US3847105A - Aquatic harvester - Google Patents

Aquatic harvester Download PDF

Info

Publication number
US3847105A
US3847105A US00297864A US29786472A US3847105A US 3847105 A US3847105 A US 3847105A US 00297864 A US00297864 A US 00297864A US 29786472 A US29786472 A US 29786472A US 3847105 A US3847105 A US 3847105A
Authority
US
United States
Prior art keywords
annular member
annular
aquatic
assembly
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00297864A
Inventor
T Kelpin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUTTOTHARA ABRAHAM C DR
AMERICAN WATERWEED HARVESTING
Original Assignee
AMERICAN WATERWEED HARVESTING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMERICAN WATERWEED HARVESTING filed Critical AMERICAN WATERWEED HARVESTING
Priority to US00297864A priority Critical patent/US3847105A/en
Application granted granted Critical
Publication of US3847105A publication Critical patent/US3847105A/en
Assigned to KUTTOTHARA, ABRAHAM C., DR. reassignment KUTTOTHARA, ABRAHAM C., DR. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KELPIN, THOMAS G.
Assigned to KELPIN, THOMAS G. reassignment KELPIN, THOMAS G. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ALLIED SHEET METAL & BLOW PIPE, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D44/00Harvesting of underwater plants, e.g. harvesting of seaweed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/125Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls
    • B63B2001/126Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls comprising more than three hulls

