady appearance and is translucent. Referring to the drawing, the formed transfer sheet 10 comprises the film foundation 11 and the dispersion transfer layer 12.
The transfer sheet is used to produce sharp, clear oleophilic images on a thermal planographic printing plate corresponding to images present on an imaged original sheet in the manner illustrated by the drawing. The plate 20 comprises a film foundation 21 having a planographic surface 22. The original sheet 30 may be any sheet carrying infrared radiationabsorbing images 31, The sheets are superposed in the order shown and are exposed to an infrared source 40. The infrared penetrates through to the original image 31 where it is absorbed to generate an imagewise heat pattern which is conducted back to soften a corresponding area of the particulate layer 12. The softened area adheres to the surface 22 of the plate 20 and transfers thereto in the form of a non-particulate, oleophilic image 23 when the sheets are separated. Image 23 separates sharply and easily from the adjacent areas of transfer layer 12 since the adjacent areas are particulate and are not strongly bonded to the portion which was heated and transferred to produce image 23.
Variations and modifications may be made within the scope of the claims and portions of the improvements may be used without others.
I claim:
1. Thermographic transfer sheet comprising a flexible foundation carrying a uniform thin volatile-liquidapplied imaging layer of discrete particles which soften at a temperature within the range of from about F to 220 F comprising a major amount by weight of wax and a minor amount by weight of resinous filmformer having a higher melting point than the wax, the particles being separated, at least partially, by an interface and air avoids to form areas which are transferable to a copy sheet, the said air voids and interfaces providing a thermal insulation and weakened severing points between heated and unheated particles.
2. Transfer sheet according to claim 1 in which the particles comprise a low molecular weight polyethylene.
3. Transfer sheet according to claim 1 in which the imaging layer is present in a weight within the range of from about 1 to 4 pounds per 3,300 square feet offoundation.
4. Transfer sheet according to claim 1 in which the imaging layer contains a minor amount by weight of coloring matter.

Claims (4)

1. THE THERMOGRAPHIC TRANSFER SHEET COMPRISING A FLEXIBLE FOUNDATION CARRYING A UNIFORM THIN VOLATILE-LIQUID-APPLIED IMAGING LAYR OF DISCRETE PARTICLES WHICH SOFTEN AT A TEMPERATURE WITHIN THE RANGE OF FROM ABOUT 150*F TO 220*F COMPRISING A MAJOR AMOUNT BY WEIGHT OF WAX AND A MINOR AMOUNT BY WEIGHT OF RESINOUS FILM-FORMER HAVING A HIGHER MELTING POINT THAN THE WAX, THE PARTICLES BEINGSEPARATED, AT LEAST PARTIALLY, BY AN INTERFACE AND AIR AVOIDS TO FORM AREAS WHICH ARE TRANSFERABLE TO A COPY SHEET, THE SAID AIR VOIDS AND INTERFACES PROVIDING A THERMAL INSULATION AND WEAKENED SEVERING POINTS BETWEEN HEATED AND UNHEATED PARTICLES.
2. Transfer sheet according to claim 1 in which the particles comprise a low molecular weight polyethylene.
3. Transfer sheet according to claim 1 in which the imaging layer is present in a weight within the range of from about 1 to 4 pounds per 3,300 square feet of foundation.
4. Transfer sheet according to claim 1 in which the imaging layer contains a minor amount by weight of coloring matter.
US00288016A 1971-01-25 1972-09-11 Thermographic transfer sheets Expired - Lifetime US3852091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00288016A US3852091A (en) 1971-01-25 1972-09-11 Thermographic transfer sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10913271A 1971-01-25 1971-01-25
US00288016A US3852091A (en) 1971-01-25 1972-09-11 Thermographic transfer sheets

Publications (1)

Publication Number Publication Date
US3852091A true US3852091A (en) 1974-12-03

Family

ID=26806646

Family Applications (1)

Application Number Title Priority Date Filing Date
US00288016A Expired - Lifetime US3852091A (en) 1971-01-25 1972-09-11 Thermographic transfer sheets

Country Status (1)