Definitions

  • An improved aquatic harvester having an aquatic craft comprising a plurality of pontoons secured to a flat deck member, the craft being propelled and steered by a totally above-the-water air propulsion system.
  • Other features include a self-unloading conveyor system, a heavy duty cutter bar assembly specially designed for cutting underwater weed growth, and a 3-phase electrical power system to operate all subassemblies.
  • the harvester is capable of carrying payloads in excess of 10 tons while at the same time having a draft of approximately 15 inches of water with no below-the-water drive or controls, thus rendering the craft free from fouling.
  • This invention relates to an apparatus for harvesting aquatic material, and more especially to an improved device for efficiently cutting and harvesting underwater marine plant life, primarily in inland lakes and waterways, and in coastal waterways.
  • Inland bodies of water be they'lakes, rivers, flowages, canals, etc., are all subject to the process of eutrophication, or in other .words, natural aging. This phenomenon normally occurs over a period of many thousands of years, whereby a body of water passes through three more or less distinct stages of development.
  • a naturally formed lake or other such body of water is in what is known as the oligotrophic stage wherein the lake may be characterized as being deep, having steep walls and very clear water.
  • the clearness of thewater evidences a very low productivity, and plankton are very sparse.
  • the body of water is characterized as having no shore vegetation, no bottom algae and very little sediment deposited on its bottom.
  • mesotrophic stage a body of water gradually ages toward maturity. There now begins to accumulate substantial sediment, the rock walls become eroded and less steep, and likewise there appears some shore vegetation and bottom algae. Productivity in the water gradually increases throughout the mesotrophic stage and thus the nutrient content grows steadily higher.
  • Entrance of the eutrophic stage is signaled when a body of water reaches senescence.
  • the body of water is largely filled with silt and organic sediment with the shore lines taking on a gradual slope because of the accumulation of sediment.
  • Extensive marshes appear around the periphery of the body of water together with large amounts of other shore vegetation. Algae covers most of the bottom, and the productivity of the water becomes very high.
  • the terminal period of this final stage there occurs a filling of the body of water with gradual occupation of the area by terrestrial vegetation whereupon the former body of water reverts to the status of a marsh or a moor.
  • all that may be left is a small central marsh with the remainder assuming the characteristic of a dry land forest.
  • Apparatus for harvesting aquatic plant growth is known in the art and has likewise known many variations and adaptations to fit particular needs, e.g., ocean-going kelp harvesters, designs for inland waterways, etc.
  • Heretofore proposed designs for apparatus adapted primarily for harvesting aquatic plant life in inland waterways have uniformly suffered from certain drawbacks and disadvantages- For example, because most are. patterned on a basic barge design principle,
  • Another object of this invention is to provide-an aquatic weed harvester having a completely above-thewater propulsion and steering system which facilitates operation and control of the apparatus and totally eliminates any underwater fouling of the propulsion system by aquatic plant growth.
  • Yet another object of this invention is to provide an aquatic weed harvester operable by a single individual in every aspect, including cutting and harvesting of the aquatic plant growth, stowage ofthe harvested payload upon the harvester deck and finally, direct delivery of the payload from the harvester to a road vehicle.
  • Another object of the invention is the provision of an aquatic weed harvester wherein the operational control system for the harvester subcomponent systems is characterized as being simple, lightweight and inexpensive.
  • Still another object of this invention is the production of an aquatic weed harvester having vastly increased cutting and payload capacities, and yet one which is economically within reach of most communities.
  • Yet another object of the invention is the provision of an improved cutter bar design and an improved cutting system containing a cooperating pair of cutter bars.
  • an aquatic harvester comprising an aquatic craft having a plurality of pontoon members secured beneath a flat deck member, the harvester being additionally characterized by a completely above-thewater propulsion and steering system comprised of an air propulsion unit and a mounting means for the air propulsion unit capable of rotating 360 about a vertical axis.
  • the propulsion and steering system is unique in that it comprises an air propulsion unit, including an engine and aerodynamic propeller, employed in conjunction with a mounting means comprising a first horizontally disposed annular member secured to the aquatic craft adjacent the aft portion thereof, a second annular member concentrically superimposed upon the first annular member, with the second member being radially immovable with respect to the first member and circumferentially rotatable about a common vertical axis therewith.
  • Engine mounting means are secured to the second annular member, and a control system is provided to selectively rotate the second annular member through an arc of 360 to achieve complete abovethe-water propulsion and steering control of the barvesting apparatus.
  • the instant apparatus includes a pick-up assembly for aquatic material located both at and below the surface of the water, this assembly comprising, primarily, a means for conveying the aquatic material out of the water, and onto the deck of the aquatic craft.
  • a pick-up assembly for aquatic material located both at and below the surface of the water, this assembly comprising, primarily, a means for conveying the aquatic material out of the water, and onto the deck of the aquatic craft.
  • Other features employed in conjunction with the aquatic material handling systems of the present harvester include a bed conveyor means overlying the deck member of the aquatic craft. This conveyor means is selectively operable to convey in both the fore and aft directions to position harvested aquatic matter along the deck.
  • the harvester contains a mounting means pivotally connecting the pick-up assembly to the aquatic craft so that the assembly projects forward of the craft and also is rotatable about a horizontal axis.
  • an actuating means for rotating the pick-up assembly to vary the elevation of the forward end thereof and likewise, to hold the assembly at any selected elevation.
  • a conveyor means in the pick-up assembly which is operable to,
  • the pick-up assembly serves also as an unloading means when the aft end of the pick-up assembly conveyor is rotated to a position contiguous with the bed conveyor means.
  • Another important feature of the present invention resides in the exclusive use of electrical energy to operate the various harvester systems. This is accomplished primarily by providing a 230 volt three phase electric ation with the teeth of the second bar, and the teeth of both bars having blunt pointed tips with side portions rearwardly and outwardly diverging therefrom to an intermediate location, the side portions thereafter converging inwardly and rearwardly to a second intermediate point, and thence the side portions again diverging outwardly and rearwardly to the midpoint intermediate adjacent teeth, the divergence being at an angle preferably equal to the first angle of divergence at the tip of the blade.
  • the converging and second diverging side portions thus form a re-entrant configuration between adjacent teeth.
  • the second cutter bar is mounted stationary upon a pick-up assembly and the first cutter bar is divided into two equal sections which are then reciprocated 180 out of phase with one another by mechanical operating means drivable from the pick-up conveyor.
  • the foregoing preferred cutter bar tooth configuration lends yet another important advantage, namely, that the first and second cutter bars may be manufactured from a single rectangular sheet of metal, with a single cutting operation, since one cutter bar is defined by the exact residue resulting from cutting the other bar from the metal sheet.
  • FIG. 1 is a side view, partially cut away, of an aquatic harvester according to the invention, illustrating in phantom lines the unloading position for the pick-up assembly;
  • FIG. 2 is a right side view of FIG. 1;
  • FIG. 3 is a top view of the aquatic craft portion of an aquatic harvester according to this invention.
  • FIG. 4 is a view taken along the line 44 of FIG. 1;
  • FIG. 5 illustrates the configuration of a section of the preferred cutter bars manufactured in accordance with the present invention
  • FIG. 6 is a perspective view of the preferred cutter bars in overlying shearing cooperation
  • FIG. 7 is a detailed view, partially in section, illustrating the actuator means for the pick-up assembly, with the unloading position of the assembly illustrated in phantom lines;
  • FIG. 8 is a skeleton view of FIG. 7 illustrating the path of the actuator chain
  • FIG. 9 illustrates the cross section of a pontoon wall showing the structure of a folded and crimped seam
  • FIG. 10 is a detailed side view of the engine and air propeller assembly
  • FIG. 11 is a top view of FIG. 10;
  • FIG. 12 is a view along the line 1212 in FIG. 10, illustrating the steering control assembly
  • FIG. 13 is a view along the line 1313 of FIG. 12;
  • FIG. 14 is a top view of a chain tightener employed in conjunction with the steering control assembly
  • FIG. 15 is a view taken along the line 15-15 of FIG. 11;
  • FIG. 16 is a view taken along the line 1616 of FIG. 12.
  • the basic harvester component is the aquatic craft, designated generally by refer- I ence numeral 12, comprising a plurality of pontoon below the surface of the water and conveying the same onto the deck 16 of aquatic craft 12.
  • the pick-up assembly may be rotated to an elevated position wherein it serves as an unloading means when the conveyor 32 is operated in the reverse, or forj ward direction.
  • the harvester apparatus has a'horizontal cutter bar assembly located adjacent the forward edge of the pick-up assembly. Most preferably, the cutter bar assembly is operated through direct mechanical linkage with the pick-up conveyor 32.
  • the aquatic craft comprises four pontoon members portion constructed of wooden flooring material, that portion being confined on three sides by upstanding side rail members 17.
  • the railing immediately forward of the air propulsion system is further provided with upwardly directed louvers 18 which serve to deflect the air thrust away from the vehicle when the propulsion system is in the reversed position.
  • Aft of the payload containing portion of the deck is located an auxilliary deck area 11 fabricated from a light weight metallic mesh material as shown in FIG. 3.
  • Beneath the deck 16 and between pontoons there is provided a suitable fuel tank 61.
  • a bed conveyor comprising laterally spaced endless conveyor chains 40 driven by common line shaft 42.
  • Line shaft 42 in turn is driven by a reversible one-and-one-half horsepower 230 volt three-phase electric motor 44, and thus, the bed conveyor is operable to convey in both the fore and aft directions.
  • the endless bed conveyor chains also contain a series of upstanding teeth 46 spaced at intervals along the length of each chain 40 to assist in the movement of aquatic material contained on the deck of the craft during harvesting operations.
  • Also located near the forward end of the bed conveyor are a series of spaced deck risers 48 which are mechanically actuated into the rearwardly inclined position illustrated in FIGS.
  • Raising of the pick-up assembly to its unloading position mechanically positions the deck risers 48 into the inclined position through a suitable linkage assembly.
  • the weight of the total harvester apparatus is of critical importance as regards the achievement of significant payload capacity, it is of utmost importance to construct the aquatic craft from material and components which combine the necessary factors of strength and durability with the minimum amount of weight.
  • the aforementioned wooden deck material in the payload containing area the light weight mesh material on the'remaining portions of the deck and the basic pontoon design in contradistinction to prior art barge-type designs.
  • the pontoon design has exhibited greatly decreased resistance to passage through the water, particularly when employed with the complementary abovethe-water propulsion system of the present invention.
  • the most salient feature of the present aquatic craft design resides in the combination of performance characteristics and economy afforded by the use of a particularly preferred pontoon member.
  • pontoon members have been fabricated from a specific type of corrugated pipe which is characterized by the conventional spirally wound configuration, but in contradistinction to conventional riveted or folded-seam pipe, the instant pipe is further characterized by a special air-tight folded and crimped seam.
  • FIG. 9 there is illustrated a cross section of the subject pipe wall 60 showing in detail the configuration of a folded and crimped seam 62. Apparatus suitable for fabricating spirally wound conduits having folded and crimped seams of the type illustrated in FIG. 9 are described in U.S. Pat. No. 3,l32,6l6.
  • the seams must be air tight and capable of withstanding a static pressure of at least about 10 p.s.i., and preferably 28 p.s.i.. before failure.
  • Air propulsion systems are certainly well known and have even been employed in conjunction with certain types of harvesting apparatus (see for example, Swiss Pat. No. 450,788).
  • steering is accomplished by one or more rudders coacting with the air, or in the case of aquatic vehicles, rudders coacting with the water to i provide an improved degree of control as compared to a system where only an air-disposed rudder is employed.
  • air actuated steering vanes or rudders are highly inefficient, and likewise, provision of a below-the-water rudder in an aquatic craft to a large degree defeats the purpose of providing above-thewater propulsion.
  • a complex system of adjustable rudders or vanes are built into the hood assembly surrounding the propeller.
  • the illustrated below-the-water rudders must necessarily be employed in reversing the vehicle.
  • the vehicle is provided with a barge-type supporting structure and the propulsion system may be rotated 30 either direction to aid in steering; however, in addition to the two types of aforementioned rudders, such a modification further necessitates the addition of a stabilizing member at the bow of the craft.
  • the propulsion and steering system of the present invention is illustrated in FIGS. 10 through 16.
  • the basic propulsion unit consists of an engine 22 preferably of the internal combustion type, but ofa non-polluting nature, such as a 391 cubic inch V-S Ford industrial type engine adapted for a vapor fuel such as propane.
  • the engine is operably connected through flexible belt 23 to the aerodynamic propeller 24.
  • Contained internally of the engine 22 is a transmission which is operable by means of lever 25 to engage and disengage the power supply to belt 23 and hence to propeller 24.
  • a cage type protector 27 around the propeller.
  • the propulsion system mounting assembly 26, illustrated in detail in FIGS. 12 through 16, also serves as the steering assembly for the aquatic craft.
  • This assembly comprises a pair of superimposed annular members, consisting of a first annular member 50 and a second annular member 52 each fabricated from angle iron in the illustrated embodiment.
  • the first annular member 50 is rigidly secured adjacent the aft end of the aquatic craft by suitable support members, whereas the second annular member 52 is of slightly smaller diameter than the first annulus, and hence, when concentrically superimposed thereon rests inside the first annular member and is confined thereby so as to be radially immovable with respect thereto. See FIGS. and 16.
  • annulus 52 is freely resting upon annulus 50, the former is freely rotatable through an angle of 360 about the common vertical axis of the annuli.
  • the two annular members are of sufficient diameter to underlie a substantial portion of the propulsion unit in order to provide adequate support and stability therefor.
  • bearing members between the two annular members to facilitate rotational movement therebetween.
  • bearing members are preferably fabricated of fiberglass or other synthetic resin laminated or bonded material to serve additionally as vibrating and shock absorbing members. These bearing members may also be channeled and provided with grease fittings to further enhance their utility as bearings.
  • To the upper surface of the second annular member 52 there is secured mounting means in the form of framework 58 for the engine and air propulsion unit.
  • novel rotational means for the steering assembly comprising annular sprocket 70 secured to the second annular member 52 through the engine mounting structure 58.
  • Sprockets 78, and hence the steering assembly are driven selectively in either the clockwise or counter clockwise direction by reversible electric motor 72 acting through a suitable gear reducer 74 and roller chain 76.
  • Reversible electric motor 72 is a 12 volt DC motor supplied with electrical energy from the ignition system of engine 22.
  • This rotational means provides a steering system which is simple, dependable and practically fail safe, and one which can easily and inexpensively operate from a remote position through simple electrical control circuitry.
  • the aforementioned remote control system is preferably one wherein rotation is initiated by simple selection and depression of either a clockwise or a counter clockwise rotation button or switch. Rotation proceeds only when the switch or button is held in the on position by the operator.
  • the rotation system may additionally be provided with cut-of switches at the 90 positions about the annular members 50 and 52, whereby rotation will automatically stop as the propulsion unit is rotated past any one of the four points regardless of whether the operator continues to hold the control switch in the on position.
  • FIG. 14 there is illustrated a typical chain tightener assembly adapted to take up the slack when sprocket 70 and roller chain 76 are rotated in either the clockwise or counter clockwise direction.
  • the chain tightener system comprises two stationary bars 80 and 82 secured to stationary annular member 50 through structural support member 81, said bar members 80 and 82 beingbiased towards one another by spring 85..
  • FIGS. 1, 4, 7 an 8 wherein there is illustrated the pick-up assembly designated generally by reference numeral 30, it is seen that this assembly comprises a pair of laterally spaced truss members 33 and 34 rotatably mounted near the upper or aft ends thereof to support frame 13 secured to the aquatic craft l2. Overlying the two truss members 33 and 34 and extending the full width of the aquatic craft 12 is a continuous mesh surface 35 supported by suitable reinforcing means.
  • Previously mentioned pick-up conveyor 32 in turn overlies the mesh surface of the pick-up assembly.
  • This conveyor consists of a series of pairs of endless conveyor chains 36, the chains of each pair being interconnected by lateral members 37 at spaced intervals along their lengths.
  • each lateral connector 37 extend upwardly from the plane defined by the conveyor chains-36.
  • the pick-up conveyor is selectively operable to convey in both the fore and aft directions, and like the bed conveyor, it is driven by a reversible three phase 230 volt electric motor 39 located adjacent the aft portion of the pickup assembly.
  • the pick-up assembly 30 may be rotated about the horizontal axis defined by its mounting points on support member 13.
  • the forward end of the pick-up assembly' may be positioned at'elevations below the surface of the water or above the deck of the aquatic vehicle, or held at any elevation therebetween.
  • the uppermost position of the pickup assembly defines the unloading position wherein the aft end of the pick-up conveyor is rotated to a position contiguous with the bed conveyor. In this position, both the pick-up and bed conveyors may be operated to convey in the forward direction whereupon the payload of harvested aquatic material will be automatically unloaded from the deck of the aquatic craft.
  • the assembly employed to rotate the pick-up assembly about the aforementioned horizontal axis is illustrated in detail in FIGS. 7 and 8.
  • the actuator assembly comprises a basic power source consisting of a l horsepower 230 volt three phase reversible electric motor 95 which in turn operates a line shaft 96 through a suitable chain and sprocket assembly.
  • the line shaft carries a sprocket 97 beneath truss members 33 and 34 underlying each side of the pick-up assembly.
  • roller chain 99 A finite length of roller chain is secured to truss member 33 adjacent the aft end thereof, said roller chain then extending downwardly I and around idler sprocket 94 mounted on the aquatic craft, and thence back up and around idler sprocket 93 secured on the pick-up assembly truss member. After passing over idler sprocket 93, roller chain 99 again passes down and around drive sprocket 97 secured on the line shaft 96.
  • Roller chain 99 is caused to pass around the major portion of the circumference of sprocket 97 by passing the same around another idler sprocket 98 mounted adjacent and immediately above the drive sprocket 97, whereupon there is provided absolute engagement of the roller chain 99 about the drive sprocket to accurately control the degree of rotation of the pick-up assembly.
  • the foregoing roller chain assembly is duplicated identically beneath the second pick-up assembly truss member 34 and thus the delineated structure serves the important purpose of assuring uniform rotational adjustment across the entire length of the pick-up assembly. Such uniform adjustment is difficultly attained with similar winch assemblies.
  • roller chain 99 The free end of roller chain 99, as it drops off idler sprocket 98, is collected into a suitable receptacle 90 positioned between the pontoon members 14. Likewise positioned therebetween, is a spring assist member 89 to counterbalance the weight of the pick-up assembly and aid in the rotation thereof. Again, identical spring assist members are provided beneath each of the truss members 33 and 34.
  • control panel may either be mounted permanently at a fixed control station near the forward end of the aquatic craft, or preferably may be of a portable nature allow ing the operator to carry the same to any desired location on the apparatus during operation while still enabling him to maintain complete control over the apparatus and its sub-components.
  • each of the aforementioned three phase electric motors is provided with a 24 volt contactor, and correspondingly, a portion of the 230 V output of alternator 8 is steppeddown to 24 volts by means of an appropriate transformer. This stepped-down output is then used to operate the remote control system via control panel 9. In this manner, the operator is never exposed to contact with the 230 volt system, but contrariwise, only to the 24 volt control system.
  • the electrical remote control systems employed are of a standard nature and are well known to those of ordinary skill in the electrical control art. Thus, the same need no detailed explanation here; however, it might be pointed out that in the preferred embodiment of the present aquatic harvester, it is desired that the bed conveyor and the pick-up assembly actuator means be operable on a demand basis only, ie, that they operate only when the control button or switch is held in the on position by the operator. On the other hand, it is preferred that the pick-up assembly conveyor be operable on a constant on-of basis. It will of course be understood that the rotation or drive means for the steering system described hereinabove may also be operated from the three phase 230 volt system by substituting the 12 volt motor with a suitable 230 volt three phase model.
  • the three phase alternator 8 is operably connected to the crankshaft of engine 22 through a device whichtransforms uneven rotational input from the crankshaft into a constant rotational output supplied to the alternator.
  • a constant 36,000 rpm input to the alternator is assured irrespective of the speed at which the engine is being operated.
  • Such a device operates on conventional variable speed transmission principles which are well understood by those of ordinary skill in.the art and need no further development here.
  • the engine may be operated at a constant speed, with craft speed controlled through the use of a variable pitch propeller.
  • the aquatic harvester of the present invention finds many applications not requiring the presence of a cutting means, e.g., picking up floating aquatic weed growth both at and below the surface of the water, picking up floating debris from the water, picking up objects off the bottom of a body of water, etc.
  • a cutting means e.g., picking up floating aquatic weed growth both at and below the surface of the water, picking up floating debris from the water, picking up objects off the bottom of a body of water, etc.
  • any of the conventional types of cutter bar designs may be employed for this purpose. But, as pointed out hereinabove, conventional cutter bar designs suffer from the serious dis advantage that they are easily damaged upon collision with objects hidden below the surface of the water,
  • FIGS. I and 7 there is generally illustrated a cutter bar mechanism 100 located adjacent the forward edge of the pick-up assembly 30, whereas the details of said cutter bar mechanism are illustrated in FIGS. 4, and 6.
  • the individual cutter bars are characterized as having a series of integral, spaced teeth 101, (referring to bar 110 in FIG. 5) each tooth having a blunt pointed tip 105 with side portions 106 rearwardly and outwardly diverging therefrom to an intermediate point 107, the side portions thereafter converging inwardly and rearwardly to a second intermediate point 108, and thence the side portions again diverging outwardly and rearwardly to a point 109 centrally located between adjacent teeth, the second divergence preferably being at an angle equal to the first divergence at the tip of the blade.
  • the converging side portion between points 107 and 108 and the second diverging side portion between points 108 and 109 form a re-entrant configuration between adjacent teeth.
  • the cutter bar mechanism 100 consists of a first cutter bar 110 and a second cutter bar 111, both presenting a series of integral, spaced teeth as set forth hereinabove.
  • the teeth of the first cutter bar 110 are in overlying shearing cooperation with the teeth of the second bar 111, and preferably, the teeth of bar 110 are slightly forward of those on bar 111, as shown in FIG. 6.
  • Strength is afforded to the cutter bars by fabricating the same from steel sheet stock preferably having a thickness of at least about five-sixteenths inch. Typically, however, cutter bars from about one-fourth to one-half inch in thickness afford the desired degree of strength.
  • edge portions 112 of teeth 101 may comprise essentially flat surfaces extending perpendicular to the plate of the cutter bar.
  • first and second cutter bars 110 and 111 may be manufactured from a single rectangular sheet of metal, with a single cutting operation since one cutter bar will be defined by the exact metal sheet residue resulting from the cut shape of the other cutter bar. This relationship is illustrated in FIG. 5 of the drawings.
  • a single pass of a cutting tool such as a cutting torch, produces a set of cutter bars suitable for use withoutfurther modification.
  • the second or lower cutter bar 111 is mounted stationary upon the pick-up assembly 30 of the aquatic harvester.
  • the first or upper cutter bar 110 is severed at its mid-point into two sections of equal length and each section is positioned in lateral sliding relationship with stationary cutter bar 111.
  • the two sections of upper cutter bar are then provided with mechanical driving means in the form of cammed disks connected to .common line shaft 116 carrying the pick-up apparatus conveyor chains. Rotation of shaft 116 and concomitant rotation of cammed disks 115 results in reciprocation of the two sections of top cutter bar 110.
  • the two cutter bar sections are timed to reciprocate out of phase with one another, whereupon there is provided a highly effective means of cancelling out substantially all vibration resulting from reciprocation of the cutter bar mechanism.
  • the foregoing design has significant advantages over certain prior art designs which require opposing reciprocation of two cutter bar members extending across the complete width of the cutter swath, such designs necessarily resulting in the development of more vibrational forces because of the movement of greater masses of material and because of the greater amount of energy expended therefor. These considerations become significant in the present apparatus both because of the heavy duty cutter bars and because of the increased harvester widths contemplated herein, viz., in excess of 16 feet.
  • the aforementioned mechanical driving or reciprocating means for the cutter bar assembly there is meant one in which the reciprocating cutter bar is connected by mechanical linkage to the pick-up assembly conveyor, in contradistinction to other types of drive means such as those actuated by hydraulic forces.
  • mechanical linkage or other means are provided to maintain the cutter bar assembly in a position coplanar with the surface of the water, i.e., horizontal, as the pick-up assembly is raised and lowered to vary the cutting depth of the apparatus,
  • the same linkage serves to rotate the cutter bar into a non-interferring position when the pick-up assembly is positioned to unload harvested payload.
  • the simplest mechanical linkage consisting of one or more elongated members 118 (FIGS. 1 and 7) extending from the cutter bar assembly to support frame 13, and hingedlyconnected to each, will readily suffice.
  • a representative aquatic harvester designed in accordance with the foregoing principles and embodying the various hereinabove delineated component systems .in constructed utilizing four pontoon members 46 feet in length and having a diameter of 36 inches. The width of the deck, and hence of the entire harvester apparatus including the cutting swath is chosen as 16 feet. The harvester is powered by 391 cubic inch V-8 industrial engine adapted for propane fuel. A harvesterof this size is readily capable of harvesting and carrying a payload of harvested aquatic material weighing at least 20,000 pounds. Even in its fully loaded condition the aquatic vehicle draws only approximately l5 inches of water.
  • Operation of the present harvesting apparatus is basically very simple, and the entire harvesting and unloading operation can be easily supervised and carried out by a single operator.
  • the operator activates the elevational control system for the pick-up assembly to lower the forward end thereof into the water to the desired cutting elevation.
  • the pick-up assembly conveyor is then activated, which in turn initiates reciprocation or cutting motion of the cutter bar mechanism.
  • Harvesting is now begun, and as the operator slowly propels the apparatus forward in the water, aquatic weed growth is continuously severed by the reciprocating cutter bars and conveyed up the incline of the pick-up assembly and ultimately deposited on the deck immediately beneath the aft portion of the pick-up assembly conveyor.
  • the operator intermittently engages the bed conveyor to gradually move the accumulated pile toward the rear of the deck. This operation is repeated until the bed conveyor is full.
  • the forward end of the pick-up assembly is elevated to its uppermost position thereby bringing the aft end of the pick-up conveyor to a position contiguous with the bed conveyor.
  • the harvesting apparatus in this configuration is now driven to an unloading location on the shore where a truck, wagon or other road vehicle is parked to receive the harvested weed growth. There the harvester is positioned so that the elevated pick-up assembly overhangs the side wall of the receiving vehicle. All that is now required for self-unloading of the harvester is that the operator activate the pick-up assembly conveyor in the forward direction and thereafter gradually advance the harvested payload in a forward direction along the bed conveyor.
  • the harvested aquatic growth is transferred from the bed conveyor to the forwardly moving pick-up assembly conveyor, whereby it is then transported into the receiving vehicle.
  • the foredescribed bed risers to assist in lifting the harvested weed growth from the bed conveyor to effect transfer thereof onto the pick-up assembly conveyor in its unloading positron.
  • first and second annular members each comprise a horizontally disposed annular-shaped flange and a generally vertically-disposed flange secured to said horizontal flange at a point near the outer circumference thereof, the vertical flange of said second annular member occupying a radially, inwardly contiguous position with respect to the vertical flange of said first annular
  • An air thrust propulsion and steering assembly according to claim 2, further comprising a remote electrical control means for said electric motor.
  • bearing members comprise fiber-