Country Link
US (1) US3852091A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924041A (en) * 1973-03-23 1975-12-02 Kohjin Co Heat-sensitive recording material and process for producing same
US4065595A (en) * 1974-11-05 1977-12-27 Weber Marking Systems, Inc. Thermographic stencil sheet and method of making an imaged stencil sheet
US4104816A (en) * 1976-12-16 1978-08-08 Doring Labels, Inc. Multi-function label and carrier web
US4404249A (en) * 1980-10-06 1983-09-13 Dennison Manufacturing Company Thermal imprinting of substrates
US4511602A (en) * 1980-10-06 1985-04-16 Dennison Mfg. Company Thermal imprinting of substrates
WO1986007311A1 (en) * 1985-06-07 1986-12-18 Pelikan Akteingesellschaft Method for fabricating thermo-inking ribbons for thermo-transfer printing, and thermo-inking ribbon obtained thereby
EP0389200A2 (en) * 1989-03-20 1990-09-26 Fujitsu Limited Reusable ink sheet for use in heat transfer recording and production process therefor
EP0844079A1 (en) * 1996-11-21 1998-05-27 Eastman Kodak Company Laser-induced material transfer digital lithographic printing plates
US20040055490A1 (en) * 2002-09-20 2004-03-25 Konica Corporation Printing plate precursor and printing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289579A (en) * 1961-03-08 1966-12-06 Block & Anderson Ltd Duplicating master sheets
US3537872A (en) * 1963-02-26 1970-11-03 Hisako Kishida Thermographic process
US3558881A (en) * 1964-10-02 1971-01-26 Keuffel & Esser Co Thermographic image formation utilizing a copy sheet of discrete thermoplastic particles and a powder developer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289579A (en) * 1961-03-08 1966-12-06 Block & Anderson Ltd Duplicating master sheets
US3537872A (en) * 1963-02-26 1970-11-03 Hisako Kishida Thermographic process
US3558881A (en) * 1964-10-02 1971-01-26 Keuffel & Esser Co Thermographic image formation utilizing a copy sheet of discrete thermoplastic particles and a powder developer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924041A (en) * 1973-03-23 1975-12-02 Kohjin Co Heat-sensitive recording material and process for producing same
US4065595A (en) * 1974-11-05 1977-12-27 Weber Marking Systems, Inc. Thermographic stencil sheet and method of making an imaged stencil sheet
US4104816A (en) * 1976-12-16 1978-08-08 Doring Labels, Inc. Multi-function label and carrier web
US4404249A (en) * 1980-10-06 1983-09-13 Dennison Manufacturing Company Thermal imprinting of substrates
US4511602A (en) * 1980-10-06 1985-04-16 Dennison Mfg. Company Thermal imprinting of substrates
WO1986007311A1 (en) * 1985-06-07 1986-12-18 Pelikan Akteingesellschaft Method for fabricating thermo-inking ribbons for thermo-transfer printing, and thermo-inking ribbon obtained thereby
EP0389200A2 (en) * 1989-03-20 1990-09-26 Fujitsu Limited Reusable ink sheet for use in heat transfer recording and production process therefor
EP0389200A3 (en) * 1989-03-20 1991-04-03 Fujitsu Limited Reusable ink sheet for use in heat transfer recording and production process therefor
US5151326A (en) * 1989-03-20 1992-09-29 Fujitsu Limited Reusable ink sheet for use in heat transfer recording
US5286521A (en) * 1989-03-20 1994-02-15 Fujitsu Limited Reusable ink sheet for use in heat transfer recording and production process thereof
EP0844079A1 (en) * 1996-11-21 1998-05-27 Eastman Kodak Company Laser-induced material transfer digital lithographic printing plates
US5858607A (en) * 1996-11-21 1999-01-12 Kodak Polychrome Graphics Laser-induced material transfer digital lithographic printing plates
US20040055490A1 (en) * 2002-09-20 2004-03-25 Konica Corporation Printing plate precursor and printing method
EP1400352A3 (en) * 2002-09-20 2005-02-02 Konica Corporation Printing plate precursor and printing method

Similar Documents

Publication Publication Date Title
US3751318A (en) Thermographic transfer process
US3079351A (en) Copying materials and emulsions
US3898086A (en) Sheet material useful in image transfer techniques
US3595683A (en) Pressure sensitive transfer sheet and method of producing
US3852091A (en) Thermographic transfer sheets
US4042401A (en) Hectograph products and process
US3088028A (en) Duplication with heat-meltable solvent for hectographic coloring material
US3054692A (en) Novel hectograph methods
WO1987000797A1 (en) Heat-sensitive melt-transfer recording medium
JPH0415118B2 (en)
US3257942A (en) Image reproducing arrangement and method
US3922438A (en) Supercoated transfer elements and process for preparing and using same
US3129661A (en) Novel duplicating processes
JPS6019590A (en) Heat transfer printing sheet
US3436293A (en) Thermographic duplicating process
US3459581A (en) Process of producing pressure-sensitive hectograph transfer sheets
US3854976A (en) Applicator and method for making a printing form
US3252413A (en) Heat duplicating products and process
US3404995A (en) Hectograph products and processes
US3736873A (en) Planographic printing plate assembly and method of making
US3632377A (en) Image transfer sheet and method
US3259061A (en) Lithographic printing plates and methods of preparing same
US3637414A (en) Thermographic transfer sheet
US4049843A (en) Image transfer layers for infrared transfer processes
US3703143A (en) Thermal transfer sheet and method of thermally transferring images

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM C

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GREENE, IRA S., TRUSTEE OF COLUMBIA RIBBON AND CARBON MANUFACTURING CO. INC.;REEL/FRAME:003933/0208

Effective date: 19811102

AS Assignment

Owner name: GREENE, IRA S 275 MADISON AVE.NEW YORK,N.Y.10016

Free format text: COURT APPOINTMENT;ASSIGNOR:COLUMBIA RIBBON AND CARBON MANUFACTURING CO INC;REEL/FRAME:004035/0217

Effective date: 19820629

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)