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Harvesting Machines For Specific Crops (AREA)

Abstract

An improved aquatic harvester is disclosed having an aquatic craft comprising a plurality of pontoons secured to a flat deck member, the craft being propelled and steered by a totally abovethe-water air propulsion system. Other features include a selfunloading conveyor system, a heavy duty cutter bar assembly specially designed for cutting underwater weed growth, and a 3phase electrical power system to operate all subassemblies. The harvester is capable of carrying payloads in excess of 10 tons while at the same time having a draft of approximately 15 inches of water with no below-the-water drive or controls, thus rendering the craft free from fouling.

Description

111 3,847,105 1451 Nov. 12, 1974 AQUATIC HARVESTER [75] Inventor: Thomas G. Kelpin, Shreveport, La.
[73] Assignee: American Waterweed Harvesting Company, Inc., Shreveport, La.
22 Filed: on. 16, 1972 21 Appl. No.: 297,864
Related U.S. Application Data [62] Division of Ser. No. 97,497, Dec. 14, 1970, Pat. No.
[52] U.S. Cl. 115/1 C, 248/23, 212/68 [51] Int. Cl B601 3/00 [58] Field of Search ll5/.5 R, 1 C, 35; 248/19, 248/23; 212/28, 35 R, 67-69; 308/240 3,279,621 10/1966 Hackenberger................... 212/35 R FOREIGN PATENTS OR APPLICATIONS- 669,688 11/1929 France 115/1 c Primary Examirier-Trygve M. Blix Assistant Examiner-Edward R. Kazenske Attorney, Agent, or Firm-Bacon & Thomas [57] ABSTRACT An improved aquatic harvester is disclosed having an aquatic craft comprising a plurality of pontoons secured to a flat deck member, the craft being propelled and steered by a totally above-the-water air propulsion system. Other features include a self-unloading conveyor system, a heavy duty cutter bar assembly specially designed for cutting underwater weed growth, and a 3-phase electrical power system to operate all subassemblies. The harvester is capable of carrying payloads in excess of 10 tons while at the same time having a draft of approximately 15 inches of water with no below-the-water drive or controls, thus rendering the craft free from fouling.
I PAIENTEBunnzasm 3.841105 manor 5 FIG.3
ATENTEDHUV 12 I914.
SHEET 3 0f 5 PATENTEDHUY 12 197:. 384 1 5 SHEET 5 0F 5 AQUATIC I-IARVESTER This is a division, of application Ser. No. 97,497, filed Dec. 14, 1970 now US. Pat. No. 3,698,163.
BACKGROUND OF THE INVENTION This invention relates to an apparatus for harvesting aquatic material, and more especially to an improved device for efficiently cutting and harvesting underwater marine plant life, primarily in inland lakes and waterways, and in coastal waterways.
Inland bodies of water, be they'lakes, rivers, flowages, canals, etc., are all subject to the process of eutrophication, or in other .words, natural aging. This phenomenon normally occurs over a period of many thousands of years, whereby a body of water passes through three more or less distinct stages of development.
In its early life a naturally formed lake or other such body of water is in what is known as the oligotrophic stage wherein the lake may be characterized as being deep, having steep walls and very clear water. The clearness of thewater evidences a very low productivity, and plankton are very sparse. In addition, the body of water is characterized as having no shore vegetation, no bottom algae and very little sediment deposited on its bottom. In the second, or mesotrophic stage, a body of water gradually ages toward maturity. There now begins to accumulate substantial sediment, the rock walls become eroded and less steep, and likewise there appears some shore vegetation and bottom algae. Productivity in the water gradually increases throughout the mesotrophic stage and thus the nutrient content grows steadily higher. Entrance of the eutrophic stage is signaled when a body of water reaches senescence. In this last stage, the body of water is largely filled with silt and organic sediment with the shore lines taking on a gradual slope because of the accumulation of sediment. Extensive marshes appear around the periphery of the body of water together with large amounts of other shore vegetation. Algae covers most of the bottom, and the productivity of the water becomes very high. In the terminal period of this final stage, there occurs a filling of the body of water with gradual occupation of the area by terrestrial vegetation whereupon the former body of water reverts to the status of a marsh or a moor. Finally, all that may be left is a small central marsh with the remainder assuming the characteristic of a dry land forest.
Civilization has now become fully cognizant of the' fact that it may be accelerating the natural phenomenon of eutrophication as much as 100 times its normal rate. Careless industrial waste treatment, inadequate septic systems, agricultural chemical runoff, andmunicipal sewerage treatment facilities inadequate to serve the growing urban populations have resulted in the discharge of large quantities of nitrogen and phosphorous containing chemicals into the inland waterways of the United States and other industrialized countries. The result has been an increase in the growth of aquatic plant life of such phenomenal proportions as to not only render many bodies of water unusable and- /or unhealthy, but also to threaten the early demise of these valuable natural resources.
Recognition of the problem has brought forth many proposals, and has generated some action, e.g., removal of phosphates from detergents; however, it is apparent that even the current general awareness of the situation has not resulted in adequate precautionary steps in the various segments of the governmentalindustrial community. Thus, it appears that any steps toward significant alleviation of the problem are at least as distant in the future as stringent legislation governing water pollution. In the meantime, in an attempt to maintain the status quo and possibily to reverse the already present trend, it will be necessary to deal with the problem in an after-the-fact manner, namely, killing and/or removal of the aquatic plant growth after its appearance in a body of water. Unfortunately, poisoning of aquatic plant growth by means of various herbicides and algacides, by far the most expeditious method both economically and application-wise, has proven to be an ecologically unsound and even detrimental means of dealing with the problem. Hence, it is now apparent that mechanical harvesting of underwater plant growth is the only truly, practical and efficacious means available at this time for retarding mans acceleration of the eutrophication process.
Apparatus for harvesting aquatic plant growth is known in the art and has likewise known many variations and adaptations to fit particular needs, e.g., ocean-going kelp harvesters, designs for inland waterways, etc. Heretofore proposed designs for apparatus adapted primarily for harvesting aquatic plant life in inland waterways have uniformly suffered from certain drawbacks and disadvantages- For example, because most are. patterned on a basic barge design principle,
their payload capacity has been severely limited inasmuch as increases in actual craft weight attendant with corresponding increases in craft size have resulted in harvesting apparatus which is rendered useless in many shallow lakes and shallow portions of lakes and rivers where the need for harvesting is most often the greatest. Moreover, the conventional use of hydraulic components to operate the various systems of heretofore known marine harvesting apparatus has also resulted in significant increases in overall harvester weight and corresponding decreases in payload capacity. Prior art harvesters are uniformly characterized by some form of below the water propulsion and steering, e.g'., outboard motors, side or stem paddlewheels, rudders, etc. The use of below the water propulsion and/or steering systems has resulted in severe limitations upon maneuverability of the subject apparatus since such means are notably inefficient and susceptible to clogging and fouling when it is attempted to maneuver the harvester in areas of heavy aquatic plantgrowth where harvesting is being conducted, particularly in backing or turning of the harvester apparatus. Furthermore, typical prior art harvestershave little or no self-contained payload storage area, and consequently there is employed a plurality of crafts, e.g., the harvester and one or more intermediate barges or the like for handling the payload subsequent to cutting. As a result, it is necessary to either frequently unload the harvester and/or to handle the cut aquatic growth in one or more intermediate steps between harvesting and ultimate removal thereof from the harvesting site, these factors-requiring in most instances the presence of an operating crew of three or more men.
In another aspect, difficulty has arisen in prior art harvester apparatus because, the machinery was not'capable of surviving collisions with hidden underwater objects often encountered in shallow areas of a body of water. Most notably, the standard cutter bars uniformly ples. For example, because of related size and weight considerations the most successful inland waterway machines have been limited to cutting swaths of typically from 6 10 feet across, and similarly, a 3,000 pound harvester payload capacity is a common upper limit. Moreover, because of the complicated assemblage of equipment and hydraulic components, machines of the foregoing type are generally priced in the $30,000 to $50,000 range. These factors make it readily apparent that the prior art harvesters are rendered unsuitable from a harvesting capacity standpoint for communities faced with a formidable weedgrowth problem in one or more sizeable bodies of water, and
likewise, that the same are unsuitable from an economical standpoint for smaller municipalities with limited financial resources.
SUMMARY OF THE INVENTION Accordingly, it is a primary object of this invention to provide an aquatic weed harvester having an improved vehicle design allowing for enhanced maneuverability in shallow inland waterways as well as significantly increased payload capacity.
Another object of this invention is to provide-an aquatic weed harvester having a completely above-thewater propulsion and steering system which facilitates operation and control of the apparatus and totally eliminates any underwater fouling of the propulsion system by aquatic plant growth.
Yet another object of this invention is to provide an aquatic weed harvester operable by a single individual in every aspect, including cutting and harvesting of the aquatic plant growth, stowage ofthe harvested payload upon the harvester deck and finally, direct delivery of the payload from the harvester to a road vehicle.
Another object of the invention is the provision of an aquatic weed harvester wherein the operational control system for the harvester subcomponent systems is characterized as being simple, lightweight and inexpensive.
It is another object of the invention to provide an aquatic weed harvester having an underwater assemblage, particularly the cutter bar, which is extremely strong and versatile and can withstand without damage impact with virtually any object likely to be encountered beneath the surface of the water.
Still another object of this invention, cumulative with the foregoing objects, is the production of an aquatic weed harvester having vastly increased cutting and payload capacities, and yet one which is economically within reach of most communities.
It is also an object of this invention to provide acompletely above-the-water propulsion and steering system for use with vehicles in general, with particular application in aquatic and snow or ice carried vehicles.
Yet another object of the invention is the provision of an improved cutter bar design and an improved cutting system containing a cooperating pair of cutter bars.
Thus, in accomplishing the foregoing objectives, there is provided an aquatic harvester comprising an aquatic craft having a plurality of pontoon members secured beneath a flat deck member, the harvester being additionally characterized by a completely above-thewater propulsion and steering system comprised of an air propulsion unit and a mounting means for the air propulsion unit capable of rotating 360 about a vertical axis. Pontoon members of a special nature are employed in the present design, namely, those constructed of corrugated metal wall conduits of the spirally or helically wound type, more specifically, those having folded and crimped seems along the spiral lines of construction, The propulsion and steering system is unique in that it comprises an air propulsion unit, including an engine and aerodynamic propeller, employed in conjunction with a mounting means comprising a first horizontally disposed annular member secured to the aquatic craft adjacent the aft portion thereof, a second annular member concentrically superimposed upon the first annular member, with the second member being radially immovable with respect to the first member and circumferentially rotatable about a common vertical axis therewith. Engine mounting means are secured to the second annular member, and a control system is provided to selectively rotate the second annular member through an arc of 360 to achieve complete abovethe-water propulsion and steering control of the barvesting apparatus.
As with other aquatic harvesting apparatus of the present type, the instant apparatus includes a pick-up assembly for aquatic material located both at and below the surface of the water, this assembly comprising, primarily, a means for conveying the aquatic material out of the water, and onto the deck of the aquatic craft. Other features employed in conjunction with the aquatic material handling systems of the present harvester include a bed conveyor means overlying the deck member of the aquatic craft. This conveyor means is selectively operable to convey in both the fore and aft directions to position harvested aquatic matter along the deck. Preferably, the harvester contains a mounting means pivotally connecting the pick-up assembly to the aquatic craft so that the assembly projects forward of the craft and also is rotatable about a horizontal axis. In conjunction therewith, there is provided an actuating means for rotating the pick-up assembly to vary the elevation of the forward end thereof and likewise, to hold the assembly at any selected elevation. Complementing the immediately foregoing structure, there is also incorporated a conveyor means in the pick-up assembly which is operable to,
convey in both the fore and aft directions, whereby the pick-up assembly serves also as an unloading means when the aft end of the pick-up assembly conveyor is rotated to a position contiguous with the bed conveyor means.
Another important feature of the present invention resides in the exclusive use of electrical energy to operate the various harvester systems. This is accomplished primarily by providing a 230 volt three phase electric ation with the teeth of the second bar, and the teeth of both bars having blunt pointed tips with side portions rearwardly and outwardly diverging therefrom to an intermediate location, the side portions thereafter converging inwardly and rearwardly to a second intermediate point, and thence the side portions again diverging outwardly and rearwardly to the midpoint intermediate adjacent teeth, the divergence being at an angle preferably equal to the first angle of divergence at the tip of the blade. The converging and second diverging side portions thus form a re-entrant configuration between adjacent teeth. In the preferred embodiment, the second cutter bar is mounted stationary upon a pick-up assembly and the first cutter bar is divided into two equal sections which are then reciprocated 180 out of phase with one another by mechanical operating means drivable from the pick-up conveyor. The foregoing preferred cutter bar tooth configuration lends yet another important advantage, namely, that the first and second cutter bars may be manufactured from a single rectangular sheet of metal, with a single cutting operation, since one cutter bar is defined by the exact residue resulting from cutting the other bar from the metal sheet.
Other objects. and the nature and the advantages of the instant invention will be apparent from the description hereinbelow, taken in conjunction with the accompanying drawings wherein like reference numerals are used to indicate like or equivalent parts.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view, partially cut away, of an aquatic harvester according to the invention, illustrating in phantom lines the unloading position for the pick-up assembly;
FIG. 2 is a right side view of FIG. 1;
FIG. 3 is a top view of the aquatic craft portion of an aquatic harvester according to this invention;
FIG. 4 is a view taken along the line 44 of FIG. 1;
FIG. 5 illustrates the configuration of a section of the preferred cutter bars manufactured in accordance with the present invention;
FIG. 6 is a perspective view of the preferred cutter bars in overlying shearing cooperation;
FIG. 7 is a detailed view, partially in section, illustrating the actuator means for the pick-up assembly, with the unloading position of the assembly illustrated in phantom lines;
FIG. 8 is a skeleton view of FIG. 7 illustrating the path of the actuator chain;
FIG. 9 illustrates the cross section of a pontoon wall showing the structure of a folded and crimped seam;
FIG. 10 is a detailed side view of the engine and air propeller assembly; I
FIG. 11 is a top view of FIG. 10;
FIG. 12 is a view along the line 1212 in FIG. 10, illustrating the steering control assembly;
FIG. 13 is a view along the line 1313 of FIG. 12;
FIG. 14 is a top view of a chain tightener employed in conjunction with the steering control assembly;
FIG. 15 is a view taken along the line 15-15 of FIG. 11; and
FIG. 16 is a view taken along the line 1616 of FIG. 12.
DETAILED DESCRIPTION OF THE INVENTION Referring now to the drawings, and particularly to FIGS. 1 and 2, there is designated generally by reference numeral 10 an aquatic harvester in accordance with the present invention. The basic harvester component is the aquatic craft, designated generally by refer- I ence numeral 12, comprising a plurality of pontoon below the surface of the water and conveying the same onto the deck 16 of aquatic craft 12. As illustrated in FIG. 1, the pick-up assembly may be rotated to an elevated position wherein it serves as an unloading means when the conveyor 32 is operated in the reverse, or forj ward direction. In a preferred embodiment, the harvester apparatus has a'horizontal cutter bar assembly located adjacent the forward edge of the pick-up assembly. Most preferably, the cutter bar assembly is operated through direct mechanical linkage with the pick-up conveyor 32.
While the foregoing has briefly set forth and described the basic components of the illustrated embodiment of the present aquatic harvester, each of the said components will hereinafter be further described in detail.
THE AQUATIC CRAFT The aquatic craft comprises four pontoon members portion constructed of wooden flooring material, that portion being confined on three sides by upstanding side rail members 17. The railing immediately forward of the air propulsion system is further provided with upwardly directed louvers 18 which serve to deflect the air thrust away from the vehicle when the propulsion system is in the reversed position. Aft of the payload containing portion of the deck is located an auxilliary deck area 11 fabricated from a light weight metallic mesh material as shown in FIG. 3. Forward of the payload deck area there is secured to the aquatic craft a support frame 13 for the pick-up assembly 30. Beneath the deck 16 and between pontoons there is provided a suitable fuel tank 61.
'Overlying the deck member 16 is a bed conveyor comprising laterally spaced endless conveyor chains 40 driven by common line shaft 42. Line shaft 42 in turn is driven by a reversible one-and-one-half horsepower 230 volt three-phase electric motor 44, and thus, the bed conveyor is operable to convey in both the fore and aft directions. The endless bed conveyor chains also contain a series of upstanding teeth 46 spaced at intervals along the length of each chain 40 to assist in the movement of aquatic material contained on the deck of the craft during harvesting operations. Also located near the forward end of the bed conveyor are a series of spaced deck risers 48 which are mechanically actuated into the rearwardly inclined position illustrated in FIGS. 1 and 7 to assist in transferring harvested aquatic material from the bed conveyor to the pick-up conveyor when the machine is performing its unloading function. Raising of the pick-up assembly to its unloading position mechanically positions the deck risers 48 into the inclined position through a suitable linkage assembly.
Since the weight of the total harvester apparatus is of critical importance as regards the achievement of significant payload capacity, it is of utmost importance to construct the aquatic craft from material and components which combine the necessary factors of strength and durability with the minimum amount of weight. Thus, there has been employed the aforementioned wooden deck material in the payload containing area, the light weight mesh material on the'remaining portions of the deck and the basic pontoon design in contradistinction to prior art barge-type designs. Moreover, the pontoon design has exhibited greatly decreased resistance to passage through the water, particularly when employed with the complementary abovethe-water propulsion system of the present invention. However, perhaps the most salient feature of the present aquatic craft design resides in the combination of performance characteristics and economy afforded by the use of a particularly preferred pontoon member. Specifically, pontoon members have been fabricated from a specific type of corrugated pipe which is characterized by the conventional spirally wound configuration, but in contradistinction to conventional riveted or folded-seam pipe, the instant pipe is further characterized by a special air-tight folded and crimped seam. In FIG. 9 there is illustrated a cross section of the subject pipe wall 60 showing in detail the configuration of a folded and crimped seam 62. Apparatus suitable for fabricating spirally wound conduits having folded and crimped seams of the type illustrated in FIG. 9 are described in U.S. Pat. No. 3,l32,6l6. It has been established by static hydraulic pressure tests conducted on the subject conduits by the Pittsburgh Testing Laboratories that the folded-and crimped seams will withstand at least about 28 p.,s.i. before failing. Thus, there is obtained from these conduits a pontoon which is extremely flexible because of the spiral construction, relatively inexpensive and easily obtainable, sufficiently light weight, yet suitably strong to support the weight of the machinery and the increased payloads obtainable therewith. In fact, it has been found that a pontoon of the foregoing type having an overall length of 46 feet and a diameter of 36 inches constructed of 14 gauge steel material has a weight of only :1 ,355 pounds, whereas the same is capable of supporting 20,000 pounds of flotation weight. It is therefore readily apparspirally wound conduit having equivalent seams may be satisfactorily employed to fabricate pontoons for the instant harvester apparatus. However, to meet the min imum requirements therefore, the seams must be air tight and capable of withstanding a static pressure of at least about 10 p.s.i., and preferably 28 p.s.i.. before failure.
THE PROPULSION AND STEERING SYSTEM Air propulsion systems are certainly well known and have even been employed in conjunction with certain types of harvesting apparatus (see for example, Swiss Pat. No. 450,788). However, in most types of known air propulsion systems steering is accomplished by one or more rudders coacting with the air, or in the case of aquatic vehicles, rudders coacting with the water to i provide an improved degree of control as compared to a system where only an air-disposed rudder is employed. As noted, air actuated steering vanes or rudders are highly inefficient, and likewise, provision of a below-the-water rudder in an aquatic craft to a large degree defeats the purpose of providing above-thewater propulsion. For example, in the hereinabove mentioned Swiss patent a complex system of adjustable rudders or vanes are built into the hood assembly surrounding the propeller. It will be noted though, that even in the preferred embodiments of the patent, the illustrated below-the-water rudders must necessarily be employed in reversing the vehicle. In another embodiment of the subject patent, the vehicle is provided with a barge-type supporting structure and the propulsion system may be rotated 30 either direction to aid in steering; however, in addition to the two types of aforementioned rudders, such a modification further necessitates the addition of a stabilizing member at the bow of the craft. I
Similarly, steering control for air propelled vehicles has been achieved by providing a means to horizontally rotate the propulsion source, namely, the propeller, about an arc of 360; however, designs of this type have almost exclusively been limited to instances where small craft are sought to be propelled since prior art rotational means generally embody a single vertical post or shaft as the sole support means and axis of rotation. There is not known in the art a suitable mounting means for a heavy duty engine and attached propeller which allows for remote control rotation of the entire propulsion unit through an arc of 360 about a vertical axis to achieve complete directional control of the particular vehicle in the absence of auxilliary rudders, vanes and/or stabilizing members. In fact, it has generally been thought that significant torque and vibrational problems would prohibit the successfuluse of such a system.
The propulsion and steering system of the present invention is illustrated in FIGS. 10 through 16. The basic propulsion unit consists of an engine 22 preferably of the internal combustion type, but ofa non-polluting nature, such as a 391 cubic inch V-S Ford industrial type engine adapted for a vapor fuel such as propane. The engine is operably connected through flexible belt 23 to the aerodynamic propeller 24. Contained internally of the engine 22 is a transmission which is operable by means of lever 25 to engage and disengage the power supply to belt 23 and hence to propeller 24. For safety reasons, there is provided a cage type protector 27 around the propeller.
The propulsion system mounting assembly 26, illustrated in detail in FIGS. 12 through 16, also serves as the steering assembly for the aquatic craft. This assembly comprises a pair of superimposed annular members, consisting of a first annular member 50 and a second annular member 52 each fabricated from angle iron in the illustrated embodiment. The first annular member 50 is rigidly secured adjacent the aft end of the aquatic craft by suitable support members, whereas the second annular member 52 is of slightly smaller diameter than the first annulus, and hence, when concentrically superimposed thereon rests inside the first annular member and is confined thereby so as to be radially immovable with respect thereto. See FIGS. and 16. However, because annulus 52 is freely resting upon annulus 50, the former is freely rotatable through an angle of 360 about the common vertical axis of the annuli. The two annular members are of sufficient diameter to underlie a substantial portion of the propulsion unit in order to provide adequate support and stability therefor. Typically, there is provided bearing members between the two annular members to facilitate rotational movement therebetween. Identified by reference numeral 54 in FIG. 15, such bearing members are preferably fabricated of fiberglass or other synthetic resin laminated or bonded material to serve additionally as vibrating and shock absorbing members. These bearing members may also be channeled and provided with grease fittings to further enhance their utility as bearings. To the upper surface of the second annular member 52 there is secured mounting means in the form of framework 58 for the engine and air propulsion unit.
There is also provided novel rotational means for the steering assembly comprising annular sprocket 70 secured to the second annular member 52 through the engine mounting structure 58. Sprockets 78, and hence the steering assembly, are driven selectively in either the clockwise or counter clockwise direction by reversible electric motor 72 acting through a suitable gear reducer 74 and roller chain 76. Reversible electric motor 72 is a 12 volt DC motor supplied with electrical energy from the ignition system of engine 22. This rotational means provides a steering system which is simple, dependable and practically fail safe, and one which can easily and inexpensively operate from a remote position through simple electrical control circuitry. Thus, at all times when the engine is running, and even when the ignition is merely in the on position, complete control is achieved over rotation of the air propulsion unit. The aforementioned remote control system is preferably one wherein rotation is initiated by simple selection and depression of either a clockwise or a counter clockwise rotation button or switch. Rotation proceeds only when the switch or button is held in the on position by the operator. However, to further assist the operator, the rotation system may additionally be provided with cut-of switches at the 90 positions about the annular members 50 and 52, whereby rotation will automatically stop as the propulsion unit is rotated past any one of the four points regardless of whether the operator continues to hold the control switch in the on position.
In FIG. 14 there is illustrated a typical chain tightener assembly adapted to take up the slack when sprocket 70 and roller chain 76 are rotated in either the clockwise or counter clockwise direction. The chain tightener system comprises two stationary bars 80 and 82 secured to stationary annular member 50 through structural support member 81, said bar members 80 and 82 beingbiased towards one another by spring 85..
This biasing action forces cam rollers 86 and 87 mounted at the end of the two bar members, 80 and 82 respectively, against roller chain 76. Hence. as illustrated in FIG. 14, when sprocket 70 is rotated in the clockwise direction chain slack is taken up by roller 87.
THE PICK-UP ASSEMBLY Referring now to FIGS. 1, 4, 7 an 8 wherein there is illustrated the pick-up assembly designated generally by reference numeral 30, it is seen that this assembly comprises a pair of laterally spaced truss members 33 and 34 rotatably mounted near the upper or aft ends thereof to support frame 13 secured to the aquatic craft l2. Overlying the two truss members 33 and 34 and extending the full width of the aquatic craft 12 is a continuous mesh surface 35 supported by suitable reinforcing means. Previously mentioned pick-up conveyor 32 in turn overlies the mesh surface of the pick-up assembly. This conveyor consists of a series of pairs of endless conveyor chains 36, the chains of each pair being interconnected by lateral members 37 at spaced intervals along their lengths. It is preferred that at least a portion of each lateral connector 37 extend upwardly from the plane defined by the conveyor chains-36. Like the bed conveyor means on the deck member 16, the pick-up conveyor is selectively operable to convey in both the fore and aft directions, and like the bed conveyor, it is driven by a reversible three phase 230 volt electric motor 39 located adjacent the aft portion of the pickup assembly.
As illustrated in FIGS. 1 and 7, the pick-up assembly 30 may be rotated about the horizontal axis defined by its mounting points on support member 13. Thus, the forward end of the pick-up assembly'may be positioned at'elevations below the surface of the water or above the deck of the aquatic vehicle, or held at any elevation therebetween. The uppermost position of the pickup assembly defines the unloading position wherein the aft end of the pick-up conveyor is rotated to a position contiguous with the bed conveyor. In this position, both the pick-up and bed conveyors may be operated to convey in the forward direction whereupon the payload of harvested aquatic material will be automatically unloaded from the deck of the aquatic craft.
The assembly employed to rotate the pick-up assembly about the aforementioned horizontal axis is illustrated in detail in FIGS. 7 and 8. Referred to herein as the actuator assembly, it comprises a basic power source consisting of a l horsepower 230 volt three phase reversible electric motor 95 which in turn operates a line shaft 96 through a suitable chain and sprocket assembly. The line shaft carries a sprocket 97 beneath truss members 33 and 34 underlying each side of the pick-up assembly. A finite length of roller chain is secured to truss member 33 adjacent the aft end thereof, said roller chain then extending downwardly I and around idler sprocket 94 mounted on the aquatic craft, and thence back up and around idler sprocket 93 secured on the pick-up assembly truss member. After passing over idler sprocket 93, roller chain 99 again passes down and around drive sprocket 97 secured on the line shaft 96. Roller chain 99 is caused to pass around the major portion of the circumference of sprocket 97 by passing the same around another idler sprocket 98 mounted adjacent and immediately above the drive sprocket 97, whereupon there is provided absolute engagement of the roller chain 99 about the drive sprocket to accurately control the degree of rotation of the pick-up assembly. The foregoing roller chain assembly is duplicated identically beneath the second pick-up assembly truss member 34 and thus the delineated structure serves the important purpose of assuring uniform rotational adjustment across the entire length of the pick-up assembly. Such uniform adjustment is difficultly attained with similar winch assemblies. The free end of roller chain 99, as it drops off idler sprocket 98, is collected into a suitable receptacle 90 positioned between the pontoon members 14. Likewise positioned therebetween, isa spring assist member 89 to counterbalance the weight of the pick-up assembly and aid in the rotation thereof. Again, identical spring assist members are provided beneath each of the truss members 33 and 34.
THREE PHASE 230 VOLT ELECTRICAL SYSTEM The complex hydraulic system utilized in prior art harvester apparatus to operate each of the various subassemblies suffers from several very serious drawbacks, namely, that the same are relatively expensive and that use thereof creates a serious gross weight problem as regards the resultant harvesting apparatus. Consequently, the maximum payload capacity of such apparatus is significantly limited, see for example, US. Pat. Nos. 3,286,447 and 3,477,213. Both of these problems have been overcome in the present aquatic harvester by employment of a three phase 230 volt electrical power system from which corresponding electrical motors are supplied to drive the various sub-assembly systems of the instant aquatic harvester, viz., the pick-up assembly conveyor, the bed conveyor and pick-up assembly rotating or actuating means. Electrical power for this system is achieved by means of a three phase alternator 8 driven by a crankshaft of engine 22. In ad dition to providing a safe, simple, economical and light weight power system for the various harvester subcomponents, the present three phase power system enables the concentration of all necessary remote control apparatus in a single control box designated by reference numeral 9 in FIG. 3. Moreover, such a control panel may either be mounted permanently at a fixed control station near the forward end of the aquatic craft, or preferably may be of a portable nature allow ing the operator to carry the same to any desired location on the apparatus during operation while still enabling him to maintain complete control over the apparatus and its sub-components.
In a preferred embodiment of the invention, each of the aforementioned three phase electric motors is provided with a 24 volt contactor, and correspondingly, a portion of the 230 V output of alternator 8 is steppeddown to 24 volts by means of an appropriate transformer. This stepped-down output is then used to operate the remote control system via control panel 9. In this manner, the operator is never exposed to contact with the 230 volt system, but contrariwise, only to the 24 volt control system.
In all other respects the electrical remote control systems employed are of a standard nature and are well known to those of ordinary skill in the electrical control art. Thus, the same need no detailed explanation here; however, it might be pointed out that in the preferred embodiment of the present aquatic harvester, it is desired that the bed conveyor and the pick-up assembly actuator means be operable on a demand basis only, ie, that they operate only when the control button or switch is held in the on position by the operator. On the other hand, it is preferred that the pick-up assembly conveyor be operable on a constant on-of basis. It will of course be understood that the rotation or drive means for the steering system described hereinabove may also be operated from the three phase 230 volt system by substituting the 12 volt motor with a suitable 230 volt three phase model.
In a preferred embodiment, the three phase alternator 8 is operably connected to the crankshaft of engine 22 through a device whichtransforms uneven rotational input from the crankshaft into a constant rotational output supplied to the alternator. Thus, a constant 36,000 rpm input to the alternator is assured irrespective of the speed at which the engine is being operated. Such a device operates on conventional variable speed transmission principles which are well understood by those of ordinary skill in.the art and need no further development here.
Alternatively, the engine may be operated at a constant speed, with craft speed controlled through the use of a variable pitch propeller.
THE CUTTER BAR SYSTEM It will be appreciated that the aquatic harvester of the present invention finds many applications not requiring the presence of a cutting means, e.g., picking up floating aquatic weed growth both at and below the surface of the water, picking up floating debris from the water, picking up objects off the bottom of a body of water, etc. However, when it is desired to include a cutting means adjacent the forward edge of the pick up assembly, it will be likewise appreciated that any of the conventional types of cutter bar designs may be employed for this purpose. But, as pointed out hereinabove, conventional cutter bar designs suffer from the serious dis advantage that they are easily damaged upon collision with objects hidden below the surface of the water,
such objects often being encountered during weed harvesting operations.
In view of the foregoing, there has been provided according to the invention a cutter bar design and assembly of general utility, but primarily designed for cutting aquatic weed growth and withstanding the most vigorous abuse attendant therewith.
In FIGS. I and 7 there is generally illustrated a cutter bar mechanism 100 located adjacent the forward edge of the pick-up assembly 30, whereas the details of said cutter bar mechanism are illustrated in FIGS. 4, and 6.
The individual cutter bars are characterized as having a series of integral, spaced teeth 101, (referring to bar 110 in FIG. 5) each tooth having a blunt pointed tip 105 with side portions 106 rearwardly and outwardly diverging therefrom to an intermediate point 107, the side portions thereafter converging inwardly and rearwardly to a second intermediate point 108, and thence the side portions again diverging outwardly and rearwardly to a point 109 centrally located between adjacent teeth, the second divergence preferably being at an angle equal to the first divergence at the tip of the blade. Thus, the converging side portion between points 107 and 108 and the second diverging side portion between points 108 and 109 form a re-entrant configuration between adjacent teeth.
The cutter bar mechanism 100 consists of a first cutter bar 110 and a second cutter bar 111, both presenting a series of integral, spaced teeth as set forth hereinabove. The teeth of the first cutter bar 110 are in overlying shearing cooperation with the teeth of the second bar 111, and preferably, the teeth of bar 110 are slightly forward of those on bar 111, as shown in FIG. 6. Strength is afforded to the cutter bars by fabricating the same from steel sheet stock preferably having a thickness of at least about five-sixteenths inch. Typically, however, cutter bars from about one-fourth to one-half inch in thickness afford the desired degree of strength. Moreover, because of the aforedescribed reentrant configurations existing between adjacent cutting teeth, weed growth becomes trapped and sheared off between overlying cooperating reciprocating cutter bar teeth without the necessity of providing bevelled or serrated sharpened edge portions on thecutter bar teeth. Hence, the edge portions 112 of teeth 101 may comprise essentially flat surfaces extending perpendicular to the plate of the cutter bar. Thus also, additional strength is afforded the subject cutter bars by such a design.
The immediately foregoing feature providing for the flat edge portions on the subject cutter bar teeth, coupled with the specific design of the cutter bar teeth, en-
ables the highly advantageous result that the first and second cutter bars 110 and 111 may be manufactured from a single rectangular sheet of metal, with a single cutting operation since one cutter bar will be defined by the exact metal sheet residue resulting from the cut shape of the other cutter bar. This relationship is illustrated in FIG. 5 of the drawings. Thus, a single pass of a cutting tool, such as a cutting torch, produces a set of cutter bars suitable for use withoutfurther modification.
As illustrated in FIG. 4, the second or lower cutter bar 111 is mounted stationary upon the pick-up assembly 30 of the aquatic harvester. The first or upper cutter bar 110 is severed at its mid-point into two sections of equal length and each section is positioned in lateral sliding relationship with stationary cutter bar 111. The two sections of upper cutter bar are then provided with mechanical driving means in the form of cammed disks connected to .common line shaft 116 carrying the pick-up apparatus conveyor chains. Rotation of shaft 116 and concomitant rotation of cammed disks 115 results in reciprocation of the two sections of top cutter bar 110. It is observed that the two cutter bar sections are timed to reciprocate out of phase with one another, whereupon there is provided a highly effective means of cancelling out substantially all vibration resulting from reciprocation of the cutter bar mechanism. The foregoing design has significant advantages over certain prior art designs which require opposing reciprocation of two cutter bar members extending across the complete width of the cutter swath, such designs necessarily resulting in the development of more vibrational forces because of the movement of greater masses of material and because of the greater amount of energy expended therefor. These considerations become significant in the present apparatus both because of the heavy duty cutter bars and because of the increased harvester widths contemplated herein, viz., in excess of 16 feet. By the aforementioned mechanical driving or reciprocating means for the cutter bar assembly there is meant one in which the reciprocating cutter bar is connected by mechanical linkage to the pick-up assembly conveyor, in contradistinction to other types of drive means such as those actuated by hydraulic forces.
Preferably, mechanical linkage or other means are provided to maintain the cutter bar assembly in a position coplanar with the surface of the water, i.e., horizontal, as the pick-up assembly is raised and lowered to vary the cutting depth of the apparatus, Advantageously, the same linkage serves to rotate the cutter bar into a non-interferring position when the pick-up assembly is positioned to unload harvested payload. The simplest mechanical linkage consisting of one or more elongated members 118 (FIGS. 1 and 7) extending from the cutter bar assembly to support frame 13, and hingedlyconnected to each, will readily suffice.
GENERAL CHARACTERISTICS AND OPERATION OF THE HARVESTER A representative aquatic harvester designed in accordance with the foregoing principles and embodying the various hereinabove delineated component systems .in constructed utilizing four pontoon members 46 feet in length and having a diameter of 36 inches. The width of the deck, and hence of the entire harvester apparatus including the cutting swath is chosen as 16 feet. The harvester is powered by 391 cubic inch V-8 industrial engine adapted for propane fuel. A harvesterof this size is readily capable of harvesting and carrying a payload of harvested aquatic material weighing at least 20,000 pounds. Even in its fully loaded condition the aquatic vehicle draws only approximately l5 inches of water. Moreover, because of this low draft, the powerful and efficient 360 rotatable air propulsion system, and the unique design of the pontoon members, it is impossible to strand the apparatus because of fouling with aquatic weed growth, and it is virtually impossible to run the apparatus aground, or uponsome hidden obstacle such that it cannot be easily extricated solely by its own maneuvering power. Of course, larger or smaller tures described above can still be manufactured and sold within a price range well below the prevailing minimum price of $30,000.00 currently associated with available harvesting machinery.
Operation of the present harvesting apparatus is basically very simple, and the entire harvesting and unloading operation can be easily supervised and carried out by a single operator. Thus, when preparing to commence harvesting, the operator activates the elevational control system for the pick-up assembly to lower the forward end thereof into the water to the desired cutting elevation. The pick-up assembly conveyor is then activated, which in turn initiates reciprocation or cutting motion of the cutter bar mechanism. Harvesting is now begun, and as the operator slowly propels the apparatus forward in the water, aquatic weed growth is continuously severed by the reciprocating cutter bars and conveyed up the incline of the pick-up assembly and ultimately deposited on the deck immediately beneath the aft portion of the pick-up assembly conveyor. As the harvested aquatic growth piles up at this point to a hieght of several feet, the operator intermittently engages the bed conveyor to gradually move the accumulated pile toward the rear of the deck. This operation is repeated until the bed conveyor is full.
With the apparatus now fully loaded, the forward end of the pick-up assembly is elevated to its uppermost position thereby bringing the aft end of the pick-up conveyor to a position contiguous with the bed conveyor. The harvesting apparatus in this configuration is now driven to an unloading location on the shore where a truck, wagon or other road vehicle is parked to receive the harvested weed growth. There the harvester is positioned so that the elevated pick-up assembly overhangs the side wall of the receiving vehicle. All that is now required for self-unloading of the harvester is that the operator activate the pick-up assembly conveyor in the forward direction and thereafter gradually advance the harvested payload in a forward direction along the bed conveyor. As a result, the harvested aquatic growth is transferred from the bed conveyor to the forwardly moving pick-up assembly conveyor, whereby it is then transported into the receiving vehicle. When very fine species of weed growth are being harvested, it may be necessary to install means such as the foredescribed bed risers to assist in lifting the harvested weed growth from the bed conveyor to effect transfer thereof onto the pick-up assembly conveyor in its unloading positron.
bustion engine and an aerodynamic propeller, and a mounting means for said air propulsion unit comprising a first horizontally disposed annular member secured to the craft to be propelled, a second annular member superimposed upon said first annular member, said second annular member being radially immovable with respect to said first annular member and circumferentially rotatable about a common vertical axis therewith, engine mounting means secured to said second annular member, and means to selectively rotate said second annular member through an arc of 360, said first and second annular members being of sufficient diameter to underlie a substantial portion of the propulsion engine and said engine being mounted substantially centered upon said second annular member, said first and second annular members each comprise a horizontally disposed annular-shaped flange and a generally vertically-disposed flange secured to said horizontal flange at a point near the outer circumference thereof, the vertical flange of said second annular member occupying a radially, inwardly contiguous position with respect to the vertical flange of said first annular mem-- her, one or more angular bracket members secured to said horizontally disposed annular-shaped flange of said second annularmember and depending outwardly and downwardly therefrom to a point below the hori zontally dislosed annular-shaped flange of the first annular member, and a roller bearing member attached to the downwardly projecting portion of each bracket member, said roller bearing member being disposed in wardly and passing beneath the horizontally disposed annular-shaped flange of the first annular member.
2. An air thrust propulsion and steering assembly according to claim 1, wherein said rotating means comprises a reversible 12 volt electric motor operable from the ignition system of the propulsion unit engine.
3. An air thrust propulsion and steering assembly according to claim 2, further comprising a remote electrical control means for said electric motor.
4. The air thrust and steering system as defined by claim 1, wherein said second annular member is supported by and bears upon said first annular member only in a relatively narrow annular-shaped surface area located near the circumference of said second annular member.
5. The air thrust and steering system as defined by claim 1, wherein said propulsion engine is a high horsepower automotive internal combustion engine.
6. The air thrust and steering system as defined by claim 1, further comprising bearing members disposed between said first and second annular members.
7. The air thrust and steering system as defined by 0 claim 6, wherein said bearing members comprise fiber- The embodiments of an invention in which an exclu- I glass blocks-having channels adapted for containing alubricant.
. 8. The air thrust and steering system as defined by

Claims (8)

1. An air thrust propulsion and steering system comprising an air propulsion unit having an internal combustion engine and an aerodynamic propeller, and a mounting means for said air propulsion unit comprising a first horizontally disposed annular member secured to the craft to be propelled, a second annular member superimposed upon said first annular member, said second annular member being radially immovable with respect to said first annular member and circumferentially rotatable about a common vertical axis therewith, engine mounting means secured to said second annular member, and means to selectively rotate said second annular member through an arc of 360*, said first and second annular members being of sufficient diameter to underlie a substantial portion of the propulsion engine and said engine being mounted substantially centered upon said second annular member, said first and second annular members each comprise a horizontally disposed annular-shaped flange and a generally vertically-disposed flange secured to said horizontal flange at a point near the outer circumference thereof, the vertical flange of said second annular member occupying a radially, inwardly contiguous position with respect to the vertical flange of said first annular member, one or more angular bracket members secured to said horizontally disposed annular-shaped flange of said second annular member and depending outwardly and downwardly therefrom to a point below the horizontally dislosed annularshaped flange of the first annular member, and a roller bearing member attached to the downwardly projecting portion of each bracket member, said roller bearing member being disposed inwardly and passing beneath the horizontally disposed annularshaped flange of the first annular member.
2. An air thrust propulsion and steering assembly according to claim 1, wherein said rotating means comprises a reversible 12 volt electric motor operable from the ignition system of the propulsion unit engine.
3. An air thrust propulsion and steering assembly according to claim 2, further comprising a remote electrical control means for said electric motor.
4. The air thrust and steering system as defined by claim 1, wherein said second annular member is supported by and bears upon said first annular member only in a relatively narrow annular-shaped surface area located near the circumference of said second annular member.
5. The air thrust and steering system as defined by claim 1, wherein said propulsion engine is a high horsepower automotive internal combustion engine.
6. The air thrust and steering system as defined by claim 1, further comprising bearing members disposed between said first and second annular members.
7. The air thrust and steering system as defined by claim 6, wherein said bearing members comprise fiberglass blocks having channels adapted for containing a lubricant.
8. The air thrust and steering system as defined by claim 1, wherein the diameter of said first and second annular members is approximately equal to the largest dimension of the air propulsion unit.
US00297864A 1970-12-14 1972-10-16 Aquatic harvester Expired - Lifetime US3847105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00297864A US3847105A (en) 1970-12-14 1972-10-16 Aquatic harvester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9749770A 1970-12-14 1970-12-14
US00297864A US3847105A (en) 1970-12-14 1972-10-16 Aquatic harvester

Publications (1)

Publication Number Publication Date
US3847105A true US3847105A (en) 1974-11-12

Family

ID=26793337

Family Applications (1)

Application Number Title Priority Date Filing Date
US00297864A Expired - Lifetime US3847105A (en) 1970-12-14 1972-10-16 Aquatic harvester

Country Status (1)

Country Link
US (1) US3847105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005673A (en) * 1976-03-10 1977-02-01 Lawrence Peska Associates, Inc. Air propulsion device for surface craft
US4322208A (en) * 1978-10-10 1982-03-30 Beloit Corporation Swivel mounted propulsion and steering apparatus
US5110311A (en) * 1990-11-07 1992-05-05 Wilkerson William F Air boat slime plow and methods of use
US7602076B1 (en) * 2003-07-24 2009-10-13 Peter Fox Sipp Hydro-power generating system and method
US9162736B2 (en) 2007-01-19 2015-10-20 Ronald J. Thibodaux Apparatus for performing overhead work using air-propelled vessel with articulating member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1443368A (en) * 1921-08-01 1923-01-30 Lamblin Alexandre Removable motor unit with aerial propeller
US1522671A (en) * 1921-06-01 1925-01-13 Callahan Catherine Combined propelling and steering mechanism for vessels
FR669688A (en) * 1929-02-15 1929-11-19 Emergency device for the various maneuvers of a ship
US1842125A (en) * 1930-03-03 1932-01-19 Schwarz August Propelling and steering mechanism
US1863989A (en) * 1929-12-17 1932-06-21 Liisanantti Evert Boat
US2012399A (en) * 1932-03-24 1935-08-27 Molinelli Mario Sluing mechanism for portable cranes
US3258130A (en) * 1963-04-11 1966-06-28 Internaz N Baumaschinen Arrangement controlling the pivoting arm of a crane and cranes incorporating said arrangement
US3279621A (en) * 1964-05-18 1966-10-18 Tacoma Boatbuilding Co Inc Mobile level-luffing crane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1522671A (en) * 1921-06-01 1925-01-13 Callahan Catherine Combined propelling and steering mechanism for vessels
US1443368A (en) * 1921-08-01 1923-01-30 Lamblin Alexandre Removable motor unit with aerial propeller
FR669688A (en) * 1929-02-15 1929-11-19 Emergency device for the various maneuvers of a ship
US1863989A (en) * 1929-12-17 1932-06-21 Liisanantti Evert Boat
US1842125A (en) * 1930-03-03 1932-01-19 Schwarz August Propelling and steering mechanism
US2012399A (en) * 1932-03-24 1935-08-27 Molinelli Mario Sluing mechanism for portable cranes
US3258130A (en) * 1963-04-11 1966-06-28 Internaz N Baumaschinen Arrangement controlling the pivoting arm of a crane and cranes incorporating said arrangement
US3279621A (en) * 1964-05-18 1966-10-18 Tacoma Boatbuilding Co Inc Mobile level-luffing crane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005673A (en) * 1976-03-10 1977-02-01 Lawrence Peska Associates, Inc. Air propulsion device for surface craft
US4322208A (en) * 1978-10-10 1982-03-30 Beloit Corporation Swivel mounted propulsion and steering apparatus
US5110311A (en) * 1990-11-07 1992-05-05 Wilkerson William F Air boat slime plow and methods of use
US7602076B1 (en) * 2003-07-24 2009-10-13 Peter Fox Sipp Hydro-power generating system and method
US9162736B2 (en) 2007-01-19 2015-10-20 Ronald J. Thibodaux Apparatus for performing overhead work using air-propelled vessel with articulating member

Similar Documents

Publication Publication Date Title
US3698163A (en) Aquatic harvester
US3546858A (en) Harvesting marine growths
CA2494807C (en) Aquatic plant harvester
US3656624A (en) Apparatus for collecting waste from the surface of a body of water
CN101088856A (en) Chain-net type mechanical device for mowing and cleaning operation
US3487802A (en) Amphibious boat
US3306250A (en) Amphibious vehicle
CN106218824B (en) A kind of saw blade formula can dive polar region scientific investigation ship
US5839802A (en) Light weight track system for tracked vehicle
DE2757454A1 (en) JET DRIVE DEVICE FOR DRIVING AND CONTROLLING IN PARTICULAR FLAT-RUNNING WATER VEHICLES
US3847105A (en) Aquatic harvester
US5792350A (en) Oil spill recovery vessel
US5183579A (en) Method, system and apparatus for handling substances on or in water
US4769142A (en) Amphibious oil spill absorbing machine
Kader et al. Design of rubbish collecting system for inland waterways
US2883957A (en) Boat with means for cutting an ice channel
KR102249129B1 (en) solar boat for collecting and processing rubbish easily
EP0181892A1 (en) Amphibious oil spill absorbing machine
US2980054A (en) Amphibious vehicle
CN113697049A (en) Crawler-driven amphibious collection ship with crusher
US3229658A (en) Amphibious mud and water vehicle
US3410244A (en) Amphibious boat
RU221569U1 (en) Amphibious vehicle for cleaning reservoirs Gavrilova V.A.
CN2031380U (en) Ship type fishery multi-purpose machine
US4507909A (en) Compactor and paddle wheel for aquatic harvester

Legal Events

Date Code Title Description
AS Assignment

Owner name: KELPIN, THOMAS G., 8845 BAYONNE DRIVE, SHREVEPORT,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ALLIED SHEET METAL & BLOW PIPE, INC.;REEL/FRAME:004215/0684

Effective date: 19831213

Owner name: KUTTOTHARA, ABRAHAM C., DR., ROUTE 2, OAK COURT, L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:KELPIN, THOMAS G.;REEL/FRAME:004215/0687

Effective date: 19831214